quarta-feira, 7 de dezembro de 2022

Aconteceu em 7 de dezembro de 2016: Voo 661 da Pakistan International Airlines - Nove minutos de terror

No dia 7 de dezembro de 2016, um  ATR-42 da Pakistan International Airlines (PIA) estava a caminho de Islamabad quando o motor esquerdo falhou. Mas quando os pilotos começaram a trabalhar no procedimento padrão, eles perceberam que o problema era muito pior do que uma falha normal do motor - mas por quê? 

Enquanto eles lutavam para entender o que estava acontecendo, eles perderam todo o controle do avião. Depois de realizar uma rotação de 360 ​​graus e perder milhares de pés de altitude, eles conseguiram recuperar o controle e voar por mais sete minutos desesperados - apenas para perder o controle uma segunda vez. 

O ATR-42 mais uma vez despencou do céu e, desta vez, atingiu uma encosta íngreme de montanha, provocando uma explosão massiva e matando instantaneamente todos os 47 passageiros e tripulantes. O acidente deixou o Paquistão em estado de choque - entre os mortos estava o cantor pop que virou pregador Junaid Jamshed, um dos músicos mais populares do país. 

Com perguntas ainda pendentes após as investigações fracassadas de acidentes anteriores, as autoridades paquistanesas resolveram descobrir a verdade desta vez, não importando o custo. Depois de um inquérito exaustivo que durou quase quatro anos, uma equipe internacional de especialistas descobriu a sequência incrivelmente complexa de falhas mecânicas crescentes que levaram ao acidente, descobrindo o comportamento do motor que nem mesmo o fabricante poderia ter imaginado. Diante de um problema que ninguém havia encontrado antes, os pilotos ficaram confusos - e sem saber o único curso de ação que poderia ter salvado seu avião. 

A aeronave envolvida no acidente era o ATR 42-500, prefixo AP-BHO, entregue à Pakistan International Airlines (PIA) (foto acima) em 2007. Em 2009, a aeronave foi danificada durante uma tentativa de pouso em Lahore, mas foi posteriormente reparado e voltou ao serviço. 

Ela sofreu uma falha de motor em 2014, mas o motor foi substituído e nenhum outro problema foi relatado. No momento do acidente, o avião havia registrado mais de 18.700 horas de voo desde que se juntou à frota da PIA e foi submetido à certificação pela última vez em outubro de 2016.

Como companhia aérea de bandeira do Paquistão, a Pakistan International Airlines é a principal companhia aérea doméstica e internacional do país, com uma longa e histórica história. A companhia aérea opera em uma ampla gama de condições, desde as montanhas geladas do norte aos desertos escaldantes do sul, e tem utilizado uma grande variedade de aeronaves ao longo dos anos. 

Nem sempre o fez com segurança - a PIA, como a companhia aérea é conhecida, tem um dos piores registros de segurança de qualquer companhia aérea nacional no século 21, incluindo dois grandes desastres apenas nos últimos cinco anos. Mas enquanto a investigação sobre o acidente mais recente ainda está em andamento no momento da redação deste artigo, a investigação sobre o acidente anterior finalmente foi concluída em novembro de 2020, revelando ao mundo uma notável cadeia de eventos que se desenrolou a bordo do voo 661 da PIA em 7 de dezembro 2016.

O avião em questão, o ATR-42, um turboélice de médio porte produzido pelo fabricante franco-italiano Avions de Transport Régional. Esse tipo de avião era ideal para entrar e sair de pequenos aeroportos nas regiões montanhosas do norte do Paquistão de Khyber Pakhtunkhwa e Gilgit-Baltistan, lar de alguns dos picos mais altos do mundo. 

O voo 661 da PIA foi um desses voos, da cidade montanhosa de Chitral à capital, Islamabad. Este voo foi crítico para os residentes de Chitral, que de outra forma só era acessível por muitas horas de condução em estradas de montanha estafantes. 

No voo 661 naquele dia estavam três pilotos: Capitão Saleh Janjua, um piloto veterano com mais de 12.000 horas, e dois Primeiros Oficiais muito menos experientes: Aly Akram, o Primeiro Oficial credenciado para o voo, e Ahmed Mansoor Janjua, um piloto relativamente novo que estava voando sob supervisão para se familiarizar com a rota. (Observação: como o capitão e o primeiro oficial estagiário tinham o mesmo sobrenome, doravante me referirei a Ahmed Janjua apenas como "o estagiário FO". Todas as ocorrências do nome "Janjua" se referem ao capitão.)

Quarenta e dois passageiros estavam a bordo da aeronave, sendo quarenta adultos e duas crianças. Quarenta e quatro eram cidadãos paquistaneses e os outros eram dois austríacos e um chinês. 

Havia três falhas preexistentes escondidas dentro do motor esquerdo - mas para entendê-las, é útil ter uma visão geral de como o motor turboélice Pratt & Whitney 127M funciona. Esteja avisado: tópicos complexos estão por vir. 

1. O disco da turbina de força Um motor turboélice inspira o ar por meio de uma entrada de ar, após a qual passa por uma série de ventiladores de compressor. No PW-127M, esse ar comprimido é então injetado em uma turbina de força, consistindo em dois discos de turbina na parte traseira do motor. O ar comprimido gira os discos, que são fixados por meio de um eixo da turbina à caixa de engrenagens da hélice, girando a hélice. 

Conforme a hélice gira, as lâminas forçam o ar para trás sobre a asa, gerando o impulso que impulsiona o avião. Nesse caso, o disco da turbina estágio 1 merece atenção especial. Depois de descobrir que as lâminas dos discos da turbina PW-127M não estavam durando tanto quanto o esperado, a Pratt & Whitney publicou um boletim de serviço em 2015 recomendando que os operadores substituíssem as lâminas por uma versão mais forte na próxima vez que o motor fosse desmontado, se as lâminas tivessem se acumulado mais de 10.000 horas de vôo. A PIA tornou esse ponto de corte obrigatório. 

No dia 16 de novembro de 2016, os mecânicos da PIA removeram os discos da turbina de força deste avião para manutenção de rotina; naquela época, as lâminas registravam 10.004 horas, o que significa que a substituição era necessária. Mas por alguma razão, a mecânica não substituiu as lâminas.


2. Passo das pás da hélice Em quase todos os motores movidos a hélice, o passo das pás é tudo. O passo da lâmina refere-se ao ângulo da corda da lâmina em relação ao plano de rotação. A zero grau, as lâminas são alinhadas de ponta a ponta, com os lados planos voltados para a corrente de ar que se aproxima. 

A noventa graus, as lâminas são paralelas umas às outras com as bordas voltadas para a corrente de ar. Durante a operação normal, o passo da lâmina está em algum lugar entre esses dois valores para gerar o empuxo de forma ideal. As coisas ficam interessantes se o motor falhar.


3. Passo da lâmina em um motor com falha As pás da maioria dos motores turboélice, incluindo o P&W 127M, são mantidas em um passo específico usando apenas a pressão do óleo. Quando não são forçados a manter a posição selecionada, os efeitos aerodinâmicos farão com que eles girem lentamente para zero grau ou até um pouco abaixo, uma condição que é extremamente perigosa para o voo por várias razões. 
Uma hélice com os lados planos das pás voltados para o vento causa um enorme arrasto, o que torna o avião difícil de controlar. 

A agravar este arrasto é a velocidade da hélice. Uma hélice com falha geralmente não para de girar, mas em vez disso começa a girar na corrente de ar que se aproxima. A velocidade na qual uma hélice gira durante a rotação é inversamente proporcional ao passo da pá - então, à medida que o passo da pá diminui, as rotações por minuto (RPM) aumentam. 

Quando a hélice está girando mais rápido, ela causa mais arrasto, aumentando as dificuldades já criadas pelo baixo passo da pá. Para evitar um arrasto excessivo em um motor com defeito, as aeronaves turboélice têm a capacidade de “embandeirar” a hélice, mesmo se o motor estiver desligado. “Enevoar”, neste caso, significa aumentar a inclinação da lâmina para 90 graus e travá-la ali, onde causa menos arrasto.


4. O regulador de sobrevelocidade e a válvula de proteção Existem vários sistemas redundantes para garantir que o passo da lâmina não reduza a níveis perigosos. Em operações normais, um sistema chamado Controle Eletrônico de Hélice (PEC) modula constantemente a pressão do óleo que mantém as pás no passo desejado. 

No entanto, se houver danos ao motor, o PEC pode desligar, deixando apenas os sistemas mecânicos no lugar. Sem as entradas constantes do PEC, a válvula eletro-hidráulica (a válvula principal de pressão do óleo que controla o passo da pá) será superada por forças aerodinâmicas e o passo da pá começará a diminuir. 

De acordo com esta diminuição, a RPM da hélice começará a aumentar. Para evitar que as RPMs da hélice atinjam níveis perigosos, o motor é equipado com um pequeno dispositivo mecânico denominado regulador de sobrevelocidade. 

O regulador de sobrevelocidade inclui um sistema para monitorar as RPM da hélice, bem como uma linha de óleo, chamada de “linha de sobrevelocidade”, que contém uma válvula conectando-a ao dreno de óleo. Esta válvula está fechada por padrão, mas se o regulador de sobrevelocidade detectar uma RPM da hélice maior que 102,5% do máximo normal, a válvula (doravante, a válvula OSG) abre e parte do óleo da linha de sobrevelocidade é desviado para o dreno, fazendo com que a pressão na linha caia. 

A linha de sobrevelocidade é, por sua vez, conectada a outro dispositivo denominado válvula de proteção. A válvula de proteção recebe óleo da linha de sobrevelocidade e do suprimento principal de óleo e compara a pressão das duas fontes. Se a pressão das duas linhas for a mesma, a válvula de proteção não faz nada; isso é conhecido como “modo desprotegido”. 

Contudo, se a pressão da linha de sobrevelocidade começar a cair em relação à pressão de alimentação, a válvula de proteção começará a abrir e, se a proporção cair abaixo de 50%, ela se abrirá totalmente, no que é conhecido como "modo protegido". No modo protegido, a válvula aberta permite que óleo extra entre na câmara de comando do passo da lâmina, aumentando a pressão e forçando o passo da lâmina a aumentar. 

Desta forma, o regulador de sobrevelocidade e a válvula de proteção têm uma relação simbiótica: conforme o passo da lâmina diminui, o RPM aumenta, o regulador de sobrevelocidade abre a válvula OSG, a pressão na linha de sobrevelocidade cai, a válvula de proteção se abre, o passo da lâmina aumenta, o RPM diminui , a válvula OSG fecha e o ciclo se reverte. Uma vez que este ciclo tenha se repetido o suficiente, a RPM da hélice se estabilizará em um valor igual ou abaixo do limite de sobrevelocidade de 102,5%.


5. Dentro do regulador de sobrevelocidade Para entender o que aconteceu no voo 661, é necessário entender como o regulador de sobrevelocidade realmente mede o RPM da hélice. O sistema é totalmente mecânico. 

Dentro do governador, vários pesos, chamados de pesos volantes, são presos a um eixo que gira junto com a hélice. Cada um dos dois pesos-mosca está em uma dobradiça, de modo que à medida que a RPM da hélice aumenta, a força centrífuga fará com que eles comecem a “inclinar-se para trás”, afastando-se do eixo de rotação, como crianças penduradas na borda de um carrossel. 

Conforme os pesos mosca se inclinam, os “dedos” dos pesos mosca se movem para cima (veja o diagrama), pressionando contra a parte inferior de uma peça chamada êmbolo. O êmbolo está preso a uma mola que o força constantemente para baixo contra os dedos dos pés dos pesos-mosca. 

No entanto, se a hélice girar mais rápido do que 102. 5% do máximo normal, a força centrífuga atuando nos pesos mosca torna-se suficiente para superar a força da mola e os dedos dos pés do peso mosca empurram o êmbolo para cima. Isso abre a válvula OSG, que coloca todo o sistema de proteção em movimento.


Mas no motor esquerdo do voo 661 - o mesmo motor esquerdo com a lâmina da turbina defeituosa - houve um problema com o regulador de excesso de velocidade. Durante a manutenção não autorizada e não documentada em algum momento no passado, alguém desmontou o regulador e o remontou incorretamente. 

Normalmente, o êmbolo gira junto com os pesos mosca, porque está conectado ao transportador dos pesos mosca (veja o diagrama acima) por um pino. Mas alguém havia remontado o regulador com o êmbolo girado fora de sua posição normal, com o pino apoiado no topo dos pesos volantes. Essa pessoa então forçou o regulador de volta, quebrando o pino e cortando a conexão entre o êmbolo e as partes giratórias do regulador. 

Nesta condição, o regulador de sobrevelocidade ainda pode funcionar normalmente. Mas, em vez de girar em conjunto com os pesos-mosca, o êmbolo agora era empurrado em círculos pelos pesos-mosca enquanto eles giravam. Isso colocou um estresse constante nos dedos dos pesos-mosca, que começaram a sofrer de fadiga do metal. Na época do vôo 661, um dos dedos do peso-mosca já havia se quebrado, deixando apenas o segundo para proteção contra excesso de velocidade da hélice.


Nesta condição, o voo 661 partiu do Aeroporto de Chitral no dia 7 de dezembro de 2016 com 42 passageiros e cinco tripulantes a bordo, com destino a Islamabad. Ninguém percebeu que a lâmina da turbina com defeito havia realmente quebrado no voo anterior, e a vida útil restante do motor podia ser medida em minutos. 

No início, o voo prosseguiu normalmente, mas depois de atingir sua altitude de cruzeiro de 13.500 pés, as coisas começaram a dar errado. A lâmina da turbina ausente desequilibrou o disco da turbina, fazendo-o balançar de um lado para o outro enquanto girava. 

Essa vibração, por sua vez, foi transmitida ao eixo da turbina. O eixo da turbina gira dentro de dois outros eixos concêntricos conectados aos compressores de baixa e alta pressão, respectivamente. Todos esses eixos giram em velocidades diferentes e são separados por rolamentos de rolos. Os eixos e os mancais são continuamente imersos em óleo para evitar o contato de metal com metal. 

Mas quando o eixo da turbina vibrou, ele começou a esfregar contra um dos mancais, fazendo com que o metal se desgastasse rapidamente e liberasse flocos no óleo circundante. Esses flocos de metal foram carregados por todo o sistema de óleo, onde finalmente chegaram à linha de sobrevelocidade, obstruindo a válvula OSG. 

Isso aumentou a força necessária para girar o êmbolo conectado à válvula (que, devido ao pino quebrado, estava sendo girado pelos próprios pesos volantes). À medida que os pesos mosca tentavam empurrar o êmbolo ao redor e ao redor da lama de partículas de metal, a resistência extra os forçava ligeiramente para fora, fazendo com que o dedo do pé do peso mosca restante empurrasse o êmbolo para cima.

Isso abriu parcialmente a válvula OSG, fazendo com que a válvula de proteção também abra parcialmente, resultando em um aumento no passo da lâmina. O aumento do passo da pá fez com que o RPM da hélice diminuísse de 82% (velocidade de cruzeiro normal) para 62%. Inicialmente, ninguém percebeu.


Em resposta à diminuição da velocidade da hélice, o Controle Eletrônico da Hélice tentou reduzir o passo da pá de volta ao valor selecionado, mas não foi capaz de fazê-lo. Como resultado, uma falha de PEC foi acionada, que apareceu para os pilotos em suas telas de monitoramento do motor junto com um sinal sonoro.

Para o capitão Janjua e o estagiário de primeiro oficial, que estava sentado no assento à direita, esse foi o primeiro indício de um problema. Eles retiraram a lista de verificação para uma falha de PEC e começaram a executar as etapas. 

Primeiro, eles tentaram redefinir o PEC, mas, apesar das três tentativas de fazer isso, a falha sempre voltava. De acordo com a lista de verificação, eles desligaram o PEC. Para evitar sobrecarregar o motor possivelmente danificado, o estagiário FO reduziu a potência do motor esquerdo e a velocidade do avião começou a diminuir lentamente de 186 nós para 146 nós. 

Enquanto isso, dentro do motor esquerdo, o estresse extra aplicado ao dedo do pé do peso-mosca restante, que já estava cansado, também o quebrou. Agora a cabeça do êmbolo estava descansando precariamente sobre os cotos quebrados dos dedos do pé do peso-mosca, fechando a válvula OSG. 

Com o PEC desligado e a válvula OSG agora fechada, como esperado, as forças aerodinâmicas lentamente começaram a empurrar a inclinação da lâmina para baixo em direção a zero grau. 

À medida que o passo da pá diminuiu, a velocidade da hélice aumentou até se aproximar do limite de sobrevelocidade de 102,5%. Os pesos-mosca começaram a inclinar-se para trás novamente, e os cotos dos dedos dos pés-mosca quebrados foram apenas o suficiente para levantar o êmbolo e abrir a válvula OSG na maior parte do caminho. 

A válvula de proteção, portanto, também abriu na maior parte do caminho, permitindo apenas óleo extra suficiente na câmara de comando para impedir que o passo da lâmina diminua ainda mais. A rotação da hélice consequentemente estabilizou em 102% pelos próximos 15 segundos.


Percebendo a mudança no som da hélice e um aumento anormal no RPM, o Capitão chamou um engenheiro de bordo para avaliar a situação, e o estagiário menos experiente FO entregou seu assento ao Primeiro Oficial Akram. 

Momentos depois, houve um ruído repentino e a saída de torque do motor esquerdo caiu para zero - o motor havia falhado. Os pilotos agora se moviam para desligar o fluxo de combustível e embandeirar a hélice. Isso foi feito usando a alavanca de condição, um controle da cabine que define o estado do motor. 

Eles primeiro moveram a alavanca de condição da posição normal para a posição de “embandeiramento”, enviando um comando para embandeirar a hélice e, em seguida, “desligar o combustível”, desligando o motor completamente. O comando da pena foi enviado para o solenóide da pena, um interruptor que, quando ativado, abre uma válvula separada conectando a linha de sobrevelocidade ao dreno. Isso teve o mesmo efeito que abrir a válvula OSG: a pressão na linha de sobrevelocidade caiu abaixo de 50% da pressão de alimentação, a válvula de proteção mudou para o modo protegido e o passo da lâmina começou a aumentar para 90 graus (“embandeirado”). 

E, enquanto o solenóide da pena estava ativo, a válvula de proteção deveria permanecer aberta e a hélice, emplumada. O capitão Janjua agora acelerou o motor certo para compensar e sua velocidade no ar se estabilizou. Até agora, tudo estava ocorrendo de acordo com o planejado.

No entanto, essa ilusão de normalidade não duraria muito. No interior do motor, existia um terceiro problema latente: contaminação estranha dentro do tubo que conecta a linha de sobrevelocidade ao dreno através da válvula de embandeiramento. Essa linha normalmente não contém óleo, e os detritos provavelmente já estavam lá há anos, sem causar nenhum problema. 

Mas quando o óleo repentinamente surgiu através da linha, ele coletou esses detritos, que então começaram a se acumular em um gargalo. O acúmulo de detritos bloqueou parcialmente o fluxo de óleo da linha de sobrevelocidade para o dreno, resultando em um aumento da pressão dentro da linha de sobrevelocidade. 

Isso fez com que a diferença de pressão entre a linha de sobrevelocidade e a linha de suprimento voltasse acima de 50%, e a válvula de proteção movesse parte do modo protegido de volta ao modo desprotegido - algo que não deveria acontecer com o solenóide da hélice ativo.


Enquanto isso, no governador de sobrevelocidade, a diminuição na RPM da hélice que acompanhou o comando de pena inicialmente bem-sucedido fez com que os pesos volantes se inclinassem totalmente para trás em suas posições de repouso.

Nessa posição, o êmbolo (impulsionado pela mola) foi capaz de forçar seu caminho entre os cotos dos dedos do pé do peso-mosca quebrados, em vez de se apoiar em cima deles. Agora não havia como os pesos volantes levantarem o êmbolo se a velocidade da hélice aumentasse novamente - o regulador de sobrevelocidade estava totalmente fora de serviço. 

E como a válvula de proteção saiu do modo protegido, o passo das pás estava começando a diminuir novamente e não havia nada que impedisse a RPM da hélice de acelerar além do limite de sobrevelocidade. 

Durante os 26 segundos após a válvula de proteção retornar ao modo desprotegido, a rotação da hélice esquerda aumentou lentamente de 25% para 50%. Então, de repente, em apenas oito segundos, o RPM disparou direto para cima, passando pelo limite de sobrevelocidade, para um valor entre 120% e 125%, bem fora do envelope de operação normal. 

O arrasto aumentou enormemente para várias vezes o que normalmente seria esperado de um motor com falha. O piloto automático, que até então havia compensado o desequilíbrio empuxo/arrasto, desligou. 

O capitão Janjua descobriu que teve que aplicar grandes comandos de leme e aileron para evitar que o avião puxasse com força para a esquerda. A enorme quantidade de arrasto do motor esquerdo também fez com que sua velocidade no ar caísse abaixo de 120 nós - quase metade da velocidade normal de cruzeiro de 230 nós. 

À medida que sua velocidade diminuía, a eficácia dos controles de voo diminuía e o avião começou a virar lentamente para a esquerda, apesar das melhores tentativas do capitão Janjua para mantê-lo reto. 

Reconhecendo que a hélice não havia embandeirado corretamente, a tripulação tentou embandeirá-la novamente, mas seus esforços foram em vão. Janjua começou a modular o empuxo no motor direito em uma tentativa de compensar as flutuações no arrasto do motor esquerdo, mas toda vez que ele reduzia o empuxo, eles perdiam a velocidade no ar e o problema piorava. 

Na verdade, em seu estado atual, o arrasto era tão forte que era impossível para o avião manter a altitude indefinidamente - a única maneira de sair da situação era aumentar a velocidade no ar por meio de uma descida. 

Mas os pilotos não sabiam necessariamente disso, e eles estavam voando sobre uma área montanhosa sem locais de pouso óbvios, então o capitão Janjua estava compreensivelmente relutante em descer. Ele sabia que, a menos que mantivesse o avião o mais alto possível pelo maior tempo possível, eles não conseguiriam cruzar a cordilheira ao norte de Islamabad. 

Enquanto os pilotos lutavam para manter o controle, um princípio aerodinâmico da hélice avariada e sem penas estava prestes a desencadear o caos. Um motor operando normalmente usa a turbina para acionar a hélice; à medida que as pás da hélice cortam o ar, elas geram sustentação de maneira semelhante a uma asa, impulsionando o avião para a frente.

Mas um motor defeituoso com uma hélice de moinho de vento faz o inverso: em vez de as pás produzirem sustentação cortando o ar, o ar aciona a hélice, que transmite de volta para a potência do motor equivalente ao empuxo (sustentação) que geraria se o motor fosse dirigindo. 

Essencialmente, a hélice se torna a turbina e a turbina se torna a hélice. Depois que o motor falhou inicialmente, a quantidade de energia gerada pela hélice girando foi suficiente para superar as forças de atrito dentro do motor e girar a turbina. Mas à medida que o passo da pá diminui, a potência produzida pela hélice também diminui (assim como uma hélice sendo acionada pelo motor produziria menos empuxo em um passo mais baixo da pá). 

Portanto, conforme o passo da pá continuou a cair em direção a zero por um período de vários minutos, a velocidade da hélice permaneceu constante em 120%, mas sua potência caiu progressivamente - até que de repente, não foi suficiente para superar o atrito e a rotação a turbina.


Quando a potência de saída da hélice atingiu esse limite, o atrito praticamente parou a hélice em seus trilhos; dentro de um ou dois segundos, o RPM caiu de 120% para menos de 25%. Como a velocidade da hélice e o arrasto são proporcionais, isso também causou uma grande diminuição no arrasto do lado esquerdo. 

Com o alívio repentino desse arrasto, as entradas do leme e do aileron do capitão Janjua tornaram-se instantaneamente desproporcionais em comparação com a tração para a esquerda que ele estava tentando superar. 

Como resultado, o avião entrou em um snap roll para a direita - não por causa de uma falha mecânica, mas por causa das entradas do próprio capitão, que ele não teve a chance de remover. Uma grande inclinação ou guinada causa uma diminuição proporcional na sustentação e, em uma velocidade tão baixa, essa diminuição na sustentação imediatamente leva a um estol. A ala direita perdeu toda sustentação, e o avião rolou invertido e começou a cair do céu. 

A virada pegou os pilotos completamente de surpresa, e eles lutaram para entender o que estava acontecendo. O avião rolou 360 graus completos para a direita - um giro de barril completo - e continuou entrando em outra margem direita de 90 graus antes que o capitão Janjua conseguisse nivelar as asas e sair do mergulho. Em apenas 24 segundos, eles perderam 5.100 pés de altitude, um mergulho terrível que deixou pilotos e passageiros em estado de pânico.


Quando o capitão Janjua e o primeiro oficial Akram recuperaram o controle do avião, o terror ficou evidente em sua respiração rápida e vozes trêmulas. Na verdade, eles estavam agora em uma situação muito mais terrível do que antes.

Durante o mergulho, a inclinação da pá da hélice esquerda continuou a diminuir até se estabilizar ligeiramente abaixo de zero grau, no que é conhecido como faixa reversa, onde tenta ativamente empurrar para trás contra o ar que penetra. Esse ângulo de inclinação é usado apenas ao desacelerar o avião na pista após o pouso; em voo, não só causava arrasto, mas funcionava ativamente como freio. 

Como resultado, apesar do fato de a hélice ter parado quase totalmente de girar, o arrasto produzido era sete vezes o arrasto normal de uma hélice emplumada - ainda mais do que quando girava a 120% RPM. Em tal estado, o avião se mostrou extremamente difícil de controlar. A única maneira de manter a velocidade alta o suficiente para manter o controle era entrar em uma descida contínua de 800 a 1.000 pés por minuto. 

A uma altitude de 8.400 pés e caindo, eles não tiveram muito tempo para encontrar uma solução. Os pilotos sabiam que precisariam de, no mínimo, 5.200 pés de altitude para limpar as montanhas próximas a Islamabad e, para evitar cair abaixo disso, eles precisariam reduzir sua taxa de descida. Infelizmente, eles não sabiam que isso era impossível. 


À medida que o avião aleijado descia cada vez mais em direção às montanhas abaixo, os pilotos continuavam tentando puxar para cima e diminuir a descida, mas sempre que o faziam, começavam a perder velocidade no ar e o avião começava a puxar com força para a esquerda.

O primeiro oficial Akram declarou emergência e solicitou vetores diretos para Islamabad, mas eles não foram nem mesmo capazes de manter a direção correta. Quando o avião atingiu uma altitude de 5.280 pés, o capitão Janjua foi forçado a nivelar o avião, sabendo que se eles caíssem mais abaixo, certamente cairiam nas montanhas. 

Mas enquanto ele mantinha o avião nesta altitude, a velocidade no ar deles caiu perigosamente; o stick shaker foi ativado repetidamente, avisando-os de que estavam prestes a travar. 

O avião começou a virar incontrolavelmente para a esquerda, apesar das tentativas desesperadas de Janjua de voltar para a direita. Montanhas assomavam à frente deles; o sistema de alerta de proximidade do solo começou a soar, "TERRENO, TERRENO, PUXE!" 

Os pilotos lutaram com tudo que tinham para ficar no ar, mas não havia como escapar. A uma altura de 850 pés acima do solo, a asa esquerda estolou e o avião rolou 90 graus para a esquerda. O nariz caiu e o avião mergulhou em direção às montanhas abaixo. Não havia esperança de recuperação. Poucos segundos depois, o voo 661 da PIA despencou em uma montanha íngreme e explodiu em chamas, matando instantaneamente todas as 47 pessoas a bordo.


Moradores de uma vila próxima viram o avião sobrevoar e ouviram o acidente, e as mesquitas locais usaram seus alto-falantes para pedir às pessoas que corressem para o local do acidente em busca de sobreviventes. Em minutos, dezenas de pessoas estavam no local, mas logo ficou claro que não havia ninguém para salvar. 

O avião havia sido reduzido a uma pilha de entulho fumegante, exceto pela seção da cauda, ​​que estava totalmente branca contra o chaparral enegrecido. Quando a notícia do acidente atingiu as ondas do ar, logo foi descoberto que um dos passageiros era um nome conhecido no Paquistão: Junaid Jamshed, vocalista da famosa banda pop do Paquistão "Vital Signs".

Na década de 1980 e no início da década de 1990, ele foi responsável por algumas das músicas mais populares do país, incluindo “Dil Dil Pakistan”, que se tornou um hino nacional não oficial. Em 2016, ele havia muito abandonado sua carreira musical, voltando-se para o Islã e se tornando um televangelista. Mas apesar das reviravoltas em sua vida, ele ainda era reverenciado por sua música e sua morte repentina no acidente chocou o país. 

A Autoridade de Aviação Civil do Paquistão prometeu descobrir a causa do acidente e, em poucas horas, investigadores do Conselho de Investigação de Segurança (SIB) chegaram ao local para iniciar o inquérito.

Até aquele ponto, o Paquistão tinha uma relação difícil com as investigações de acidentes aéreos. A investigação sobre o acidente de alto nível do voo 202 da Airblue em 2010 foi amplamente criticada por não ter examinado profundamente as questões subjacentes que causaram o acidente. 

Havia uma preocupação generalizada de que o Conselho de Investigação de Segurança do Paquistão cometesse os mesmos erros novamente. Felizmente, desta vez, eles não teriam que resolver sozinhos: representantes experientes da França (que construiu o avião), Canadá (que construiu os motores) e dos EUA (que construiu as hélices) foram todos convidados a participar, pois o já se acreditava que o acidente tivesse sido causado por uma falha no motor. 

Uma falha de motor em um avião bimotor não é considerada um evento muito significativo; o ATR-42, como todas as aeronaves multimotoras, está certificado para escalar e manter altitude com apenas um motor. Os pilotos do ATR-42 especularam publicamente que a tripulação do voo 661 cometeu algum tipo de erro ao lidar com a falha do motor que levou ao acidente. Mas, à medida que a equipe internacional examinava mais profundamente a sequência de eventos, uma história muito diferente começou a surgir.

Uma investigação exaustiva dos destroços combinada com extensa análise de dados de voo, simulações de computador e testes no mundo real acabou revelando três falhas latentes no motor esquerdo que levaram ao acidente. 

Teve a lâmina do disco da turbina quebrada, que deveria ter sido substituída pelos mecânicos da PIA em novembro, mas não foi; havia o pino do regulador de sobrevelocidade quebrado, quebrado durante uma tentativa incorreta de montagem; e havia a contaminação não identificada dentro do módulo da válvula da hélice. 

A primeira dessas falhas foi ocasionada pelo desrespeito aparentemente sistemático aos boletins de serviço nas instalações de manutenção da PIA, que não foi detectado pela Autoridade de Aviação Civil, cujo objetivo específico era detectar exatamente esse tipo de descumprimento. 

O problema com as lâminas do disco da turbina em P & Os motores W 127M já eram bem conhecidos do fabricante e da companhia aérea, e o limite de 10.000 horas existia por uma razão. Se os mecânicos tivessem simplesmente seguido suas próprias regras, o acidente não teria acontecido.

A origem das outras duas falhas era menos clara. Não havia registros de serviço que indicassem que o regulador de excesso de velocidade já havia sido desmontado e remontado, mas isso claramente ocorreu. 

A técnica usada para fazer isso também fazia pouco sentido, pois na verdade acrescentava tempo e dificuldade ao procedimento. Isso significava que provavelmente foi executado por alguém que não sabia o que estava fazendo, ao invés de alguém tentando cortar atalhos. 

O regulador de excesso de velocidade foi considerado pela PIA como um “item de conserto no exterior” - uma peça que as instalações de manutenção do Paquistão não são certificadas para consertar e que deve ser enviada a outro país se algo der errado. Era possível que, na tentativa de economizar tempo e/ou dinheiro, um mecânico no Paquistão tivesse tentado consertar o dispositivo sem o devido treinamento, levando à falha do pino.

Quanto à contaminação na válvula, os investigadores só puderam concluir que ela havia sido introduzida enquanto o módulo da válvula não estava acoplado ao motor, talvez quando algo tenha derramado sobre ela e não tenha sido devidamente limpo. Não foi possível determinar quando, onde, por que e como isso aconteceu, e até mesmo do que os destroços foram feitos.

A combinação dessas três falhas permitiu que a sequência de eventos contornasse vários sistemas redundantes destinados a evitar que a hélice atingisse um passo perigosamente baixo em voo. Em ordem, a sequência de falha progrediu da seguinte forma: 

1. O pino regulador de sobrevelocidade quebrado faz com que os pesos mosca empurrem contra a cabeça do êmbolo, causando rachaduras por fadiga dos dedos dos pés dos pesos mosca. 

2. A lâmina do disco da turbina falha, desequilibrando o eixo da turbina. 

3. A vibração do eixo da turbina desgasta um rolamento, introduzindo partículas de metal no óleo. 

4. Esses detritos de metal se acumulam contra a válvula reguladora de velocidade excessiva, causando aumento da resistência que empurra a válvula parcialmente aberta. A velocidade da hélice diminui. 

5. O PEC tenta aumentar a velocidade da hélice, mas não consegue, então ele desarma offline. 

6. Sem o PEC, as forças aerodinâmicas fazem com que o passo da pá diminua e o RPM aumente até a parada do regulador de sobrevelocidade. O segundo dedo do peso mosca se quebra, mas os dedos quebrados continuam a levantar o êmbolo. 

7. Os pilotos reagem à velocidade incomum da hélice desligando o motor e comandando a hélice para embandeirar. 

8. A hélice começa a embandeirar. O RPM reduzido redefine o regulador de sobrevelocidade para sua posição de repouso e o êmbolo empurra entre os dedos quebrados dos pesos volantes, tornando o regulador inoperante. 

9. A contaminação na linha de sobrevelocidade faz com que a válvula de proteção volte ao modo desprotegido. O passo da lâmina começa a diminuir novamente. 

10. Sem o regulador de sobrevelocidade, não há nada que impeça a RPM da hélice de aumentar além de seus limites de projeto para 120%. Isso causa um grande arrasto que desacelera o avião. 

11 O passo da pá fica tão baixo que a corrente de ar não consegue empurrar a hélice contra o atrito da turbina dentro do motor. O RPM da hélice diminui rapidamente. 

12. A diminuição repentina do arrasto faz com que os pilotos percam o controle do avião. 

13. O passo da lâmina se estabiliza ligeiramente abaixo de zero, onde causa sete vezes o arrasto normal. Manter a altitude é impossível.


Essa sequência de eventos nunca foi considerada na imaginação mais selvagem de nenhum engenheiro. Como resultado, não havia procedimentos ou treinamento que os pilotos pudessem utilizar para dizer a eles o que fazer.

O manual de operações da tripulação de voo dedicou toda uma linha à possibilidade de uma falha do motor não embandeirar, o que chamou de “cenário de conseqüências perigosas” sem qualquer explicação adicional. 

As falhas reais enfrentadas pela tripulação foram ainda mais longe do que isso: não apenas a hélice não embandeirou, como também anulou as proteções de sobrevelocidade e então deu marcha à ré. Os pilotos evidentemente não tinham ideia do que estava acontecendo. 

Na verdade, a definição do ATR de um evento "de consequência perigosa" especifica que uma tripulação confrontada com tal evento pode lutar para aderir aos procedimentos ideais e tomada de decisão devido ao estresse, surpresa e/ou medo, e não pode ser invocada para recuperar a aeronave com sucesso.


Os investigadores examinaram o comportamento da tripulação e descobriram que eles deixavam muito a desejar em termos de gerenciamento de recursos, liderança, gerenciamento de energia e adesão aos procedimentos padrão. 

Mas uma análise de suas opções tornou tudo isso bastante discutível. Eles descobriram que só seria possível chegar a Islamabad se os pilotos mantivessem os flaps retraídos e mantivessem uma velocidade de exatamente 160 nós até o aeroporto para um pouso com flaps zero e, mesmo assim, eles mal teriam conseguido. 

Além disso, esse procedimento não foi publicado em lugar nenhum e teria de ser executado perfeitamente, portanto, não era realista esperar que uma tripulação aérea o descobrisse imediatamente. 

No entanto, havia dois aeroportos mais próximos do que Islamabad que seriam fáceis de alcançar: uma base aérea militar na cidade de Kamra Kalan, e um pequeno campo servindo a Barragem de Tarbela, que ficava ainda mais perto. 

Infelizmente, como nenhum desses aeroportos era usado por aviões comerciais, os pilotos não sabiam da sua existência. Eles pensaram que o aeroporto mais próximo era o de Islamabad e, quando perceberam que não poderiam, também era tarde para chegar a esses outros aeroportos. 

Portanto, mesmo que os pilotos tivessem lidado com a situação perfeitamente, era improvável que eles pudessem salvar o avião. O voo estava quase condenado a partir do momento em que o motor falhou. 


A queda do voo 661 da PIA ressaltou a importância da manutenção adequada para garantir que os sistemas redundantes permaneçam redundantes. Na ausência de erros de manutenção aparentemente grosseiros da PIA, a probabilidade de a hélice terminar na posição que estava era supostamente menor que uma em um bilhão. Mas, como a PIA não estava cuidando bem de seus aviões, essa margem de segurança foi significativamente prejudicada.

Na verdade, no momento do acidente, a PIA tinha o maior índice de falhas de motor em voo do que qualquer operador de ATR no mundo. Isso deveria ter sido motivo de séria preocupação para a Autoridade de Aviação Civil, mas ela também falhou em fazer seu trabalho e chegar à raiz do problema até que as pessoas já tivessem morrido. E na esteira da queda do voo 8303 da PIA em maio de 2020, é evidente que a companhia aérea ainda luta para manter um nível adequado de segurança. 

Mas há uma boa notícia: pelo que pode ser a primeira vez em sua história, o Paquistão conduziu uma investigação de acidente aéreo de maneira adequada. A investigação cobriu todos os fatores concebíveis e mergulhou profundamente em tópicos onde poucos investigadores haviam se aventurado antes. 

Sem dúvida, a assistência do NTSB dos Estados Unidos, da BEA francesa e do TSB canadense desempenhou um papel importante nesse sucesso. Mas pode-se esperar que a experiência adquirida durante esta investigação ajude AAIB Paquistão a descobrir toda a verdade sobre cada acidente futuro - e, no processo, virar a maré contra o preocupante histórico de segurança da aviação do Paquistão. 

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral Cloudberg, Wikipedia, ASN - Imagens: BBC, Hamid Faraz, Google, FAA, Skybrary, AAIB Pakistan, mzo on YouTube, Dawn, the Birmingham Mail, History of PIA, Zee News, and The Bureau of Aircraft Accidents Archives. Video: mzo no YouTube.

Vídeo: Mayday Desastres Aéreos - Pacific Southwest Airlines 1771 - Desaparecido do Radar

Via Cavok Vídeos

Aconteceu em 7 de dezembro de 1987: Sequestro, tiros e queda do voo 1771 da Pacific Southwest Airlines

Em 7 de dezembro de 1987, o voo 1771 da Pacific Southwest Airlines foi um voo regular ao longo da costa oeste dos Estados Unidos, de Los Angeles, a São Francisco, na Califórnia. O British Aerospace BAe-146-200, prefixo N350PS, caiu no condado de San Luis Obispo, perto de Cayucos, após ser sequestrado por um passageiro.

O BAe-146-200, prefixo N350PS envolvido no acidente

Todos os 43 passageiros e tripulantes a bordo do avião morreram, cinco dos quais, incluindo os dois pilotos, foram presumivelmente mortos a tiros antes da queda do avião. O autor do crime, David Burke, era um ex-funcionário descontente da USAir , empresa controladora da Pacific Southwest Airlines .O acidente foi o segundo pior assassinato em massa na história moderna da Califórnia, depois do acidente semelhante do voo 773 da Pacific Air Lines em 1964.

Antecedentes

A USAir, que havia comprado recentemente a Pacific Southwest Airlines (PSA), demitiu David A. Burke, um agente de emissão de passagens, por um pequeno furto de US$ 69 de receitas de coquetéis em voo; ele também era suspeito de envolvimento com uma quadrilha de narcóticos.

Depois de se encontrar com Ray Thomson, seu chefe, em uma tentativa malsucedida de ser reintegrado, Burke comprou uma passagem no voo PSA 1771, um vôo diário do Aeroporto Internacional de Los Angeles (LAX) para o Aeroporto Internacional de São Francisco (SFO).

Thomson era um passageiro do voo, que ele regularmente fazia para seu trajeto diário de seu trabalho no LAX para sua casa na área da baía de São Francisco.

O voo, o sequestro e a queda

O voo 1771 partiu de LAX às 15h31 PST, previsto para chegar a São Francisco às 16h43, levando a bordo 38 passageiros e cinco tripulantes.

Usando as credenciais de funcionário da USAir que ainda não havia entregado, Burke, armado com uma pistola Magnum .44, que havia emprestado de um colega de trabalho, foi capaz de contornar o controle normal de segurança de passageiros no LAX. Após embarcar no avião, Burke escreveu uma mensagem em um saco de enjoo, mas não se sabe se ele deu a mensagem para Thomson ler antes de atirar nele. A nota dizia:

"Oi, Ray. Eu acho que é meio irônico que acabemos assim. Pedi alguma clemência para minha família. Lembrar? Bem, eu não tenho nenhum e você não terá nenhum."

Enquanto a aeronave viajava a 22.000 pés (6.700 m) sobre a costa central da Califórnia, o gravador de voz da cabine (CVR) gravava o som de alguém entrando e saindo do banheiro. 

A seqüência exata de eventos permanece indeterminada; no entanto, o episódio do Mayday que enfoca o acidente sugere que este era Burke entrando no banheiro para sacar seu revólver discretamente, possivelmente carregando-o e dando a Thomson tempo para ler a nota antes de matá-lo. 

O capitão Gregg Lindamood, 44, e o primeiro oficial James Nunn, 48, estavam perguntando ao controle de tráfego aéreo sobre turbulência quando o CVR ouviu o som de dois tiros sendo disparados na cabine.

A teoria mais plausível sobre o que aconteceu foi deduzida do padrão e do volume audível dos tiros no CVR. De acordo com o episódio do Mayday , é provável que Burke tenha atirado em Thomson pela primeira vez duas vezes. 

O próprio assento de Thomson nunca foi recuperado, mas parte de um assento que foi identificado por seu número de série como estando diretamente atrás do de Thomson, que não tinha sido vendido e, portanto, estava presumivelmente vazio, foi encontrado com dois buracos de bala. 

Como Burke estava usando um revólver particularmente poderoso, os investigadores concluíram que as balas poderiam ter atravessado o corpo de Thomson, seu assento e, em seguida, o assento atrás. O primeiro oficial Nunn informou imediatamente ao controle de tráfego aéreo que uma arma havia sido disparada, mas nenhuma outra transmissão foi recebida da tripulação.

O CVR então registrou a abertura da porta da cabine e a comissária Deborah Neil dizendo à tripulação da cabine: "Temos um problema!"

Ao que o capitão Lindamood respondeu: "Qual é o problema?"

Um tiro foi ouvido quando Burke matou Neil e anunciou "Eu sou o problema"

Ele então disparou mais dois tiros. Provavelmente, ele atirou em Lindamood e Nunn uma vez cada, incapacitando-os, se não matando-os completamente. 

Vários segundos depois, o CVR captou um ruído crescente do pára-brisa à medida que o avião descia e acelerava. Os restos do gravador de dados de voo (FDR) indicavam que Burke havia empurrado a coluna de controle para a frente em um mergulho ou que um dos pilotos do tiro estava caído sobre ela.

Um tiro final foi ouvido seguido não muito depois por um silêncio repentino. É mais provável que Burke tenha matado Douglas Arthur, o piloto-chefe da PSA em Los Angeles, que também estava a bordo como passageiro e que tentava chegar à cabine para salvar a aeronave. 

Especulou-se que Burke atirou em si mesmo, embora isso pareça improvável, porque um fragmento da ponta do dedo de Burke estava alojado no gatilho quando os investigadores encontraram o revólver. Isso indicava que ele estava vivo e segurando a arma até o momento do impacto. 

O avião caiu na encosta de uma fazenda de gado às 4h16 da tarde nas montanhas de Santa Lucia entre Paso Robles e Cayucos. Todas as 43 pessoas a bordo morreram.

Estima-se que o avião tenha caído um pouco mais rápido do que a velocidade do som , a cerca de 1.240 km/h (770 mph), desintegrando-se instantaneamente. 

Com base na deformação da caixa do gravador de dados de aço endurecido, a aeronave experimentou uma desaceleração de 5.000 vezes a força da gravidade (força G) ao atingir o solo. Ele estava viajando em um ângulo de aproximadamente 70 graus em direção ao sul. 

O avião atingiu uma encosta rochosa, deixando uma cratera com menos de dois pés (0,6 m) de profundidade e quatro pés (1,2 m) de largura. Os restos mortais de 27 passageiros nunca foram identificados.

Depois que o local do acidente foi localizado por um helicóptero da CBS News pilotado por Zoey Tur , os investigadores do National Transportation Safety Board (NTSB) juntaram-se ao Federal Bureau of Investigation (FBI). 

O gravador voo PSA 1771, visto na sede da NTSB em Washington DC

Depois de dois dias vasculhando o que restou do avião, eles encontraram as partes de uma arma contendo seis cartuchos usados ​​e a nota sobre o saco de enjôo escrita por Burke, indicando que ele pode ter sido o responsável pelo acidente.

Os investigadores do FBI conseguiram retirar uma impressão de um fragmento de dedo preso no guarda-mato do revólver, que identificou positivamente Burke como portador da arma quando a aeronave caiu. Além das evidências descobertas no local do acidente, outros fatores surgiram. O colega de trabalho de Burke admitiu ter emprestado a arma a ele, e Burke também deixou uma mensagem de despedida na secretária eletrônica de sua namorada.

David Burke

O sequestrador David A. Burke (Associated Press)

David Augustus Burke (18 de maio de 1952 - 7 de dezembro de 1987) nasceu de pais jamaicanos que viviam no Reino Unido . Burke mais tarde emigrou para os Estados Unidos com seus pais. Ele já havia trabalhado para a USAir em Rochester, Nova York, onde era suspeito de uma quadrilha de contrabando de drogas que levava cocaína da Jamaica para Rochester através da companhia aérea. 

Nunca oficialmente acusado, ele teria se mudado para Los Angeles para evitar suspeitas futuras. Algumas ex-namoradas, vizinhos e oficiais da lei o descreveram como um homem violento antes dos eventos do voo 1771. Ele teve sete filhos, mas nunca se casou.

Resultado 

Várias leis federais foram aprovadas após o acidente, incluindo uma lei que exigia "apreensão imediata de todas as credenciais de funcionários de companhias aéreas e aeroportos" após o desligamento de um funcionário de uma empresa aérea ou de aeroporto. 

Uma política também foi implementada estipulando que todos os tripulantes e funcionários do aeroporto deveriam estar sujeitos às mesmas medidas de segurança que os passageiros das companhias aéreas.

O acidente matou o presidente da Chevron USA , James Sylla, junto com três executivos de relações públicas da empresa. Também foram mortos três funcionários da Pacific Bell , levando muitas grandes empresas a criar políticas para proibir viagens de vários executivos no mesmo voo.

Na seção "Garden of Hope" do Los Osos Valley Memorial Park, há uma lápide de granito e bronze homenageando as 42 vítimas do voo 1771, e vários passageiros e tripulantes estão enterrados naquele cemitério.

Por Jorge Tadeu (com Wikipedia, ASN e baaa-acro.com)

Aconteceu em 7 de dezembro de 1983: Colisão fatal na pista do Aeroporto de Madri


No dia 7 de dezembro de 1983, o voo 350 da Iberia estava decolando em uma pista envolta em névoa no rporto Barajas Ai em Madri quando o Boeing 727 colidiu com um Aviaco Douglas DC-9. A terrível colisão matou todas as 42 pessoas a bordo do DC-9, enquanto o 727 se partiu e pegou fogo, levando a uma corrida desesperada para escapar que acabou ceifando a vida de 51 de seus 93 passageiros e tripulantes. 

Este foi o segundo grande desastre aéreo em Madrid em apenas dez dias, e a segurança do maior aeroporto da Espanha foi posta em causa - havia algo de errado com Barajas? 

No final das contas, os dois acidentes não estavam relacionados, mas uma investigação revelou problemas significativos com a forma como o projeto do aeroporto interagia com o comportamento humano em condições de baixa visibilidade.

Na manhã do dia 7 de dezembro, uma densa neblina pairava sobre o aeroporto de Barajas em Madri, e às 8h20 não dava sinais de diminuir. Todos os aviões que aterrissaram foram forçados a abandonar suas abordagens e desviar para outros aeroportos, porque era impossível encontrar a pista. Com visibilidade em torno de 100 metros e luzes de pista visíveis em até 300 metros, a possibilidade de pouso estava fora de questão. Mesmo assim, a decolagem continuou viável e várias aeronaves se preparavam para decolar.

O Boeing 727-256, prefixo EC-CFJ, da Iberia, envolvido no acidente (Wikipedia)

Um deles foi o voo 350 da Iberia, o Boeing 727-256, prefixo EC-CFJ, com destino a Roma com 84 passageiros e 9 tripulantes a bordo. Os pilotos do voo 350 pediram para recuar do portão às 8:25, mas foram atrasados ​​por dois minutos porque vários pousos malsucedidos causaram uma fila de aeronaves esperando para decolar. Às 8h27, a permissão para recuar foi concedida e o 727 se afastou do portão.

O DC-9-32, EC-CGS, da Aviaco, que colidiu com o Boeing (Wikipedia)

Às 8h29, o voo 134 da Aviaco, o McDonnell Douglas DC-9-32, prefixo EC-CGS, batizado 'Vasco Núñez de Balboa', operando um voo doméstico para Santander com 37 passageiros e 5 tripulantes a bordo, já havia se afastado do portão e solicitado permissão para taxiar. A liberação do táxi foi finalmente concedida às 8h33, com o controlador instruindo o DC-9 a taxiar até o "ponto de espera da pista zero um via pista de taxiamento externa e avisar quando sair do pátio norte e entrar na pista de taxiamento". O diagrama abaixo mostra a rota que o DC-9 deve ter percorrido para atingir o limite da pista 01.

Mapa do aeroporto de Barajas com pistas de taxiamento, pistas e localizações de aeronaves relevantes

O DC-9 foi estacionado em um pátio a oeste do cruzamento das pistas 19/01 e 15/33. Entre o avental e as bordas internas das duas pistas, havia duas pistas de taxiamento paralelas designadas “interna” e “externa” com base em sua distância do pátio. 

Taxiways adicionais conectavam a taxiway externa às pistas em ângulos de 90 e 45 graus. As instruções de táxi do DC-9 o levariam através da pista de taxiamento interna e em um cruzamento de cinco vias, onde uma curva de 90 graus à direita era necessária para entrar na pista de taxiamento externa. 

O controlador escolheu esta rota porque a pista de taxiamento externa tinha melhor iluminação do que a pista de taxiamento interna e porque a pista de taxiamento interna passava muito perto de aviões e veículos no pátio, o que a tornava perigosa em baixa visibilidade.

Enquanto isso, o voo 350 da Iberia terminou de se afastar do portão e pediu permissão para taxiar até a cabeceira da pista 01 para decolagem. O controlador de solo concedeu ao 727 permissão para taxiar a curta distância até o ponto de espera para aguardar a autorização de decolagem.

Detalhe da área relevante do aeroporto, com etiquetas de taxiway e andamento do DC-9

Às 8h36, o voo 134 da Aviaco ligou para a torre para informar que estava saindo da "área de estacionamento". O controlador pediu ao voo 134 para “relatar a entrada no segmento Oscar 5” (O5 no mapa acima). Isso se referia ao primeiro segmento da pista de taxiamento externa ao sul da interseção das duas pistas. Para chegar a este segmento, o DC-9 precisava fazer uma curva de 90 graus à direita seguido por uma curva de 45 graus à direita. A tripulação do voo 134 reconheceu o comando para relatar a entrada no Oscar 5.

Ao chegar à interseção de 5 vias envolvendo a taxiway externa e as taxiways cruzadas J1 e J2, os pilotos do voo 134 se depararam com uma situação confusa. Com a neblina densa, a distorção do pára-brisa e os limites de percepção do olho humano, eles provavelmente não conseguiam ver mais do que 50 metros, na melhor das hipóteses. 

Além disso, o cruzamento era grande, algumas placas estavam desbotadas e uma placa desatualizada estava completamente escurecida. Também não havia nenhuma marcação no pavimento para indicar a linha central da curva de 90 graus para a pista de taxiamento externa. 

Um sinal de “NO ENTRY” foi localizado no lado esquerdo da pista de taxiamento J1, uma vez que essa rota era destinada apenas para aviões saindo da pista 15/33, mas a visibilidade era tão ruim que os pilotos provavelmente não poderiam vê-la. Enquanto tentavam encontrar a curva à direita para a pista de taxiamento externa, eles passaram direto e, em vez disso, fizeram a curva de 45 graus para a pista de taxiamento J1, sem avistar a placa de “NO ENTRY” no meio do nevoeiro.

Onde os pilotos do DC-9 pensaram que estavam vs. onde realmente estavam (1)

O DC-9 continuou em frente, seus pilotos acreditando que estavam na pista de taxiamento externa, até chegarem a um cruzamento de seis vias envolvendo a pista de taxiamento J1, a pista de taxiamento H1 e ambas as pistas (veja o diagrama acima). No entanto, os pilotos provavelmente pensaram que estavam no cruzamento da pista de taxiamento externa com a pista de taxiamento H1 e continuaram em frente. Nesse ponto, eles provavelmente viram a linha central da pista 01 virando para a direita e acreditaram que essa era a linha central da O5. Eles fizeram a curva e taxiaram pela pista ativa 01 na direção errada, correndo paralelamente à pista em que deveriam estar.

Onde os pilotos do DC-9 pensaram que estavam vs. onde realmente estavam (2)

Como haviam sido solicitados a informar o controlador de solo quando chegassem a O5, os pilotos do DC-9 começaram a escanear a pista em busca de marcações de taxiway para confirmar sua posição, chegando mesmo a se mover bem à esquerda da linha central para obter uma melhor vista de sinais que podem estar daquele lado. Mas como era uma pista, eles não conseguiram encontrar nenhuma.

Às 8h37, o voo 350 da Iberia informou que estava no ponto de espera da pista 01, pronto para decolar. O controlador de solo deu ao voo 350 a frequência para contatar o controlador da torre para liberação de decolagem. 7 segundos depois, o voo 350 pediu autorização ao controlador da torre e o recebeu imediatamente. Como estavam em uma frequência diferente, o controlador de solo e o voo 134 não estavam cientes dos movimentos do 727, que agora acelerava para a decolagem.

Enquanto isso, a tripulação do Aviaco DC-9 estava começando a perceber que eles poderiam estar fora do curso. “Olha, não podemos ver as marcas oscar cinco no solo”, disse o voo 134 ao controlador. “Estamos taxiando na ... direção 190 e, aparentemente, estávamos entrando no segmento [O5].” 

Pensa-se que no momento desta transmissão, o capitão pode ter percebido que eles estavam de fato na pista e viraram para a direita, cruzando de volta a linha central. Ele provavelmente acreditava que havia perdido a saída para a O5 e continuado direto para a pista. Se fosse esse o caso, haveria uma pista de taxiamento logo à direita para a qual eles poderiam sair. Mas, em vez disso, eles alcançaram a borda da pista e se depararam apenas com grama, forçando-os a parar no meio do caminho.

Caminho final do DC-9, incluindo a última segunda curva para a direita (parte inferior da imagem)
(Imagem: Relatório Final)

Naquele momento, o Iberia Boeing 727 estava acelerando pela pista 01 direto no infeliz DC-9. Com a visibilidade efetiva reduzida para 100 metros ou menos, nenhuma tripulação teve tempo de reagir. Assim que o 727 começou a girar, ele bateu de lado no DC-9, que havia acabado de parar na pista uma fração de segundo antes. 

A asa esquerda do DC-9 invadiu a cabine dianteira do 727, matando instantaneamente cinco passageiros. A força do impacto derrubou o trem de pouso esquerdo principal do DC-9 e torceu o avião noventa graus em uma fração de segundo, fazendo com que a asa esquerda do 727 rasgasse a cabine do DC-9. 

O avião menor recebeu toda a força do impacto da asa e da fuselagem traseira do 727 e se desintegrou completamente, espalhando detritos em chamas pela pista enquanto os tanques de combustível dos dois aviões explodiam simultaneamente. O 727 deslizou fora de controle pela pista por uma distância considerável antes de girar 180 graus, se quebrar em três pedaços e parar cercado por chamas que se espalharam rapidamente.

Ilustração do impacto, mostrando o ponto logo após o DC-9 girar 90 graus para a esquerda

Na torre de controle, o controlador de solo ainda estava respondendo à última mensagem do voo 134. “Ok, recebido”, disse ele. "Sim, eu entendo, entendi."

O som de um estrondo distante foi ouvido distintamente na torre de controle quando os dois aviões colidiram. "O que é que foi isso?" alguém perguntou.

“Um momento, por favor”, disse o controlador para o voo 134. Ele ainda não sabia que a tripulação que colocara em espera já estava morta.

A colisão pulverizou quase completamente o Aviaco DC-9, matando instantaneamente todas as 42 pessoas a bordo. No entanto, a maioria dos 93 passageiros e tripulantes a bordo do Iberia 727 ainda estavam vivos. Quando o fogo atingiu os destroços, não houve tempo para uma evacuação ordeira. 

Muitos dos passageiros ficaram gravemente feridos no acidente e não conseguiram escapar, sucumbindo rapidamente à fumaça e às chamas. Entre os que ainda estavam vivos estavam 8 dos 9 tripulantes, incluindo os pilotos, que ajudaram os passageiros a escapar do avião. O capitão gritou repetidamente para um passageiro: “A pista era minha! A pista era minha!"

Os restos do voo 350 da Iberia após o acidente (Imagem: RTVE)

Funcionários do aeroporto e equipes de emergência sabiam que tinha ocorrido um acidente, mas lutaram para encontrá-lo em meio à névoa espessa. Eles só foram capazes de localizar os destroços depois que os sobreviventes tropeçaram para fora da névoa e os apontaram na direção certa. 

Alguns sobreviventes relataram que os serviços de emergência só chegaram ao local 20 minutos após o acidente. Ao todo, 51 pessoas a bordo do voo 350 perderam suas vidas, a maioria devido à inalação de fumaça e queimaduras, elevando o número total de mortos para 93.

Corpos são removidos dos destroços do voo 011 da Avianca, que caiu perto de Madri 10 dias antes da colisão na pista (Foto: Arquivos do Bureau of Aircraft Accidents)

Este foi de fato o segundo grande acidente em Madrid em apenas dez dias. No dia 27 de novembro, pouco mais de uma semana antes, o voo 011 da Avianca, um Boeing 747, caiu em um morro próximo à cidade após a tripulação cometer um erro de navegação, matando 181 das 192 pessoas a bordo. A investigação desse desastre estava apenas começando quando ocorreu a colisão na pista.


Este novo acidente assemelha-se consideravelmente a outro desastre aéreo na Espanha: o Desastre de Tenerife em 1977, no qual dois Boeing 747 colidiram em uma pista enevoada nas Ilhas Canárias, matando 583 pessoas. Era preciso levantar a questão: Tenerife estava tudo de novo? Algo foi aprendido?

Em Tenerife, a responsabilidade recaiu sobre o KLM 747, que decolou sem permissão do controlador. Mas em Madri, o 727 teve permissão para decolar, e o DC-9 estava taxiando na pista quando não deveria. Descobrir como isso aconteceu não foi uma tarefa fácil, no entanto. 

O DC-9 era bastante antigo e, segundo os regulamentos espanhóis da época, as aeronaves fabricadas antes de uma certa data não eram obrigadas a ter um gravador de voz na cabine. Sem CVR, os investigadores podiam apenas fazer suposições informadas sobre o que poderia ter confundido os pilotos, mas eles não encontraram falta de interpretações errôneas potenciais em vários pontos ao longo de sua rota. A partir do momento em que o voo 134 começou a se mover, uma longa linha de pistas imprecisas e enganosas levou o avião para a pista ativa.

Mapa dos destroços de ambas as aeronaves (Imagem: Relatório Final)

Primeiro, as instruções do controlador não eram suficientemente precisas. “Informar ao sair do pátio norte e entrar na pista de taxiamento” não especificava onde sair do pátio ou em qual pista de taxi informar a entrada, deixando os pilotos descobrirem por si próprios. 

A tripulação do voo 134 foi igualmente imprecisa quando relatou que estava “deixando a área de estacionamento”, porque isso não indicava se eles haviam acabado de começar a se mover ou se tinham acabado de sair da área de estacionamento. 

O controlador não pediu esclarecimentos e, portanto, pode ter perdido o controle da aeronave em seu modelo mental dos movimentos de solo do aeroporto. O fato de o aeroporto não ter radar de solo e a neblina impossibilitar a visualização do avião da torre de controle significava que o controlador não ajudava muito. Além disso, não havia procedimentos no Aeroporto de Barajas sobre como e onde os aviões deveriam taxiar em condições de baixa visibilidade.,

Diagrama mostrando o que os pilotos provavelmente poderiam ver ao entrar na pista de taxiamento J1 (Imagem: Relatório Final)

A interseção de cinco vias onde o avião fez a curva errada também foi mal projetada. O aeroporto estava passando por uma grande reforma e algumas sinalizações não foram concluídas, incluindo a linha curva que mostra a rota de J2 para a pista de táxi externa. Sua ausência provavelmente fez com que os pilotos não percebessem o fato de estarem cruzando a pista de taxiamento externa. 

Os sinais de advertência da aeronave para não entrar na pista de taxiamento J1 estavam muito longe para serem vistos claramente no nevoeiro. Uma vez em J1, havia sinais adicionais de que eles não estavam na rota correta, mas o viés de confirmação - a tendência do cérebro de ignorar informações que não apóiam sua compreensão da situação - impediu os pilotos de perceberem que a geometria da interseção não correspondia ao que eles pensavam que estavam vendo.


Seu viés de confirmação foi ainda mais ampliado quando eles viraram para a pista 01 e acabaram paralelos à pista de taxiamento O5, colocando-os no rumo correto, mas no lugar errado. Desta forma, a pista se comportou exatamente como eles esperavam que a pista de taxiamento se comportasse. 

Somente quando não conseguiram encontrar as marcações da pista de taxiamento, começaram a notar que algo estava errado. Mesmo assim, a tentativa da tripulação de limpar a pista, com base em uma suposição incorreta sobre o erro que cometeram, na verdade piorou a gravidade da colisão.

Ficou claro, portanto, que o Aeroporto de Barajas, embora perfeitamente utilizável em condições normais, poderia se tornar perigosamente confuso quando a densa neblina obscurecesse todas as pistas visuais e forçasse os pilotos a taxiar "por feeling".


A cauda carbonizada do Boeing 727 após a colisão (Foto: Eulixe.com)

Em seu relatório final, os investigadores recomendaram que o Aeroporto de Barajas desenvolvesse procedimentos especiais de taxiamento para uso em condições de baixa visibilidade; que as cores das marcações nas pistas e pistas de taxiamento sejam mais divergentes; que sinais e marcações redundantes adicionais sejam colocados em taxiways de mão única (como J1) para que os pilotos sejam mais propensos a vê-los; que luzes especiais sejam colocadas para avisar os pilotos quando eles estiverem entrando em uma pista ativa; que aeronaves espanholas de todos os tipos sejam equipadas com gravadores de voz na cabine; e que a Organização de Aviação Civil Internacional desenvolva padrões internacionais para marcações de pistas e pistas de taxiamento.


Depois de duas grandes colisões de pista na Espanha em seis anos, não houve mais nenhuma desde o desastre em Madrid. Mas as colisões fatais na pista são tão raras que é difícil saber se as alterações feitas como resultado desse acidente tiveram algum impacto sobre o resultado. No entanto, com o passar do tempo, um maior conhecimento do clima, do comportamento humano e do projeto do aeroporto ajudou a formar melhores regulamentos que mantêm as aeronaves em taxiamento fora das pistas ativas. 

Hoje, os principais aeroportos contam com sistemas que detectam incursões nas pistas e alertam os controladores de tráfego aéreo, além de outras melhorias significativas. Como resultado, não houve uma grande colisão na pista envolvendo um avião de passageiros em qualquer lugar do mundo desde 2001.

Edição de texto e imagens: Jorge Tadeu (com Admiral_Cloudberg, ASN, baaa-acro.com)

Assista ao momento da rejeição de decolagem do grande Boeing 747 em Campinas-Viracopos

Bonita cena do momento da rejeição, em cena do vídeo abaixo (Imagem: canal Golf Oscar Romeo)
Uma gravação feita na tarde dessa segunda-feira, 5 de dezembro, mostra bem de perto o interessante e bonito momento de uma rejeição de decolagem de um grande avião Boeing 747 no Aeroporto Internacional de Viracopos, em Campinas (SP).

Em um momento de pista bastante molhada, envolvendo muito spray de água, a câmera ao vivo do canal “Golf Oscar Romeo” no YouTube registrou o Jumbo Jet taxiando até a cabeceira 33, iniciando a decolagem e, segundos depois, acionando o empuxo reverso dos quatro motores e abrindo os spoilers (freios aerodinâmicos) sobre as asas:


Como visto nas bonitas cenas acima, o avião era o Boeing 747-400F de matrícula N499MC, da companhia norte-americana Atlas Air, que opera regularmente em Campinas, assim como em Guarulhos (SP) e Manaus (AM).

Após a rejeição da decolagem, durante o taxiamento do Jumbo pela pista para o retorno ao pátio, o controlador de tráfego aéreo da torre de Viracopos pergunta sobre o motivo da abortagem do procedimento.

A resposta do piloto da Atlas, ouvida na frequência de comunicação que acompanha o vídeo, foi que a aeronave apresentou uma mensagem de alerta.

O Boeing 747 decolaria por volta das 15h15, e após retornar ao pátio, voltou à pista por volta das 17h00, dessa vez decolando sem intercorrências para o voo GTI-56 rumo a Lima, no Peru.

Com mais de 80 anos, avião Paulistinha ainda é referência na formação de pilotos

Aeronave, também conhecida como "fusca com asas", ocupa a quarta colocação entre os aviões brasileiros mais vendidos da história, com 1.043 unidades produzidas por três fabricantes diferentes.

A fuselagem do aparelho é um “esqueleto” de tubos de aço e as asas são de madeira. É também uma aeronave compacta e extremamente leve, com apenas 6,65m de comprimento por 10,1m de envergadura e peso máximo de decolagem em torno de 600 kg. A velocidade máxima é de 150 km/h e a autonomia de 500 km (Crédito: Alexandre Montanha/Arquivo Pessoal)
É raro encontrar um piloto brasileiro que nunca tenha voado no Paulistinha. Avião de instrução com mais de 80 anos de serviço, o pequeno monomotor produzido no Brasil de asa alta e dois assentos é até hoje uma referência na formação de aviadores.

A primeira versão do Paulistinha, inspirado no modelo de treinamento norte-americano Taylor Cub, foi construída pela antiga Empresa Aeronáutica Ypiranga (EAY), uma das primeiras fabricantes de aviões do Brasil. Um dos fundadores da empresa, aliás, foi Henrique Dumont Villares, sobrinho do pioneiro Alberto Santos Dumont.

De acordo com o livro “Construção Aeronáutica do Brasil – 100 Anos de História”, do historiador Roberto Pereira de Andrade, o primeiro voo do Paulistinha, originalmente batizado como EAY-201, aconteceu em setembro de 1935, no Campo de Marte, em São Paulo (SP). Apesar de promissor, a aceitação do avião não foi imediata e a EAY produziu apenas cinco exemplares em oito anos.

Em 1943, a EAY foi adquirida pela Companhia Aeronáutica Paulista (CAP), outra antiga fabricante de aviões do Brasil, que aperfeiçoou o monomotor e o relançou com a designação CAP-4. Também foi durante esta mudança que o avião ficou conhecido como Paulistinha.

Primeira versão do Paulistinha foi construída pela antiga Empresa Aeronáutica Ypiranga, uma das primeiras fabricantes de aviões do Brasil. Um dos fundadores da empresa, aliás, foi Henrique Dumont Villares, sobrinho do pioneiro Alberto Santos Dumont (Crédito: Alexandre Montanha/Arquivo Pessoal)
A fama do CAP-4 foi impulsionada pela “Campanha Nacional de Aviação”, movimento criado nos anos 1940 pelo jornalista Assis Chateaubriand, proprietário dos jornais Diários Associados, e por Joaquim Pedro Salgado Filho, então ministro da guerra do Brasil. O objeto da ação era arrecadar fundos para a compra de aviões de instrução de fabricação nacional e depois doá-los a aeroclubes do país para servirem na formação de pilotos.

A campanha foi um sucesso e o Paulistinha passou a ser fabricado em ritmo frenético. Em seu auge, a CAP finalizava um avião por dia, algo raríssimo na aviação. Segundo dados da Força Aérea Brasileira (FAB), o CAP-4 somou 777 exemplares produzidos.

Na década de 1950, o projeto do Paulistinha novamente mudou de mãos ao ser vendido para Indústria Aeronáutica Neiva, empresa com sede em Botucatu (SP) que foi incorporada pela Embraer em 2006. Sob a tutela da Neiva, o avião recebeu mais atualizações e passou a se chamar P-56. Esta versão teve 261 unidades vendidas até 1969, quando a produção do aparelho foi encerrada.

Fusca com asas


O que faz do Paulistinha um avião tão especial é sua simplicidade. A fuselagem do aparelho é um “esqueleto” de tubos de aço e as asas são de madeira. É também uma aeronave compacta e extremamente leve, com apenas 6,65 metros de comprimento por 10,1 m de envergadura e peso máximo de decolagem em torno de 600 kg. O desempenho é modesto, mas serve perfeitamente ao propósito de instrução: alcança velocidade máxima de 150 km/h e tem autonomia de 500 km.

No Registro Aeronáutico Brasileiro da Anac constam mais de 300 exemplares do Paulistinha, dos quais cerca de 40 aeronaves estão em condições de voo. Os modelos mais antigos em situação regular são de 1946 e o mais novos, de 1969 (Crédito: Divulgação/FAB)
“Eu aprendi a voar no Paulistinha. É um avião ótimo para formação inicial, pois nele o piloto tem contato com a essência tradicional do voo. Ele não possui nenhum recurso eletrônico para auxílio de navegação e pilotagem. É um avião que depende totalmente da habilidade do piloto”, disse Alexandre Montanha, piloto privado e sócio do Aeroclube de Marília (SP). “Ele também tem um baixo custo operacional imbatível.”

“Quem aprende a voar no Paulistinha tem um preparo muito maior quando migra para aeronaves mais avançadas. É como um Fusca. Quem aprende a dirigir no Fusca consegue dirigir tranquilamente uma Ferrari ou qualquer outro carro”, relatou Montanha.

O Paulistinha do Aeroclube de Marília é um dos mais antigos em condições do voo. O modelo com matrícula PP-GXD foi fabricado pela Companhia Aeronáutica Paulista em 1947.

“Esse Paulistinha era um CAP-4 que depois foi convertido para o padrão P-56, da Neiva. Ele está aqui em Marília há mais de 70 anos e nunca deu problema. Temos aviões de instrução bem mais novos e avançados na frota do aeroclube, como modelos da Piper e Cessna, mas o Paulistinha é o mais utilizado, disparado”, contou o piloto.

Paulistinha: pequeno monomotor produzido no Brasil de asa alta e dois assentos é até hoje
uma referência na formação de aviadores (Crédito: Divulgação/Neiva)

Clássico brasileiro


Com 1.043 unidades produzidas por três fabricantes diferentes, o Paulistinha ocupa a quarta colocação entre os aviões brasileiros mais vendidos da história. Ele fica atrás apenas de aeronaves consagradas da Embraer, no caso a série E-Jets E1 e E2 (com 1.655 unidades produzidas até o terceiro trimestre de 2021), o avião agrícola Ipanema (mais de 1.500 unidades) e a família ERJ (com 1.233 unidades produzidas, incluindo versões de uso comercial, executivo e militar).

No Registro Aeronáutico Brasileiro (RAB) da Agência Nacional de Aviação Civil (Anac) constam mais de 300 exemplares do Paulistinha, dos quais cerca de 40 aeronaves estão em condições de voo. Os modelos mais antigos em situação regular são de 1946 e o mais novos, de 1969.

Mesmo com o advento de aviões de instrução mais avançados, o Paulistinha deve continuar servindo ao propósito de formar pilotos no Brasil, quem sabe, por mais algumas décadas, o que fará dele uma aeronave centenária.

Por Thiago Vinholes (CNN Brasil Business)

Avião de cientistas alemães sobrevoará Amazônia a 15 km de altitude por dois meses


O avião de pesquisa Halo, um jato especial equipado com vários instrumentos para estudo da alta atmosfera, chegou na última quinta-feira ao aeroporto internacional de Manaus (AM) para começar uma missão no Brasil. A partir do domingo (4), a aeronave do Centro Aeroespacial da Alemanha (DLR) vai passar 50 dias sobrevoando a Amazônia a até 15 km de altitude para estudar a interação da floresta com a alta atmosfera.

A iniciativa, um projeto de pesquisa de cerca de US$ 20 milhões, está sendo em sua maioria bancada pela Sociedade Max Planck, a maior instituição de pesquisa alemã, em parceria também com a Fapesp (Fundação de Amparo à Pesquisa do Estado de São Paulo). O objetivo dos cientistas é coletar amostras de ar nessa altitude para entender a formação dos agregados de aerossóis que provocam a chuva na floresta e entender como ela interage com o Atlântico.

O nome Halo é um acrônimo de High Altitude and Long Range Research Aircraft (Aeronave de longa autonomia e grande altitude). Com o sobrevoo, o grupo esperam preencher uma lacuna de dados no entendimento da atmosfera sobre a florestas, que já é bem mapeada por satélites e por dados coletados por aviões em altitudes menores. O meio do caminho entre entre essas duas camadas ainda é uma área relativamente mal conhecida, que os instrumentos do Halo poderão mostrar melhor.

O trabalho estava previsto para começar na primavera de 2020, mas foi adiado por causa das restrições da pandemia de Covid-19.

O projeto envolve cerca de 80 cientistas, que estão instalados em uma base improvisada no aeroporto internacional de Manaus. No lado brasileiro, a iniciativa é coordenada pelo Inpe (Instituto Nacional de Pesquisas Espaciais), pela Universidade de São Paulo (USP) e pelo Inpa (Instituto Nacional de Pesquisas da Amazônia). No lado alemão a inciativa é do Instituto Max Planck de Química. As instituições já são parceiras em outro projeto na Amazônia, a torre de pesquisa ATTO, a mais alta estrutura construída na América do Sul. A instalação também será usada agora para complementar as medidas do Halo.

A série de sobrevoos que o Halo fará agora em dezembro e janeiro integra o projeto CAFE-Brazil (Chemistry of the Atmosphere: Field Experiment in Brazil), enfocado no papel da floresta diante das mudanças climáticas. O projeto também envolve a Universidade Estadual do Amazonas, que participa do projeto com um barco científico. O ineditismo do projeto, porém, ocorre pela presença do Halo no Brasil.

— É a primeira vez que vão ser feitas medidas de gases de efeito estufa em alta atmosfera numa região tropical do planeta — explica o físico Paulo Artaxo, professor da USP e um dos coordenadores do projeto.

Um dos focos da pesquisa é entender como o ciclo de evaporação e chuva na floresta depende dos chamados "compostos orgânicos voláteis": moléculas complexas de carbono que evaporam facilmente.

— Os compostos orgânicos voláteis emitidos pela floresta vão para a alta atmosfera e se condensam em partículas. Através do princípio da convecção ["ar frio sobe, ar quente desce"], as partículas voltam para a troposfera para alimentar o ciclo hidrológico da floresta amazônica — explica Artaxo.

— Faz 30 anos que a gente procura saber de onde saem as partículas que "nucleiam" nuvens [iniciam a formação de nuvens] na Amazônia. Esse experimento é desenhado para estudar os processos de produção de partículas na alta troposfera tropical, a camada que acreditamos ser o fator dominante na manutenção do ciclo hidrológico na região — completa o cientista.

Vôo do unicórnio


Os dados serão coletados pelo arsenal de instrumentação científica que o avião carrega a bordo. Entre seus 19 equipamentos especiais estão um espectrômetro de massa e um cromatógrafo, usados para identificar a composição de gases. O avião tem sensores para medir a presença de gases relevantes na interação do solo com a atmosfera, como o metano, o CO2 e o monóxido de carbono, bem como ozônio, oxido nitroso e outros compostos.

Todo esse equipamento foi montando dentro de uma aeronave projetada originalmente como um jato comercial para 19 passageiros (um Gulfstream G550 de US$ 55 milhões). A aeronave foi adaptada para acomodar uma carga útil de 3 toneladas e "turbinado" para conseguir voar um pouco mais alto do que na configuração para passageiros.

Pela distância a que estará do chão, o Halo dificilmente será notado pelos amazônidas enquanto estiver nos céus da floresta. No aeroporto de Manaus, porém, ele se destaca pela sua aparência, repleto de equipamentos soldados à sua fuselagem e com um sensor "noseboom" posicionado na frente, como o chifre de um unicórnio. O aparelho na forma de cone mede pressão e fluxo de ar.

— Esperamos obter novas informações sobre os processos químicos na atmosfera acima da floresta tropical e também sobre as interações entre a biosfera e a atmosfera, a fim de explicar melhor o papel fundamental da floresta tropical no sistema terrestre — diz Jos Lelieveld, do Max Planck, o líder científico da pesquisa.

Copa do Mundo de Asas – Camarões tem força aérea voltada para ações contra guerrilhas

Soldados do US Army em operação com um Mi-17 de Camarões (Foto: Coty Kuhn)
A seleção que o Brasil encarou na sexta-feira (2) e perdeu por 1 x 0 na Copa Mundo é de um país africano que teve processos de independência da França e do Reino Unido, em 1960 e 1961, relativamente pacíficos. Sem guerras contra nações vizinhas, Camarões poderia ser gozar de estabilidade, mas enfrenta tensões separatistas na região com predomínio de falantes da língua inglesa. Em 1999, a província de Ambazônia declarou sua independência, não reconhecida, e em 2017 declarou guerra ao governo central. Isso fez com que as forças armadas de Camarões tivessem um perfil operacional para combate de guerrilhas, o que se reflete na força aérea.

Caravan utilizado em missões ISR por Camarões (Foto: Armée de l’Air du Cameroun)
Camarões não tem, atualmente, nenhum avião de caça. Os vetores mais velozes à disposição da Armée de l’Air du Cameroun são seis treinadores avançados Alpha Jet, também usados em missões de ataque. O foco do país são os 17 helicópteros, incluindo três novos Z-9, de origem chinesa. Há ainda quatro AW109 e cinco Mi-17. A frota é complementadapelos Bell 206 e 412, SA330 e SA318.

Dos três Cessna 208 Caravan doados pelo governo dos Estados Unidos, dois foram modificados para missões de reconhecimento. Chamados de Phoenix, os aviões contam com uma suíte de aviônicos avançados da Garmin e uma torreta óptica MX-15, da Wescan. A L3 forneceu um sistema de datalink para transmissão das imagens em tempo real para duas estações em solo. As operações ISR (inteligência, vigilância e reconhecimento) também acompanham os movimentos do grupo jihadista Boko Haram, ativo na Nigéria e eventualmente com ações no lado camaronês da fronteira.

C-130 Hércules de Camarões (Foto: Bob Adams)
Para fins logísticos, Camarões também conta com um CASA CN235, um Caravan mantido na configuração original de transporte e três C-130H Hércules.

Via ASAS

Dupla de comediantes organiza 'festa' de slide de evacuação de emergência graças à Rex Airlines


A maioria das aeronaves comerciais modernas está equipada com uma rampa de evacuação de emergência. Embora seja reconfortante saber que você está coberto na eventualidade de algo dramático acontecer, é provável que você não queira vê-lo implantado durante um voo.

Mas e se você for convidado a descer o escorregador de evacuação de emergência apenas por diversão?

Foi exatamente isso que a dupla de comediantes australiana Hamish & Andy fez na companhia de seus fãs quando colaboraram com a transportadora regional Rex Airlines.

Conhecidos por suas travessuras malucas e aventuras selvagens, a dupla convidou 61 de seus ouvintes de podcast para se juntar a eles a bordo de uma aeronave Rex Airlines Boeing 737 para filmar seu episódio final para 2022.

A mídia local informou que a inspiração da dupla para uma 'Emergency Slide Party' começou em maio de 2021, quando os aviões foram aterrados e a ideia de descer um escorregador de evacuação sem uma emergência com risco de vida “parecia divertida”.


Após 18 meses de planejamento, a dupla finalmente fez acontecer em 22 de novembro de 2022, com a cooperação da Rex Airlines e do Aeroporto de Melbourne.

“Nossa festa de slides de emergência é uma lição de 'você não sabe se não perguntar!' Pedimos, e Rex disse que sim! É incrível a distância que iremos para um slide de três segundos, mas desta forma foi muito mais divertido do que tentar depois de um pouso de emergência!” Hamish e Andy disseram (como relatado por Radioinfo.com.au).


Do terminal, a aeronave seguiu para o hangar, onde os passageiros aguardavam a chance de descer pelo escorregador.

Andy Lee, metade da dupla, anunciou no sistema de som da aeronave: “A aeronave agora parou completamente. Verificamos do lado de fora e não há fogo ou fumaça, mas há um bom momento quente lá fora”.

Um comissário de bordo da Rex Airlines mostrou o procedimento adequado antes de abrir o escorregador, que envolve verificar primeiro as condições externas. O comissário então abriu a porta, onde o escorregador inflável abriu em menos de três segundos.

Os passageiros foram então ensinados a descer o escorregador para um pouso seguro, que é simular uma posição sentada com as costas retas e afastadas do escorregador, e os tornozelos em ângulo em sua direção, não apontados para fora.

A rampa de evacuação, então conhecida como rampa de escape, foi inventada por James F. Boyle, que apresentou sua patente em 1954.

A Administração Federal de Aviação (FAA) exige rampas de evacuação em aeronaves com portas a um metro e meio ou mais acima do solo. Se o pouso de emergência ocorrer sobre a água, a maioria dos escorregadores também pode ser usada como jangada.

Via Aerotime Hub