As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
Em 26 de outubro de 1989, o Boeing 737-209, prefixo B-180, da China Airlines (foto acima), decolou para o voo 204, em um voo de curta distância entre o Aeroporto de Hualien e o Aeroporto Internacional Taipei-Chiang Kai Shek, ambos em Taiwan. A bordo do Boeing 737 estavam 47 passageiros e sete tripulantes.
Dez minutos após a decolagem, a aeronave, tendo atingido uma altura de 7.000 pés (2.100 m), colidiu com uma montanha, parte da cordilheira de Chiashan, a 5,5 km ao norte do aeroporto de partida.
Todos os 54 passageiros e tripulantes a bordo morreram.
Naquela época, a China Airlines chegou a um acordo com as famílias das vítimas com uma indenização altíssima de 4 milhões de yuans.
No entanto, os familiares ainda ficaram tristes e com raiva recorreram à Administração de Aviação Civil da China, atiraram ovos e acusaram o controlador da estação de chegada de Hualien de “negligência profissional que resultou em morte”.
O promotor responsável perguntou certa vez: "Se o B-737 fez uma curva errada à esquerda, o lembrete do controlador poderia ter evitado uma colisão com uma montanha?"
O então Vice-Chefe de Padrões Liang Long e o Chefe de Seção Li Wanli pilotaram especialmente a aeronave de verificação B-135 King Air 350 para transportar aleatoriamente o membro da tripulação Jiang Tianzheng para simular a rota do voo CI204 da China Airlines naquele momento.
Depois de decolar da pista 03 do Aeroporto de Hualien, vire à esquerda para simular a taxa de subida padrão de partida e o ângulo de viragem naquele momento; de acordo com o autor (narrado oralmente pelo Sr. Jiang Tianzheng), o Sr. Jiang Tianzheng estava sentado atrás do banco do motorista na época. Depois de virar à esquerda, a cabine parecia Uma floresta verde ficou cada vez mais clara, e então o avião de inspeção imediatamente voou encosta acima em direção ao mar.
Posteriormente, o Chefe de Seção Li disse: Se você virar à esquerda de acordo com o procedimento padrão, com certeza atingirá a montanha. Felizmente, a máquina de inspeção é pequena e flexível e você pode escapar da parede da montanha aumentando a inclinação.
O instrutor Jiang Tianzheng revisou o incidente com base em sua vasta experiência como controlador de tráfego aéreo e como diretor e líder de equipe na Administração de Aviação Civil. Ele acreditava objetivamente que o dispositivo de radar instalado na "plataforma de aproximação do aeroporto" em 1989 naquela época era simplesmente incapaz de monitorar a pista.
Para alvos próximos, o controlador de serviço não pode e não pode detectar imediatamente o erro de direção da aeronave e certamente não pode avisar prontamente o piloto pelo rádio. Com base na simulação de voo acima e nas declarações do pessoal profissional de controle de tráfego aéreo relevante, o promotor responsável afirmou que “mesmo que o controlador possa lembrar o piloto, o resultado da colisão com uma montanha é inevitável”. ” Portanto, lembrar não está incluído na consideração de responsabilidade criminal por negligência.
A principal causa do acidente foi o erro do piloto. Com a tripulação composta por um piloto experiente (15 anos na China Airlines) e um copiloto novato, decolando da pista errada, agravado pelo controle de solo, que não conseguiu identificar o erro, a aeronave executou o procedimento de subida, fazendo uma curva à esquerda em direção às montanhas ao invés de uma curva à direita em direção ao mar.
Boeing 707-121 da Pan American World Airways, N711PA, Clipper America, no Aeroporto Idlewild, Nova York, 26 de outubro de 1958 (Foto: Pan American World Airways)
Em 26 de outubro de 1958, a Pan American World Airways inaugurou a “Era do Jato” com o primeiro voo comercial de um avião a jato americano.
O Boeing 707-121 'Clipper America', prefixo N711PA, da Pan Am, partiu de New York Idlewild (IDL) em um voo de 8 horas e 41 minutos para Paris Le Bourget (LBG), com uma parada de combustível em Gander, Newfoundland (YQX). (O tempo real de voo foi de 7 horas.) A distância foi de 3.634 milhas (5.848 quilômetros). A bordo estavam 111 passageiros e 11 tripulantes.
O Boeing 707 foi desenvolvido a partir do modelo 367–80 anterior, o “Dash Eighty”. É um transporte a jato de quatro motores com asas inclinadas e superfícies de cauda. A borda dianteira das asas é varrida em um ângulo de 35°. O avião tinha quatro tripulantes: piloto, co-piloto, navegador e engenheiro de voo.
O 707-121 tem 145 pés e 1 polegada (44,221 metros) de comprimento com uma envergadura de 130 pés e 10 polegadas (39,878 metros). O topo da barbatana vertical tem 42 pés e 5 polegadas (12,929 metros) de altura. O 707 é anterior aos aviões comerciais de "corpo largo", com fuselagem de 12 pés e 4 polegadas (3,759 metros).
As primeiras versões eram movidas por quatro motores turbojato Pratt & Whitney Turbo Wasp JT3C-6, produzindo 11.200 libras de empuxo (49.820 kilonewtons) e 13.500 libras (60.051 kilonewtons) com injeção de água. Este motor era uma variante civil da série militar J57. Era um motor turbojato de fluxo axial de dois carretéis com um compressor de 16 estágios e uma turbina de 2 estágios. O JT3C-6 tinha 11 pés, 6,6 polegadas (3.520 metros) de comprimento, 3 pés e 2,9 polegadas (0,988 metros) de diâmetro e pesava 4.235 libras (1.921 quilogramas).
O peso vazio do avião é 122.533 libras (55.580 kg). O peso máximo de decolagem (MTOW) é 257.000 libras (116.573 kg). No MTOW, o 707 exigiu 11.000 pés (3.352,8 metros) de pista para decolar. Sua velocidade máxima é de 540 nós (1.000 quilômetros por hora). Ele tinha um alcance de 2.800 milhas náuticas (5.185,6 quilômetros).
O Boeing 707 esteve em produção de 1958 a 1979. 1.010 foram construídos. Em 2011, 43 707 ainda estavam em serviço.
A Boeing entregou o N711PA à Pan American em 17 de outubro de 1958. O avião foi denominado Clipper America, mas mais tarde foi renomeado como Clipper Mayflower. Foi alugado para a Avianca ( Aerovías Nacionales de Colombia SA) de 1960 a 1962. Em abril de 1965, o 707 foi atualizado para o padrão –121B. Isso incluiu uma mudança dos motores turbojato para turbofans Pratt e Whitney JT3D-1 mais silenciosos, mais potentes e eficientes, produzindo 17.000 libras de empuxo. As asas foram modificadas para incorporar as mudanças introduzidas com o Boeing 720 e um tailplane mais longo instalado.
A Pan Ayer do Panamá comprou o Clipper Mayflower em 21 de fevereiro de 1975 que, posteriormente, foi alugado para Türk Hava Yolları, a companhia aérea nacional turca, e passou a servir na Air Asia Company Limited (uma unidade de serviço de aeronaves da Air America) e na E-Systems. Após 26 anos de serviço, em agosto de 1984, o "Clipper America" foi descartado em Taipei.
Em 26 de outubro de 2015, o Boeing 737-4L7, prefixo ZS-OAA, da British Airways, operado pela Comair, sofreu danos graves em um acidente durante o pouso no Aeroporto de Joanesburgo-OR Tambo, na África do Sul. Havia 94 passageiros e seis tripulantes a bordo.
A aeronave havia partido do aeroporto de Port Elizabeth às 08h20 (UTC) em voo por instrumentos para Joanesburgo.
O primeiro oficial foi o piloto voador desta perna. Durante a aproximação a Joanesburgo, a aeronave foi liberada para pousar na pista 03R. A aproximação foi realizada com vento de cauda (340° a 10 nós).
Depois de cruzar a cabeceira da pista, o primeiro oficial começou a fazer o flare da aeronave a 65 pés, em vez de 20 pés, conforme recomendado pela Boeing. Isso contribuiu para uma baixa taxa de afundamento (1,8 pés/segundo). A aeronave pousou a uma velocidade de solo excessiva de 167 nós. A tripulação de voo sentiu a aeronave vibrando, durante a qual aplicou os freios e aplicou o empuxo reverso.
A engrenagem principal esquerda colapsou aproximadamente 5 segundos após o toque, fazendo a aeronave rolar ligeiramente para a esquerda. Posteriormente, ela parou por completo cerca de 35 segundos depois, ligeiramente à esquerda da linha central da pista, apoiada em seu trem de pouso principal direito e no motor número um, com o trem de pouso do nariz no ar.
A aeronave sofreu danos substanciais quando o motor número um raspou ao longo da superfície da pista, quando o trem de pouso se soltou da fuselagem. Os ocupantes foram autorizados a desembarcar da aeronave pela porta traseira esquerda devido à altura em que a aeronave parou.
Foi determinado que o flare precoce e a baixa taxa de afundamento no toque causaram uma condição na qual vibrações excessivas se acumularam no trem de pouso esquerdo e resultou na falha do elo de torção superior.
A válvula de alívio térmico do amortecedor shimmy continha óleo que poderia ter prejudicado sua eficácia. Desgaste significativo foi encontrado nas buchas do elo de torção superior, o que pode ter contribuído para o acúmulo de vibração não amortecido durante a operação.
O voo do brasileiro Alberto Santos Dumont, em uma distância de 60 metros com o 14-Bis, no Campo de Bagatelle, em Paris, marcou historicamente aquele 23 de outubro de 1906 e consagrou ainda mais o inventor. O aparelho subiu 2 metros de altura e foi o bastante para a humanidade olhar para cima e para o futuro de forma diferente.
O feito inédito que completa 115 anos neste sábado (23), porém, é "apenas" a parte mais famosa das conquistas, segundo apontam os pesquisadores da vida e das obras daquele mineiro que ficou conhecido como o 'Pai da Aviação'.
Até aquela data (e depois também), o enredo é de uma história de coragem, perspicácia, generosidade e divulgação científica como rotina de vida. Característica, aliás, de um período de fascínio pela tecnologia e pelas descobertas. Autor de quatro livros sobre Santos Dumont, o físico Henrique Lins de Barros, especialista na história do gênio inventor, destaca que feitos anteriores foram fundamentais para que as atividades aéreas se consolidassem.
Ele cita que o brasileiro inventou e patenteou o motor a combustão para aviões, em 1898, o que viabilizou o sonho de um dia decolar. Uma característica de Santos Dumont é que ele criava, patenteava e liberava a utilização para quem quisesse. Três anos depois do motor, a conquista da dirigibilidade, também por parte de Dumont, foi uma ação revolucionária.
"Ele aprendeu a voar de balão, fez os primeiros dirigíveis. Todos eles, até o número 6, têm inovações impressionantes, com mudanças conceituais. Ele sofreu diversos acidentes, mas aprendeu a voar. Foi assim que ele descobriu quais eram os problemas de um voo controlado. Quando ele ganhou o Prêmio Deutsch, em 1901 [com o dirigível número 5], ele tinha domínio total. Em 1902, ele já tinha os dirigíveis até o número 10 construídos".
“Ele tem uma produção, em dez anos, em que ele idealiza, constrói, experimenta mais de 20 inventos. Todos revolucionários. Ele tem intuição para o caminho certo e criatividade para ir adiante. Os colegas deles inventores diziam que ele fazia em uma semana o que os outros demoravam três meses”, afirma Henrique Lins de Barros.
Voo sob controle
De acordo com o escritor Fernando Jorge, biógrafo de Santos Dumont, a descoberta da dirigibilidade, por parte do brasileiro, foi um marco decisivo para o que ocorreria depois. "Entendo que foi um momento supremo e culminante para a história da aeronáutica mundial."
Para o arquivista Rodrigo Moura Visoni, pesquisador dos inventores brasileiros e autor de livro sobre Santos Dumont, as fotos mostram detalhes da emoção que tomou conta das pessoas quando houve a conquista da dirigibilidade. "Santos Dumont foi convidado para rodar o mundo. Foi, sem dúvida, um grande feito. Para se ter uma ideia, o número de notícias sobre a conquista do Prêmio Deutsch supera a do primeiro voo [cinco anos depois]. Isso é explicado porque a busca pela dirigibilidade já tinha 118 anos. Ele resolve um problema secular. Além disso, a descoberta permitiu a era das navegações aéreas", afirma.
Segundo o que Visoni pesquisou, Alberto Santos Dumont disse, em várias entrevistas, inclusive pouco antes de morrer, que a maior felicidade dentre todas as emoções foi a conquista da dirigibilidade. "Isso é muito curioso. Ele dizia que o dia mais feliz não foi o dia em que ele faz a prova do Prêmio Deutsch, nem o 23 de outubro ou o 12 novembro de 1906 [em que ele faz o voo de 220 metros pela Federação Aeronáutica Internacional]. O dia mais feliz teria sido o 12 de julho de 1901, quando ele percebeu que resolveu o problema de dirigibilidade aérea. Foi uma demonstração impressionante. Ele vai aonde ele quer. Ele estava totalmente integrado ao dirigível."
O Prêmio Deutsch (no valor de 100 mil francos) foi conferido a Santos Dumont por ele ter conseguido circular a Torre Eiffel em julho. Mas os juízes garantiram a vitória ao brasileiro somente em novembro daquele ano. Os 120 anos da dirigibilidade, assim, devem ser celebrados no mês que vem.
Na ocasião, o dinheiro foi distribuído para a equipe do aviador e para pessoas pobres da capital francesa. "Ele era um homem muito generoso", afirma o biógrafo Fernando Jorge.
"Tomem cuidado!"
A série de demonstrações públicas que ele faz dos seus inventos devia sempre ser acompanhada da presença de repórteres. "Os jornalistas registravam e Santos Dumont publicava o que ele estava fazendo. Essa é uma característica impressionante. Ele divulga tudo. Tanto o que ele acerta como o que ele erra. Essa é uma característica impressionante dele. Quando ele erra, ele descreve e alerta: 'Tomem cuidado!'. Ele estava maduro na arte dos balões", afirma Lins de Barros.
A postura de Santos Dumont não era apenas a de um inventor, mas a de um divulgador científico, explicam os pesquisadores. "Ele foi um divulgador honesto."
Entre 1901 e 1906, Santos Dumont passou a entender o que era o voo do avião. "O 14-Bis ele fez em pouquíssimo tempo, pouco mais de um mês. Em setembro, por exemplo, ele experimenta e faz vários testes com o aparelho."
Em 23 de outubro, ele, após quatro tentativas, consegue voar os 60 metros. Assim ele mostra para todos os aviadores da época que era possível voar com o mais pesado que o ar. Uma revolução. A vitória significou o Prêmio Archdeacon. Bastaria voar 25 metros. Santos Dumont fez um percurso de mais que o dobro.
Demoiselle, a primeira de uma série
Depois do voo, outros inventores entenderam quais eram os problemas. Em 1907, Santos Dumont apresenta o Demoiselle (invenção número 20), um ultraleve. "No ano seguinte, Santos Dumont publica em uma revista popular o plano detalhado do Demoiselle para quem quisesse construir. Esse modelo passa a ser o primeiro produzido em série na aviação", explica Lins de Barros. O modelo foi vendido para um pioneiro da aviação na França, Roland Garros.
Santos Dumont x irmãos Wright
Nessa época, também, surge uma polêmica com dois norte-americanos, os irmãos Wright (Wilbur e Orville), que alegam terem sido os pioneiros do voo. Os pesquisadores explicam que os aviadores não têm registros de voos, com decolagem, dirigibilidade e pouso antes de 1906 sem uso de catapultas (que impulsionavam os aparelhos para o ar).
Em 1908, Santos Dumont, acometido por esclerose, abandonou o voo. O registro é de que ele se suicidou em 1932, em um hotel no Guarujá (SP). O biógrafo do aviador, Fernando Jorge, lamenta que o final da vida do genial brasileiro tenha sido de martírio diante da doença e da depressão. "Ele era um homem tímido e que revelava que não queria casar porque não queria deixar a esposa viúva. De toda forma, o que sempre me impressionou na personalidade dele foi a combinação impressionante da tenacidade, da coragem e da perseverança. Foi um gênio da humanidade."
O 777X está atualmente em processo de certificação e construiu quatro aviões para esse fim (Foto: Boeing)
A certificação de qualquer aeronave nova requer muitos testes e análises minuciosas para colocar o avião à prova. Mas como fica o interior de uma aeronave durante esse tempo? A resposta depende do que foi testado e de quantos aviões estão participando do processo.
Quase pronto
Fazer uma aeronave é uma tarefa difícil. Após anos de processos de projeto e fabricação, as empresas podem orgulhosamente tirar sua primeira aeronave da linha de montagem. No entanto, este é o único começo de uma nova jornada: o processo de certificação. Talvez a parte mais crítica, novos modelos de aeronaves devem passar por testes extensos e extremos para provar sua segurança aos reguladores globais.
Quando são construídas pela primeira vez, as aeronaves de teste têm apenas uma parte totalmente concluída, o cockpit. A cabine do jato normalmente é deixada vazia para os vários testes que serão realizados, o que significa que o interior se parece com o de um cargueiro temporário. No entanto, isso não demorará muito, pois novos sistemas são ajustados para cada teste.
A cabine da aeronave de teste é deixada vazia para abrir espaço para vários sistemas de teste (Foto: H. Michael Miley via Wikimedia Commons)
A visão mais comum dentro de uma aeronave de teste são os postos do engenheiro. São conjuntos de assentos e estruturas de servidor que incluem computadores e sensores que rastreiam o movimento da aeronave em tempo real. Durante todos os testes, os engenheiros manterão verificações em sistemas como fluxo de combustível, resposta do motor, eficiência, tempo de resposta e muito mais.
No entanto, embora essa possa ser a visão mais comum, as aeronaves de teste incluem vários outros componentes em toda a fuselagem.
Tudo
Além dos sistemas internos, existem algumas modificações especiais feitas para testar as condições externas. Por exemplo, para testar a turbulência da aeronave e as leituras de pressão estática, a aeronave contém um tubo de plástico de 300 pés que pode ser implantado para fora da cauda, de acordo com a Wired . Isso significaria deixar uma parte da fuselagem sem lacre e não instalar nada na área normal da cozinha.
A aeronave também pode ser equipada com dezenas de tanques de transferência de peso em toda a aeronave para simular a mudança do centro de gravidade com passageiros e passageiros de carga. Esses tanques são preenchidos com água e podem transferir água entre si para alterar o CGI.
O 747-8s inclui tanques de água no convés superior, no nariz da aeronave, para simular os passageiros (Foto: Olivier Cleynen via Wikimedia Commons)
Cada aeronave terá requisitos diferentes e novos sistemas podem ser adicionados e removidos conforme a necessidade da missão. Considerando que esses aviões passam por tudo, desde voos de longa distância até testes de impregnação a frio , os dados precisos desses sistemas são essenciais para a certificação.
Atualmente, o mais popular em teste é o Boeing 777X. A gigante americana construiu quatro 777-9s para participar do programa de testes , cada um dos quais verifica diferentes partes do avião. Eventualmente, a maioria dessas aeronaves entrará em serviço comercial após serem equipadas com suas respectivas cabines.
No caso da passagem pelo Brasil, o avião chegou ao país pelo Aeroporto Internacional do Galeão, no Rio de Janeiro, na sexta-feira (21), e depois a taça foi levada a São Paulo no sábado, até ontem.
(Imagem: Reprodução do canal Youtube Golf Oscar Romeo)
Nesta manhã de terça-feira (25), o avião que leva o itém mais especial do futebol, decolou de Guarulhos com destino a capital argentina. O avião Airbus A320 que está sendo usado para a operação de transportar a Taça da Copa do Mundo de futebol em alguns países.
O canal aberto no Youtube Golf Oscar Romeo , mostra o jato de matrícula G-POWM, operado pela empresa britânica de fretamentos Titan Airways. Por volta das 6h50 ele saiu do pátio de aviões VIP do Aeroporto Internacional de São Paulo, em Guarulhos.
No caso da passagem pelo Brasil, o avião chegou ao país pelo Aeroporto Internacional do Galeão, no Rio de Janeiro, na sexta-feira (21), e depois a taça foi levada a São Paulo no sábado, até ontem.
O avião deixou o país rumo a Buenos Aires, e depois ainda tem algumas escalas antes de chegar ao Catar. No dia 28 de Outubro, o Airbus decola de Buenos Aires às 9h e pousa em Montevidéu às 10h, sendo horários locais.
Após três dias, no dia 31 de Outubro, o avião decola de Montevidéu às 5h05 para aterrissar em Quito (Equador) às 10h locais. De lá, parte para Costa Rica, México, EUA e Canadá.
Qual a melhor forma de tentar capturar compradores para seu jato particular? A fabricante norte-americana Boeing convidou ninguém menos que o astro de Hollywood e piloto John Travolta para exibir seu Boeing Business Jet.
O Boeing Business Jet (BBJ) não é o seu pequeno jato particular regular. Com base nos aviões comerciais 737, oferece aos clientes mais espaço e luxo, com preços que variam até várias centenas de milhões de dólares.
“Esta aeronave aqui é como um grande apartamento por dentro”, diz Travolta no vídeo promocional postado pela Boeing. Travolta conhece seu avião Boeing. Ele já voou o Boeing 707, 737 e o jato jumbo original e o Queen of the Skies, o 747.
O que o BBJ oferece?
Construído em 2010, o Boeing 737 Business Jet em exibição na NBAA, registrado YG128, possui dois motores CFM56-7B27. Os motores também alimentam dois outros aviões da família Boeing 737, incluindo o Boeing 737-800 e sua versão mais longa, o 737-900.
O avião executivo também é equipado com dois Split Scimitar Winglets, projetados para aumentar a eficiência de combustível reduzindo o arrasto.
Segundo relatos, a Boeing planeja alugar o jato a partir de 2024. Travolta destacou no vídeo que ele pode voar por 13 horas sem escalas.
O interior possui muito espaço para estar, jantar e dormir. Deixe a estrela de cinema levá-lo em um pequeno passeio pelo BBJ.
For someone who has been in the flight deck as long as he has been on the silver screen, #JohnTravolta knows beautiful planes.
Let Mr. Travolta, a licensed 707, 737 and 747 pilot, take you on an exclusive tour of our #BoeingBusinessJet at #NBAA2022.
A família Boeing Business Jets MAX consiste nas aeronaves BBJ MAX 8, BBJ MAX 9 e BBJ MAX 7. Apresentada em 2016, a aeronave MAX 7 é a mais nova variante da família. Por tamanho, o MAX 9 é o maior jato executivo da família MAX com um comprimento de fuselagem de 42,1 metros (138,1 pés). O jato é seguido de perto pelo MAX 8 de tamanho médio, que atinge 39,5 metros (129,7 pés) de comprimento.
Mas, quando se trata de alcance, o BBJ MAX 7 assume a liderança e é capaz de voar 12.960 quilômetros (7.000 nm). Em comparação, o BBJ MAX 8 pode voar até 11.710 quilômetros (6.325 nm), e o BBJ MAX 9 tem um alcance de 11.710 quilômetros (6.325 nm).
Em 2021, os preços de tabela da família de jatos BBJ MAX começaram em US$ 91,2 milhões para o MAX7, cerca de US$ 99 milhões para o MAX8 e aproximadamente US$ 107,9 milhões para o maior jato da família, o MAX9.
A grande maioria das pessoas costuma chamar o motor dos aviões comerciais de turbina. Tecnicamente, no entanto, a turbina é apenas uma parte de todo o conjunto que forma o motor. Em um único motor do Boeing 777, por exemplo, pode haver até nove turbinas.
O conjunto do motor de um avião é formado basicamente de quatro partes. O fan (espécie de ventilador na parte dianteira) suga o ar para dentro do motor. O ar é comprimido pelos diversos estágios dos compressores de baixa e alta pressão e direcionado para a câmara de combustão, onde acontece a queima do combustível.
Na parte traseira do motor estão as turbinas de alta e baixa pressão. "A função da turbina é transformar energia calorífica em energia mecânica para fazer todo o conjunto do motor funcionar. É na turbina onde é produzido o trabalho do motor", explicou o especialista em aviação Lito Sousa, que comanda o canal do YouTube "Aviões e Músicas".
As turbinas são ligadas por um eixo ao fan e aos compressores do motor. Ao receber os gases quentes da queima, elas são acionadas e movimentam todo o conjunto do motor. Depois de passar pelas turbinas esses gases são expelidos pelo bocal propulsor.
Turbinas são os discos na parte traseira do motor do avião - Imagem: Divulgação
O conjunto da turbina é formado por vários discos. "O conjunto é composto de vários estágios. Cada estágio é um disco de turbina, que é chamado de turbina", afirmou Lito. No caso do motor Pratt & Whitney PW4090, que equipa os aviões Boeing 777, são sete estágios de turbina de baixa pressão e dois estágios de turbina de alta pressão. O número de turbinas de cada motor pode variar de acordo com o modelo e o fabricante.
Turboélice também tem turbinas
Embora não costumem ser chamados de turbinas, os motores à hélice de aviões comerciais também têm turbinas. O funcionamento de um motor turboélice é bastante semelhante ao dos chamados jatos. A diferença principal é que as turbinas movimentam a hélice à frente do motor.
Cerca de 90% da energia dos gases é usada para girar a hélice e os outros 10% formam o jato residual que é aproveitado para aumentar a tração.
Fontes: Vinícius Casagrande (Colaboração para o UOL) / AEROTD Faculdade de Tecnologia
Entender como funciona a rede Wi-Fi no avião é uma dúvida comum entre os passageiros. Afinal, como é possível ter internet no voo se uma das primeiras orientações que é passada pelos tripulantes é justamente a de desligar (ou colocar em modo avião) os aparelhos eletrônicos, incluindo celulares, tablets e notebooks?
Em seu site oficial, a própria Anac (Agência Nacional de Aviação Civil) diz que os chamados dispositivos emissores intencionais de radiofrequência precisam estar desabilitados em determinadas ocasiões.
“Esta energia pode afetar a segurança da aeronave, pois seus sinais podem ocorrer nas mesmas frequências utilizadas pelos sistemas de comunicação, navegação, controle de voo e equipamentos eletrônicos, devido a grande sensibilidade dos mesmos. A empresa aérea deve mostrar que ela pode prevenir a interferência potencial que possa apresentar riscos à segurança”.
As ocasiões em que o Wi-Fi no avião precisa estar desativado são, basicamente, durante o pouso e a decolagem nos aeroportos. Por conta disso, as próprias companhias aéreas já disponibilizam serviços de Wi-Fi aos clientes durante as demais fases do voo. E é aí que entra a pergunta: como funciona a rede Wi-Fi no avião?
Duas formas
(Imagem: Reprodução/Inmarsat)
O sinal de Wi-Fi no avião funciona porque é levado aos milhares de metros de altitude basicamente de duas maneiras: pelas tradicionais torres de transmissão, instaladas por todo o mundo; ou por conexão via satélite. Ou seja: o sinal Wi-Fi funciona no avião vindo ora de cima, ora de baixo.
O meio mais tradicional é, na verdade, muito similar ao que gera sinal de Wi-Fi em situações normais, só que no sentido oposto. Enquanto uma pessoa que está em terra firme recebe o sinal vindo de cima, das antenas posicionadas em uma série de lugares, quem está no avião tem Wi-Fi captado pelas antenas colocadas na parte de baixo da fuselagem. Simples, né? Nem tanto…
Quando o avião está sobrevoando áreas em que não há torres de transmissão no chão, ou seja, quando está cruzando oceanos, por exemplo, o sinal precisa vir de outro lugar. Seria o equivalente a uma “área de sombra”, no caso de um usuário que está em terra. Nessas situações, o Wi-Fi no avião é disponibilizado de outra forma.
Lembra que falamos que o sinal utilizado viria ora de cima, ora de baixo? Pois é… nessas áreas em que não há antenas no solo, é possível acessar a internet via Wi-Fi no avião graças aos satélites — os mesmos que permitem que as pessoas que moram em áreas rurais mais afastadas também tenham acesso à internet. A diferença é que a antena não está instalada no teto da casa e sim na parte de cima do avião, para receber o sinal do satélite e rotear para os equipamentos a bordo.
A Anac diz, em sua regulamentação, que cabe às companhias aéreas prover a segurança necessária para que o uso do Wi-Fi no avião, dentro das situações já estabelecidas como legais, não interfira no funcionamento dos equipamentos das aeronaves:
“A seção 91.21 do RBHA nº 91, a seção 121.306 do RBAC nº 121 e a seção 135.144 do RBAC nº 135 proíbem que dispositivos eletrônicos portáteis (PED) possam ser utilizados a bordo de aeronaves a menos que os operadores verifiquem que não causem interferência nos sistemas de comunicações e de navegação da aeronave em que serão utilizados”.
Quanto custa?
No Brasil, companhias como Gol, Latam e Azul disponibilizam há algum tempo o acesso seguro ao Wi-Fi no avião. Os preços variam de acordo com a empresa, a velocidade da internet e o tempo de utilização. Os custos podem partir de R$ 7,50 por hora, como na Latam; e chegarem próximos dos R$ 100 em voos mais longos.
Para voos internacionais, empresas como Norwegian, SAS, Air France e Turkish Airlines oferecem o benefício de graça, mas somente para os passageiros da 1ª classe. Outras empresas, como KLM, All Nippon e Cebu Pacific revelaram recentemente que pretendem incorporar o benefício a todos os passageiros em um futuro próximo.
Via Canaltech News, com informações: Transportal, Anac
Tribunal do Distrito de Columbia, nos EUA, apreendeu avião de carga retido na Argentina em junho.
Avião cargueiro com matrícula venezuelana e tripulação iraniana está há quatro meses retido em Buenos Aires (Foto: Sebastian Borsero)
O Tribunal do Distrito de Columbia, nos Estados Unidos, determinou a apreensão do Boeing 747-300M cargueiro com matrícula da Venezuela (YV2523) e com tripulação iraniana, que está retido desde junho no aeroporto internacional de Buenos Aires.
A decisão foi baseada em uma investigação do FBI e do Departamento de Comércio norte-americano, da transferência ilegal do avião de uma empresa iraniana que está sob sanção, sem autorização da Casa Branca. A Mahan Air, por reiteradas vezes, tentou transferir seis aeronaves para a sua frota sem esse aval.
A investigação também mostrou que a empresa transferiu o YV2523 para a Emtrasur, da Venezuela, utilizando-se de um intermediário nos Emirados Árabes, em uma negociação que movimentou € 8 milhões (R$ 42,6 milhões).
Além disso, um dos pilotos, o comandante Gholamreza Ghasemi, é procurado pela justiça dos Estados Unidos, acusado de fornecer armamentos para grupos terroristas, especialmente aos vinculados à Guarda Revolucionária Islâmica do Irã.
O bloqueio do Boeing 747 cargueiro provocou reações em Caracas. Em agosto, o governo de Nicolás Maduro fez um apelo pela sua liberação. “Nossa Venezuela levanta seu protesto e pede todo o apoio do povo argentino para recuperar aquele avião que pertence a uma empresa venezuelana e finge ser roubado depois de tê-lo sequestrado por dois meses”.
Aeronave apreendida está em nome do Bradesco. Banco negou ser proprietário e que avião foi dado como garantia em uma operação comercial.
Aeronave registrada em nome do Bradesco foi apreendida em operação para combater o transporte ilegal de ouro (Foto: PF/Reprodução)
Um avião usado no contrabando de ouro na Amazônia foi apreendido nesta terça-feira (25) pela Polícia Federal (PF) durante a 'operação 79' em Porto Velho e Japurá (AM). A aeronave Embraer EMB-810C de prefixo PT-EEI está registrada em nome do banco Bradesco e não tem permissão para voo.
A operação da PF foi deflagrada para desarticular uma associação criminosa que fazia o contrabando de ouro através de voos de Japurá para o aeroporto de Porto Velho, capital de Rondônia.
Segundo apontou a investigação, o avião registrado em nome do Bradesco foi usado para fazer a rota, e transporte de ouro entre as duas cidades, sem ter plano de voo registrado na Agência Nacional de Aviação Civil (ANAC).
O Registro Aeronáutico Brasileiro (RAB) na ANAC indica que o avião apreendido é o de modelo EMB-810C, fabricado em 1977 pela Embraer, e está com o certificado de aeronavegabilidade suspenso.
Embora esteja como propriedade do Bradesco, a aeronave é operada pela Liderar Táxi Aéreo, de acordo com dados da ANAC.
Procurado pelo g1, o Bradesco informou em nota que a aeronave não é propriedade do banco, mas que foi dada como garantia em uma operação comercial.
Avião registrado em nome do Bradesco não tem autorização para táxi aérero (Imagem: ANAC)
A apreensão do avião foi autorizada pela 7ª Vara Federal Criminal em Rondônia. De acordo com ANAC, o avião de prefixo PT-EEI também não tem autorização para táxi aéreo.
Quando os voos clandestinos foram descobertos?
Barras de ouro foram apreendidas em compartimento secreto de aeronave que sobrevoava RO sem plano de voo (Foto: PF/Reprodução)
Segundo a PF, a investigação contra a organização criminosa começou em junho, após a Força Aérea Brasileira (FAB) interceptar um avião sem plano de voo no sul do Amazonas e ordenar seu pouso imediato.
Ao revistar a aeronave, já no aeroporto de Porto Velho, foram encontradas várias barras de ouro, escondidas no compartimento secreto do avião.
Barras de ouro apreendidas pela PF com grupo que atuava no transporte ilegal do minério na Amazônia (Foto: PF/Reprodução)
Na ocasião do flagrante, o piloto do avião foi preso e os policiais iniciaram diligências e conseguiram identificar os demais criminosos envolvidos no contrabando de ouro.
Segundo a PF, na operação desta terça-feira foram cumpridas cinco ordens judiciais , sendo três mandados de busca e apreensão e duas ordens judiciais impondo cautelares diversas da prisão.
O planejamento de rotas aéreas e mudanças operacionais são áreas complexas, mas interessantes. Alguns passageiros seguirão isso de perto, fascinados por onde seu voo os leva, enquanto outros mal percebem enquanto cruzam os céus. Se você seguir o mapa, no entanto, uma coisa que você verá em voos de longa distância para a Ásia é que eles nunca sobrevoam a Região Autônoma do Tibete na China, apesar de seu grande tamanho.
Poucas aeronaves sobre o Tibete
A região em questão é a Região Autônoma do Tibete na China. Esta é uma área escassamente povoada e montanhosa, também conhecida como o planalto tibetano - um nome significativo, dado que a altitude média na região é superior a 4.500 metros.
(Foto: Dennis Jarvis via Flickr)
Por ser escassamente povoada, há poucos voos para ou dentro da região (toda a área representa apenas 0,2% da população da China, para contextualizar). Existem aeroportos internacionais em Lhasa (foto acima) e Xining, e muitos voos agora operam para a China e regionalmente. Mas as companhias aéreas que voam de ou para outros destinos evitarão totalmente a região, apesar de muitas vezes ser a rota mais direta.
Dê uma olhada nesta imagem abaixo do FlightRadar24.com mostrando os aeroportos da região. Você notará que toda a região está vazia de voos, com várias aeronaves rastreando logo acima e abaixo.
(Imagem: FlightRadar24.com)
Então, por que as companhias aéreas fazem isso? Existem três razões principais, conforme explicado em um vídeo do RealLifeLore (abaixo).
Incapaz de descer a uma altitude segura em caso de emergência
A principal razão para as aeronaves evitarem a região é a alta altura média do terreno. Isso é mais de 14.000 pés. As aeronaves, é claro, voam muito mais alto do que isso. Mas o procedimento no caso de uma emergência, como a despressurização da cabine, é descer até 10.000 pés antes de desviar para um aeroporto.
Com terreno tão alto, a aeronave não seria capaz de descer o suficiente. É claro que há oxigênio para os passageiros. Mas este é um suprimento limitado e baseado na suposição de que a aeronave atingirá rapidamente uma altitude segura. Para piorar a situação, existem poucos aeroportos de desvio, e estes podem ser um longo voo de algumas partes da região.
(Foto: Getty Images)
Para evitar uma situação em que o avião não pode descer rápido o suficiente, as companhias aéreas optam por pular completamente a região tibetana. Normalmente, os únicos voos que sobrevoam são aqueles com destino a Lhasa ou aos mais cinco aeroportos da província, o que significa que ainda há algum tráfego. No entanto, como vimos acima no mapa, o espaço aéreo do Tibete está quase vazio em comparação com os céus ao seu redor.
Risco de aumento da turbulência
A turbulência durante um voo é causada por correntes de ar que se movem para cima e para baixo em ondulações e em diferentes velocidades. Isso é afetado por vários fatores, incluindo o efeito de aquecimento do sol, as condições climáticas e as montanhas. As correntes de ar subirão sobre as montanhas, criando fluxos perturbadores.
A turbulência pode acontecer em qualquer rota - como todos nós já experimentamos. Mas nesta região montanhosa alta, é mais provável e pode ser difícil de evitar. Isso seria perturbador para os passageiros e também poderia tornar uma situação de emergência ainda mais perigosa.
Vista do furacão do cockpit (Foto: Getty Images)
Durante tempestades tropicais, os voos podem ser solicitados a passar por cima do sistema de tempestades para evitar o pior da turbulência, embora geralmente eles pulem completamente o voo. No entanto, com montanhas para enfrentar, essa tarefa é extremamente difícil para os pilotos e coloca em risco a segurança dos passageiros. Portanto, com a possibilidade de tempo adverso sempre presente, voar sobre altas montanhas é menos do que ideal para voos comerciais.
Risco de congelamento do combustível de aviação
E não surpreendentemente, o motivo final também está ligado ao terreno montanhoso. As temperaturas são muito mais baixas, o que leva ao risco de o combustível de aviação congelar. O combustível Jet A1 padrão tem um ponto de congelamento de -47 graus Celsius (e Jet A, que é mais comum nos EUA, é ligeiramente superior a -40 graus).
Tais temperaturas raramente são alcançadas, especialmente por períodos prolongados de tempo. Mas em altitude sobre as montanhas já frias, há um risco aumentado disso. Não é um problema significativo para voos mais curtos dentro ou fora da região, mas um longo voo sustentado sobre a área pode ser diferente.
Avião sendo reabastecido na África do Sul (Foto: Getty Images)
Embora isso possa não parecer uma grande preocupação, o congelamento do combustível de aviação pode levar a acidentes graves. Em 2008, o voo 38 da British Airways caiu em Londres Heathrow depois que cristais de gelo se formaram na mistura de combustível e entupiram o motor, fazendo com que o avião caísse perto da pista. Felizmente, não houve mortes naquele dia, mas o incidente ressaltou o quão importante a temperatura pode ser para o fluxo de combustível de aviação.
Portanto, voar sobre o Tibete por horas pode levar a impactos ainda mais desconhecidos na mistura de combustível de aviação, deixando as companhias aéreas em risco de perder seus motores.
Edição de texto e imagens por Jorge Tadeu (com informações de Simple Flying e FlightRadar24.com)
O voo 946 da Northeast Airlines foi um voo doméstico dos Estados Unidos de Boston, em Massachusetts, para Montpelier, em Vermont, com escala para reabastecimento em Líbano, em New Hampshire.
A bordo do Fairchild FH-227C, prefixo N380NE, da Northeast Airlines (foto acima), estavam três tripulantes e 39 passageiros. A tripulação era composta pelo capitão John A. Rapsis, 52 anos (que era piloto da Northeast Airlines desde 1957 e tinha mais de 15.000 horas de experiência em voo), pelo copiloto, John C. O'Neil, 29 (que foi contratado em 1967 e tinha menos experiência) e por uma única comissária de bordo, Betty Frail, 21 (que foi contratada em junho de 1968).
O Capitão John A. Rapsis, membro da US Army Air Corps, durante a Segunda Guerra Mundial
Às 17h42, o voo 946 da Northeast Airlines deixou o Aeroporto Internacional Logan em direção à sua primeira parada no Líbano, New Hampshire. O tempo na hora da decolagem estava bom, com nuvens baixas espalhadas, enquanto os funcionários do aeroporto de Logan, em Boston, alegaram que havia neblina durante a decolagem.
O National Transportation Safety Board declarou em seu relatório que o voo era "de rotina" até que o avião se aproximou do Aeroporto Municipal do Líbano, que está localizado em um vale, cercado por colinas próximas.
Às 18h11, os pilotos comunicaram por rádio à torre de controle que estavam executando uma manobra de aproximação padrão antes de se prepararem para pousar. Controle de tráfego aéreo respondeu e deu à tripulação informações sobre o tempo, visibilidade e outras informações sobre as condições do aeroporto.
Momentos depois dessa transmissão, o avião colidiu com a lateral da Moose Mountain e se desintegrou. O impacto matou 32 dos 39 passageiros e os três tripulantes (31 instantaneamente, um depois).
Entre os mortos estavam quatro eram funcionários da National Life Insurance Company que voltavam de uma viagem de negócios, um repórter do Barre Daily Times, seis assistentes sociais do Programa de Treinamento Suplementar do Vermont Head Start em uma viagem de conferência, incluindo Abraham H. Blum, Doutorado em Desenvolvimento Infantil.
Dez sobreviventes foram levados para o Hospital Mary Hitchcock, pelo menos um em estado crítico, e as autoridades do hospital disseram que não se espera mais feridos. Um dos sobreviventes era a comissária de bordo Betty Frail.
Os feridos foram retirados do local do acidente por helicópteros e levados para o gramado no centro do campus do Dartmouth College , onde carros de bombeiros e outros veículos iluminaram a área gramada para uma pista de pouso de emergência.
As autoridades militares que participaram da operação de resgate disseram que o mau tempo complicou as coisas. Estava chovendo no local do acidente, com neve em altitudes mais elevadas e temperaturas congelantes eram esperadas.
Pessoas presentes no local disseram que o avião caiu no lado norte da montanha, a cerca de 20 metros do topo. Madeiras pesadas e saliências forçaram a equipe de resgate a caminhar até os destroços.
Os helicópteros não apenas trouxeram os feridos, mas também transportaram médicos enquanto uma escavadeira lutava para abrir caminho para o avião. Jornalistas que tentavam chegar ao local do acidente em Moose Mountain foram bloqueados na base pela Polícia Estadual de New Hampshire. Apenas a polícia, bombeiros e outras equipes de resgate tiveram permissão para subir a montanha.
Os passageiros que sobreviveram ao acidente estavam na parte traseira do avião e conseguiram escapar dos destroços pela saída de emergência traseira ou pelas fraturas na fuselagem.
Dois passageiros em particular tiveram sorte de escapar da morte certa. George Collins, um dos cinco funcionários da National Life que embarcaram no voo 946, recebeu um assento na janela, mas trocou de assento com outro passageiro.
Esse passageiro morreu no acidente e Collins sobreviveu com ferimentos graves. Anne Foti deveria estar no voo 946, mas em vez disso cancelou o voo de última hora às 12h00 de sexta-feira (várias horas antes de o avião decolar de Boston). No entanto, a namorada de Terry Hudson, a residência de Janet Johnson ficava a apenas 13 km do local do acidente quando o acidente ocorreu.
O acidente foi testemunhado por um caçador de cervos e residentes próximos que chamaram a polícia e o corpo de bombeiros. Momentos depois, as equipes de resgate começaram a procurar corpos e sobreviventes, apesar das condições de deterioração.
Durante sua investigação, o National Transportation Safety Board informou que o avião estava voando 600 pés (180 m) abaixo de sua altitude exigida. Não está claro por que os pilotos tomaram a decisão de voar em baixa altitude, porque tanto a caixa preta quanto o gravador de dados de voo foram gravemente danificados no acidente.
No entanto, o NTSB sugeriu em sua descoberta em 1970 que os pilotos avaliaram mal sua posição de altitude durante a aproximação e não havia ajudas de navegação na aeronave ou perto do aeroporto.
Funcionários da Comissão de Aeronáutica de New Hampshire acusaram a FAA de ignorar os repetidos avisos sobre a instalação de uma abordagem de navegação ILS no Aeroporto Municipal do Líbano e que a instalação de tal sistema poderia ter evitado o acidente.
O acidente teve um impacto nas dificuldades da Northeast Airlines, já que foi o quinto acidente aéreo em seus 25 anos de história. No momento do acidente, a companhia aérea havia perdido quatro aviões e 38 passageiros e tripulantes. A companhia aérea continuaria a operar de forma independente até sua fusão com a Delta Air Lines na década de 1970.
O presidente da National Life realizou um memorial pelos funcionários que morreram no acidente. Trinta e cinco anos após o acidente, o irmão, a filha, o sobrinho e a sobrinha de Terry Hudson, que morreu no acidente, continuam trabalhando no National Life. Além disso, Edmond Rousse Jr. também começou a trabalhar na National Life.
Por Jorge Tadeu (com Wikipedia, ASN, baaa-acro, enacademic.com, vnews.com)
Em 25 de outubro de 1938, o Douglas DC-2-210, prefixo VH-UYC, da Australian National Airways (foto acima), batizado "Kyeema", realizava o voo doméstico de Adelaide para Melbourne, na Austrália, levando a bordo 14 passageiros e quatro tripulantes: o capitão, o primeiro oficial, uma aeromoça e um piloto cadete que operava o rádio durante o voo.
O voo decolou de Adelaide às 11h22. Ao entrar na área ao redor de Melbourne, ele se deparou com uma camada de nuvens pesadas, estendendo-se de 1.500 pés (457 m) a 400 pés (122 m) e dificultando a navegação por pontos de referência. Como resultado, a tripulação de voo identificou erroneamente Sunbury como Daylesford por meio de uma lacuna nas nuvens, levando-os a acreditar que estavam 30 quilômetros (19 milhas) atrás de onde realmente estavam em seu plano de voo.
Se a tripulação tivesse feito referência cruzada de sua velocidade de solo com os marcos anteriores, eles provavelmente teriam percebido que não estavam onde pensavam que estavam. Em vez disso, eles ultrapassaram na aproximação final o Aeroporto de Essendon e, incapazes de ver através do nevoeiro pesado, colidiram com o Monte Dandenong, também conhecido como Monte Corhanwarrabul, a algumas centenas de metros do cume, matando todos os 18 a bordo instantaneamente..
Exatamente o que aconteceu nos últimos minutos antes do acidente é questionado. Há alegações de que os pilotos podem ter visto a montanha chegando e tentado desviar a aeronave, inadvertidamente piorando a situação ao se ajustar de uma trajetória de vôo por uma lacuna entre dois picos para uma trajetória diretamente em um deles.
Também há fortes evidências de que os pilotos estavam ficando inseguros quanto à sua posição. De acordo com Macarthur Job, no livro "Disaster in the Dandenongs" (imagem acima), o operador de rádio tinha pedido o controlador em Essendon dar-lhes um rolamento de rádio. Essendon reconheceu e disse-lhes para deixar o transmissor ligado, mas o sinal parou e nenhum contato foi feito. Pensa-se que este é o momento em que Kyeema atingiu a montanha.
Por demanda pública, uma Comissão Real para a causa do desastre foi estabelecida, e o Governo Federal Australiano nomeou um Comitê de Investigação de Acidentes Aéreos sob a presidência do Coronel T. Murdoch DSO, VCE, com o inquérito público começando em 30 de outubro de 1938.
Por causa do acidente, foram aprovados regulamentos que exigem que os oficiais de verificação de vpo monitorem os voos dos aviões e aconselhem sobre coisas como posição, clima e opções alternativas de pouso. Também foi recomendada a implementação de um sistema de alcance de rádio de 33 MHz para fornecer aos pilotos informações precisas sobre seu curso.
Eric Harrison (oficial da RAAF) foi membro do tribunal de inquérito sobre o acidente em 25 de outubro do Douglas DC-2avião Kyeema. O relatório do inquérito destacou o major Melville Langslow, membro financeiro do Conselho de Aviação Civil e do Conselho Aéreo da RAAF, pelas críticas a medidas de corte de custos que haviam atrasado os testes de faróis de segurança projetados para tais eventualidades.
De acordo com o historiador da Força Aérea Chris Coulthard-Clark, quando Langslow foi nomeado Secretário do Departamento de Aeronáutica em novembro do ano seguinte, ele saiu de seu caminho para "tornar a vida difícil" para Harrison, causando "amargura e atrito dentro do departamento", e exigindo que o Chefe do Estado-Maior da Aeronáutica, Vice-Marechal da Aeronáutica Stanley Goble, tomasse medidas para proteger o inspetor de segurança da ira do novo secretário.
O monumento memorial logo acima do local do acidente
Somente 40 anos após o acidente, um memorial para Kyeema e seus dezoito passageiros foi criado no local do acidente.
Por Jorge Tadeu (com Wikipedia, ASN, theage.com.au)