segunda-feira, 27 de maio de 2024

Como funcionam os sistemas de entretenimento a bordo?

Olhando para o funcionamento interno do entretenimento a bordo (IFE).

O IFE da British Airways (Foto: British Airways)
O entretenimento a bordo (IFE) é uma das partes mais empolgantes das viagens de longo curso, com a maioria das companhias aéreas instalando telas em aviões widebody. Dependendo da companhia aérea com a qual você voa, o IFE pode variar na seleção e qualidade do conteúdo. Ainda assim, como exatamente esses sistemas de entretenimento funcionam? Eles estão saindo devido a reduções de custos?

História


Embora o entretenimento a bordo possa parecer um dado adquirido em aviões modernos de longa distância (na maioria das operadoras), a tecnologia em si é mais nova do que você imagina. Você deve ter notado que alguns aviões mais antigos ainda têm telas suspensas no painel superior. Essas telas eram os sistemas IFE originais, com telas exibindo um único filme por vez. Os passageiros podiam conectar fones de ouvido individualmente e ouvir o filme na tela.

Telas individuais eram inéditas até o final da década de 1980, quando a Northwest Airlines realizou um teste de telas internas de 2,7 polegadas em seus 747s. A tela da operadora permitia que os clientes escolhessem entre seis canais que exibiam uma série de filmes, músicas, notícias e documentários.


A companhia aérea recebeu apoio esmagador para este sistema de vídeo sob demanda, e isso desencadeou a tendência da tela IFE que vemos hoje. No entanto, muita coisa mudou neste campo ao longo das décadas.

As telas suspensas permaneceram em serviço até o início dos anos 2000 com algumas companhias aéreas, até que foram gradualmente eliminadas. Hoje em dia, várias operadoras oferecem grandes monitores internos que oferecem uma variedade de conteúdos.

Assistindo filmes a bordo ao estilo antigo (Foto: Lars Plougmann via Flickr)

Como funciona?


Os sistemas IFE aparentemente funcionam sem fios visíveis. A fiação está realmente escondida nas paredes da aeronave, com a fiação começando no painel superior, próximo às máscaras de oxigênio e saídas de ar-condicionado. Esses fios então se conectam às unidades de energia, que estão presentes a cada poucas fileiras na parede lateral da aeronave. Alguns pequenos sistemas aviônicos também estão presentes sob o assento, completando todo o sistema.

De acordo com Cranky Flier, as unidades IFE modernas não usam muita fiação, permitindo que alguns cabos de fibra ótica transportem a maior parte dos dados e da energia. Isso significa que todo o sistema é muito mais leve e simplificado agora do que antes, onde os passageiros rotineiramente encontravam grandes caixas IFE bloqueando seu (limitado) espaço para as pernas.

A instalação das unidades do IFE acontece junto com os assentos, quando o avião está em fase de finalização. Isso permite que as equipes instalem o sistema e cubram quaisquer fios visíveis sob o interior da cabine. A redução de peso desses sistemas permitiu que as companhias aéreas instalassem mais deles sem gastar bilhões no projeto. No entanto, a adaptação de uma cabine de aeronave com telas IFE ainda pode custar mais de US$ 3 milhões por aeronave, e o custo de combustível para operar cada tela apenas aumenta o preço.

E o conteúdo?


Embora as telas IFE sejam empolgantes, o sistema é tão bom quanto o conteúdo disponível. É aqui que as companhias aéreas individuais entram em ação. Dependendo de quanto estão dispostas a pagar, as companhias aéreas podem investir em novos lançamentos (que podem custar-lhes pay-per-view) ou em conteúdo mais antigo.

De acordo com um relatório da Valor Consultoria, os filmes a bordo são divididos em conteúdo de janela inicial (EWC), conteúdo de janela tardia (LWC) e filmes internacionais. Os EWCs são os filmes mais caros e de destaque que acabaram de sair dos cinemas.

LWC inclui todos os filmes mais antigos, que incluem clássicos e outros conteúdos que podem ser tão populares e são muito mais baratos para as companhias aéreas. Os filmes internacionais tendem a ser os mais baratos e mais específicos da região, com menos opções geralmente disponíveis (exceto o país de origem da operadora).

Cabine de passageiros da American Airlines (Foto: American Airlines)
As companhias aéreas geralmente negociam preços de conteúdo diretamente com os estúdios de Hollywood, com o preço dependendo da rota que está sendo voada e da bilheteria do filme em questão. Para outros filmes, as companhias aéreas podem apenas comprar filmes por uma taxa de licenciamento fixa e anual. Esse negócio de filmes de companhias aéreas é grande, com o mercado estimado em US$ 425 milhões antes da pandemia. Para filmes de lançamento antecipado, as companhias aéreas pagam cerca de US$ 33.000 por filme.

O conteúdo adicional inclui música, videogames, um mapa em movimento 3D e mais opções. Embora tudo isso aumente o custo, os filmes ainda representam a maior parte das despesas. Ao todo, o tamanho do mercado de IFE e conectividade está previsto para atingir US$ 7,68 bilhões até 2027.

Saindo de moda?


Embora os passageiros possam desfrutar do conteúdo no encosto do assento, as companhias aéreas estão lentamente percebendo que é muito caro mantê-lo. O peso adicional desses sistemas, a energia necessária para executá-los e o custo de filmes e telas são extremamente altos para as operadoras. Em vez disso, as companhias aéreas estão lentamente em direção a um novo sistema: transmitir conteúdo diretamente para o seu dispositivo.

IFE móvel (Foto: Emirates)
Com a maioria dos passageiros voando agora tendo acesso a um telefone, laptop ou tablet, é muito mais barato para as companhias aéreas abandonar o sistema volumoso e instalar WiFi a bordo. O conteúdo pode então ser transmitido diretamente para esses dispositivos, reduzindo custos para as companhias aéreas. Embora isso possa esgotar a bateria de um dispositivo, pois os aviões terão pontos de energia, esse não é um problema importante.

O futuro


Embora a crise pandêmica inicialmente tenha afetado as inovações recentes no departamento de entretenimento a bordo, com as companhias aéreas focadas na redução de serviços, há um amplo futuro para esse mercado neste período de recuperação. A crescente prevalência de Wi-Fi a bordo permite que serviços como Netflix, Amazon Prime Video e Paramount Plus se tornem acessíveis pelo ar, sacudindo todo o sistema como o conhecemos. A maioria dos widebodies de nova geração também está pronta para WiFi, exigindo pouco trabalho adicional para ativar os sistemas.

Independentemente disso, o IFE continua sendo parte integrante das estratégias de atendimento ao cliente das companhias aéreas em todo o mundo. Seja no assento traseiro ou remoto, as operadoras estão competindo para fornecer conteúdo interessante com seus serviços.

Mesmo as operadoras de baixo custo, como a easyJet , estão expandindo o lançamento de streaming IFE baseado em WiFi em suas aeronaves . Além disso, as guerras do streaming se traduzem na indústria aérea, com empresas como a British Airways fechando acordos com provedores de conteúdo . O IFE moderno foi uma graça salvadora durante a Copa do Mundo, com milhares sintonizando para assistir seu time jogar inteiro nos céus com várias companhias aéreas. 


Neste próximo capítulo, a evolução continuará ao longo da década.


O entretenimento a bordo é parte integrante da experiência de voar agora, com os passageiros tendo pouco o que fazer em voos de longa distância. No entanto, à medida que as companhias aéreas buscam otimizar custos nos próximos anos, podemos ver mais inovações surgindo e mais opções para assistir conteúdo em nossos dispositivos.

Fontes: Simple Flying, Cranky Flier, Valour Consultancy e Fortune Business Insights

Como os Winglets do Boeing 737 evoluíram ao longo dos anos?

O Boeing 737 apresentou vários tipos de winglets ao longo de sua história.

Evolução do winglet do Boeing 737
O Boeing 737 é uma das aeronaves comerciais de maior sucesso na história da aviação. O tipo voou pela primeira vez em abril de 1967, apenas dois anos após o lançamento do programa. A aeronave evoluiu significativamente desde então, passando por múltiplas modificações e atualizações para torná-la mais eficiente, contribuindo em última análise para a sua história de sucesso.

O Boeing 737 tem quatro gerações distintas – Original, Classic, Next Generation (NG) e MAX. Winglets foram uma das características mais distintas que começaram a aparecer no 737 na virada do século. Os dispositivos contribuíram para aumentar a eficiência da aeronave e hoje estão presentes na maioria dos 737 que voam atualmente. Vamos explorar como os winglets do 737 evoluíram ao longo dos anos.

Benefícios dos winglets em aeronaves comerciais


Quase todos os jatos comerciais modernos possuem winglets. São dispositivos aerodinâmicos colocados nas pontas das asas das aeronaves para melhorar o desempenho da aeronave, reduzindo o arrasto. Os winglets ajudam a reduzir a formação de vórtices poderosos que se enrolam atrás da ponta da asa à medida que a aeronave corta o ar.

O Winglet de um Boeing 737-800 da Turkish Airlines (Foto: Dtom via Wikimedia Commons)
Os vórtices nas pontas das asas são formados quando o ar de baixa pressão que flui sobre a asa e o ar de alta pressão sob a asa se encontram na ponta. Eles aumentam o arrasto, o que desacelera a aeronave. Isto precisa ser combatido com o aumento do empuxo, o que resulta em maior consumo de combustível.

Embora os winglets já existam há mais tempo, a Boeing os voou pela primeira vez no 737-800 em junho de 1998 como um teste para uso no BBJ. De acordo com o site técnico do Boeing 737, quatro tipos diferentes de winglets estão disponíveis para o 737, que exploraremos detalhadamente a seguir.
  • Mini-Winglets: B737-200
  • Winglets misturados: B737 Clássicos e NGs
  • Cimitarra dividida: B737NG
  • Tecnologia avançada: B737 MAX

Os mini-winglets 737-200


O Boeing 737-100 fez seu voo inaugural em 9 de abril de 1967 . A Lufthansa foi o cliente lançador do tipo e, eventualmente, a maior operadora. Com a necessidade de uma carga de passageiros um pouco maior, a Boeing respondeu com o 737-200, que poderia transportar até mais 15 passageiros.


O 737-200 foi sucedido pelo -300, que fazia parte da geração Classic. Outros modelos incluem o 737-400 e o -500. Os primeiros Boeing 737 não tinham winglets distintos. Porém, o 737-200Adv, mostrado acima, foi um dos clássicos equipado com mini-winglets. Isso fazia parte do kit de modificação de flap da Quiet Wing Corp, certificado pela Federal Aviation Administration em 2005.

Os winglets combinados do 737 Next-Generation


A Boeing começou inicialmente a investigar winglets combinados em meados da década de 1980, e eles foram desenvolvidos no início da década de 1990 pela Aviation Partners, uma empresa privada com sede em Seattle, líder na tecnologia Blended Winglet. Esses winglets são curvados suavemente para fora na extremidade das asas e se misturam perfeitamente com as próprias asas.

Boeing 737-800 da American Airlines (Foto: Lucas Wunderlich/Shutterstock)
Eles foram instalados pela primeira vez em aeronaves Gulfstream II, e as melhorias resultantes no alcance e na eficiência de combustível despertaram algum interesse na Boeing. Em 1999, foi formada a Aviation Partners Boeing (APB), uma joint venture entre a Aviation Partners e a fabricante de aviões americana, para desenvolver winglets combinados para suas aeronaves.

O fabricante adotou a tecnologia como equipamento padrão para o BBJ em 2000, com a APB certificando os winglets para o 737-700 e 737-800 em 2001. Com o tempo, a empresa certificou winglets combinados para instalação de retrofit em outros modelos 737, incluindo os seguintes:
  • 737-300: maio de 2003
  • 737-500: maio de 2007
  • 737-900: outubro de 2007

Os winglets combinados foram instalados em produção nos modelos Next-Generation 737-700s, -800s e -900ER. Eles são agora o tipo mais comum de winglets que podem ser encontrados em aeronaves comerciais modernas. Eles também podem ser encontrados em Boeing 757 e 767.

Os winglets de cimitarra divididos do 737 NG


Split Scimitar Winglets, um aprimoramento dos Blended Winglets padrão da Boeing, foram introduzidos no início de 2014 e estão disponíveis como retrofit para aeronaves winglet existentes. Eles apresentam duas partes distintas, com a parte inferior inclinada para baixo para reduzir ainda mais o arrasto.

Boeing 737-800 da Ryanair com winglet de cimitarra dividido (Foto: MC MEDIASTUDIO | Shutterstock)
Em julho de 2013, o primeiro 737 a apresentar o Split Scimitar Winglet fez seu primeiro voo de teste em Paine Field. Era um 737-800 que pertencia à United Airlines. Em 2014, tornou-se a primeira transportadora a implantar uma aeronave modernizada com Split Scimitar Winglets em serviço comercial. 

O vice-presidente de frota da United Airlines, Ron Baur, disse na época: “Estamos sempre em busca de oportunidades para reduzir despesas com combustível, melhorando a eficiência de nossa frota. O 737 Split Scimitar Winglet de última geração fornecerá uma proteção natural contra o aumento dos preços dos combustíveis e, ao mesmo tempo, reduzirá as emissões de carbono”.

Muitas companhias aéreas, incluindo a Ryanair, modernizaram as suas aeronaves com esta tecnologia. De acordo com a Aviation Partners, os elementos aerodinâmicos combinados do retrofit, incluindo os strakes ventrais, pontas de cimitarra e cunhas de bordo de fuga, proporcionam uma redução de arrasto e aumento de alcance correspondente de pelo menos 2% para voos de longo alcance. Os Winglets Split Scimitar tornaram-se padrão em todos os novos Boeing Business Jets e estão em serviço em mais de 700 B737NGs.

Os winglets de tecnologia avançada do 737 MAX


A última geração do 737 da Boeing é o MAX, que vem em quatro variantes – o MAX 7, 8, 9 e 10. Embora também conhecido por alguns de seus infelizes problemas e incidentes nos últimos anos , a aeronave é uma das mais- usou corpos estreitos modernos no mundo e continua sendo um tipo eficiente e confiável.

Boeing 737 MAX da Ethiopian Airlines (Foto: Skycolors/Shutterstock)
Ele apresenta o Winglet de Tecnologia Avançada (AT) , uma combinação de tecnologia de ponta rake e um conceito de winglet de pena dupla, que forma um tratamento avançado para as asas do MAX. Ele usa o que a Boeing chama de “Tecnologia de Fluxo laminar Natural”. A fabricante de aviões também classifica o winglet AT como “o mais eficiente já projetado para um avião de produção”. Diz-se que eles reduzem o consumo de combustível em aproximadamente 2%.

Os winglets AT são semelhantes aos Winglets Split Scimitar do modelo 737NG. Os winglets no MAX medem cerca de 2,4 m (8 pés) da raiz ao topo e 2,9 m (9 pés e 7 pol.) Da ponta mais baixa à mais alta. A parte superior mede 2,5 m (8 pés e 3 pol.), enquanto a parte inferior mede 1,35 m (4 pés e 5 pol.).

Com informações do Simple Flying

Aconteceu em 27 de maio de 2017: A queda do voo 409 da Summit Air no Nepal

Em 27 de maio de 2017, um Let L-410 Turbolet operando o voo 409 da Summit Air, caiu perto da pista enquanto tentava pousar no Aeroporto Tenzing-Hillary, no Nepal. o avião estava na aproximação final quando a aeronave atingiu árvores perto da pista e, subsequentemente, deslizou por um declive antes de parar cerca de 200 metros (656 pés) abaixo do nível da pista e 130 pés antes da pista. O capitão e o primeiro oficial morreram no acidente, enquanto outro tripulante ficou ferido.

Aeronave



A aeronave envolvida no acidente era o Let L-410UVP-E20, prefixo 9N-AKY, da Summit Air (foto acima), construída em 2014 para a  empresa. A aeronave se envolveu em um acidente menor anterior em 2 de junho de 2015, quando o voo de Jomsom pousou em Pokhara com o trem de pouso retraído. Todos os 18 passageiros a bordo escaparam em segurança, mas a aeronave sofreu danos no nariz.

Tripulação


O capitãoParas Kumar Rai, de 48 anos, tinha mais de 9.000 horas de voo registradas e, desde que ingressou na companhia aérea, voou mais de 1.900 horas em aeronaves L-410. Ele morreu pouco depois de ser retirado dos destroços. 

O copiloto Srijan Manandhar morreu às 21h30, horário local, na terapia intensiva do Hospital Lukla. O tripulante de cabine sobreviveu ao acidente e logo foi evacuado por motivos médicos para Katmandu para tratamento posterior. Além deles, a bordo estava a comissária de bordo Pragya Maharjan, que sobreviveu ao acidente.

Acidente


Por volta das 14h04, horário local, a aeronave estava em aproximação final à Pista 06 do Aeroporto Tenzing-Hillary, em um voo de rotina do Aeroporto de Katmandu, quando desceu abaixo da altitude mínima de segurança logo na saída da pista e colidiu com uma árvore e contatou chão três metros abaixo da pista. Em seguida, deslizou mais de 200 metros por uma ravina.

Imagens de CCTV divulgadas pelo aeroporto mostraram a aeronave mergulhando abaixo do nível da pista e fumaça subindo dos destroços.


Testemunhas afirmaram que as condições meteorológicas estavam enevoadas e que a visibilidade era bastante baixa. O aeroporto não possui nenhum tipo de equipamento de navegação, obrigando os pilotos a pousar por abordagem visual.

A pista de declive ascendente 06 não possui nenhuma orientação de aproximação por instrumentos. No momento do acidente, a visibilidade local foi substancialmente reduzida pelo nevoeiro no solo.


Investigação


Após o acidente, suspeitou-se que a causa provável do acidente foi um estol aerodinâmico provocado pela baixa velocidade de aproximação. Devido à pista anormalmente curta em Lukla, as aeronaves são obrigadas a se aproximar do aeroporto em velocidades muito baixas, tornando a aeronave extremamente vulnerável a correntes descendentes repentinas e ventos fortes que ocorrem nas montanhas. Os fatores contribuintes podem incluir pouca visibilidade na abordagem final e a inexperiência e falta de tecnologia disponível para o controle de tráfego aéreo.


Em dezembro de 2017, um comitê de investigação da Autoridade de Aviação Civil do Nepal apresentou seu relatório final sobre o acidente e concluiu que "visibilidade muito baixa" foi a causa do acidente. Como a aeronave estava voando em meio a uma densa névoa por vários minutos antes da abordagem, ela errou a pista do Aeroporto de Lukla. 


O relatório revelou ainda que tanto o controle de tráfego aéreo do Aeroporto de Lukla (que não fechou o aeroporto apesar do tempo nublado) e a tripulação do voo 409, que também são suspeitos de estar estressados ​​e fatigados, violaram os procedimentos operacionais padrão. 


Por último, a comissão sugeriu que fosse considerada a extensão da pista do aeroporto de Lukla, o que tornaria o aeroporto, onde ocorreram vários acidentes no passado, mais seguro.

Consequências


Ao contrário das práticas comuns na aviação, a Summit Air não retirou o voo número 409 e ainda opera o voo de Kathmandu para Lukla com este número.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, ASN e baaa-acro

Aconteceu em 27 de maio de 2016: O dramático incêndio do Boeing 777 no voo 2708 da Korean Air em Tóquio


Em 27 de maio de 2016, um Boeing 777-300 da Korean Air, operando o voo 2708 do Aeroporto de Haneda, em Tóquio, no Japão. para o Aeroporto Internacional Gimpo, de Seul, na Coreia do Sul, estava acelerando para decolar quando seu motor esquerdo sofreu uma falha incontida e um substancial o fogo se seguiu. 

A tripulação abortou a decolagem e, após a parada da aeronave, o incêndio foi extinto pelos serviços de emergência do aeroporto. Todos os 319 passageiros e tripulantes foram evacuados, sendo que 12 ocupantes ficaram feridos.

Aeronave e tripulação


O Boeing 777 HL7534 visto em 2009
A aeronave que operava o voo 2708 era o Boeing 777-3B5, prefixo HL7534, da Korean Air (foto acima), equipado com dois motores Pratt & Whitney PW4000, número de série 27950. Esse foi 120º Boeing 777 produzido e voou pela primeira vez em 4 de fevereiro de 1998, tendo sido entregue novo à Korean Air em 28 de dezembro de 1999.

O capitão, de 49 anos, registrou um total de 10.410 horas de voo, incluindo 3.205 horas no Boeing 777. O primeiro oficial, de 41 anos, teve 5.788 horas com 2.531 delas no Boeing 777.

Acidente


Enquanto a aeronave decolava da Pista 34R em Tóquio Haneda, com 302 passageiros e 17 tripulantes, quando vibrações incomuns foram sentidas em toda a aeronave e fumaça foi vista do motor esquerdo (PW4098). os pilotos ouviram um grande estrondo vindo da esquerda. A tripulação rejeitou a decolagem em baixa velocidade e parou a aeronave a cerca de 1300 metros antes do final da pista. Grandes chamas foram vistas no motor esquerdo, a aeronave foi evacuada.


Todos os ocupantes escaparam, mas 12 passageiros ficaram feridos e foram levados para um hospital perto do aeroporto. 

Os voos de chegada foram desviados para o Aeroporto Internacional Narita de Tóquio e para Osaka. Os bombeiros do aeroporto rapidamente extinguiram o incêndio. 


A aeronave teria viajado 700 metros abaixo da pista antes de vir para uma parada, com motor de peças espalhadas a 600 metros do ponto em que a aeronave começou a acelerar e pneu-marcas de 700 metros a partir desse ponto.

Investigação


O Conselho de Segurança de Transporte do Japão (JTSB), o Conselho de Investigação de Acidentes de Aviação e Ferrovia da Coréia do Sul (ARAIB) e o Conselho de Segurança de Transporte Nacional dos Estados Unidos (NTSB) investigaram o acidente, com a assistência de especialistas da Coreia do Sul e dos Estados Unidos. 

Em 30 de maio de 2016, os investigadores revelaram que as lâminas da turbina LP no motor Pratt & Whitney PW4098 esquerdo (número um) "estilhaçaram", com fragmentos perfurando a tampa do motor, com fragmentos posteriormente encontrados na pista. As lâminas da turbina HP do motor e o compressor HP estavam intactos e sem anormalidades, e os investigadores não encontraram evidências de colisões com pássaros. 


A aeronave foi reparada e voltou ao serviço com a Korean Air em 3 de junho de 2016.

O relatório investigativo final do JTSB, divulgado em 26 de julho de 2018, discutiu um número significativo de problemas relacionados à falha e a resposta da tripulação e dos passageiros a ela. 

Isso incluía padrões de manutenção inadequados que negligenciavam uma rachadura crescente no disco da turbina LP no motor criada pela fadiga do metal que eventualmente falhou, a falha da tripulação em localizar a lista de procedimentos de emergência para uso em tal emergência, iniciando a evacuação da aeronave enquanto os motores ainda estavam girando, havia o risco de os passageiros serem levados pelos motores e os passageiros ignorando as instruções para deixar a bagagem para trás ao usar os escorregadores de evacuação, arriscando-se a perfurá-los.


Como resultado do incêndio, a FAA emitiu uma Diretriz de Aeronavegabilidade exigindo a inspeção dos motores do tipo envolvido no incêndio para avaliar a condição dos componentes que falharam no voo 2708.

Por Jorge Tadeu (Site Desastres Aéreos) com ASN e Wikipedia

Aconteceu em 27 de maio de 1977: A queda do voo 331 da Aeroflot em Cuba



Em 27 de maio de 1977, a aeronave Ilyushin Il-62 M, prefixo CCCP-86614, da Aeroflot (foto acima), realizava o voo 331, levando a bordo 59 passageiros e 10 tripulantes.

Em uma escala em Lisboa, Portugal, uma nova tripulação assumiu o comando da aeronave. A tripulação de cinco homens consistia no capitão Viktor Orlov, no copiloto Vasily Shevelev, no navegador Anatoly Vorobyov, no engenheiro de voo Yuri Suslov e no operador de rádio Evgeniy Pankov. Cinco comissários de bordo estavam na aeronave.

Às 03h32, o voo 331 decolou do aeroporto de Lisboa e subiu para 35.000 pés (10.670 m), tendo o voo transcorrido sem intercorrências.

Durante a aproximação a Havana, a tripulação relatou ter visto leituras falsas de altitude e pressão do ar. Eles então receberam permissão para descer de 35.000 para 15.000 pés, seguido por uma descida para 3.000 pés. 

Naquele momento, as nuvens cúmulos estavam presentes, a visibilidade era de 8 km com uma névoa densa a 40 m, a pressão atmosférica era de 758 mm Hg (ou 0,99737 atm) e a temperatura era de 21° C. 


Às 8h45m28s, ainda a 1.270 m da pista, a tripulação avistou quatro cabos de transmissão a 28 m de altura e tentou evitá-los levantando o nariz da aeronave. No entanto, a 23-25 ​​m, eles cortaram todas as quatro linhas, cortando o estabilizador e cortando a asa externa direita. 

O dano fez com que a aeronave fizesse uma inclinação acentuada de 70° para a direita nos três segundos seguintes. A aeronave então atingiu o solo com a asa direita e o nariz e pegou fogo, destruindo-o. Apenas a seção da cauda permaneceu.

Apenas dois dos 70 ocupantes a bordo sobreviveram. Os únicos dois sobreviventes do acidente foram uma mulher da Alemanha Ocidental e um homem soviético. Uma das vítimas foi José Carlos Schwarz , poeta e músico guineense.

Uma investigação revelou graves erros cometidos pela tripulação nos últimos momentos do voo. A principal causa do acidente foi uma violação flagrante do procedimento de abordagem, erros no cálculo da altitude que resultaram em leituras incorretas de altitude que levaram a uma descida prematura e a tentativa da tripulação de uma abordagem visual em meio a nevoeiro denso. Também foi citado o uso incorreto do rádio altímetro pela tripulação.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia e ASN

Quase ninguém sabe, mas é por isso que você precisa ativar o Modo Avião ao voar


O modo avião é uma das funções que traz mais incógnitas. Mas não no que se diz respeito ao que faz, pois todos sabemos que ativá-lo bloqueia todos os sinais de telefone, internet ou bluetooth do nosso smartphone. Sabemos também que é comum os aviões pedirem para ativar este sistema durante o voo.

No entanto, o que normalmente muitas pessoas acabam não sabendo é por qual razão este modo é solicitado a ser ativado durante as viagens de avião. A resposta está nos sinais que bloqueia, mas por quê? Questão de segurança.

A Federal Communications Commission (FCC) e a Federal Aviation Administration (FAA), dos Estados Unidos, possuem uma publicação sobre segurança de aviões, onde abordam um pouco sobre o porquê do modo avião ser solicitado na decolagem. A explicação simples é que “os sinais telefônicos podem interferir em instrumentos importantes da aeronave”, diz o documento.

O principal objetivo é evitar a todo custo qualquer possível interferência que os telefones possam causar no sistema de comunicação e manejo da aeronave. A FAA menciona que o uso de Wi-Fi é permitido dentro dos aviões desde que as companhias aéreas permitam, então depende da decisão de cada empresa - até porque algumas, inclusive, disponibilizam internet.

Na verdade, um cuidado especial é tomado com dispositivos que podem transmitir radiofrequências, pois é justamente nessa faixa que os pilotos se comunicam com as torres de controle dos diversos aeroportos. Porém, regulamentos relativos ao modo avião mudaram de acordo com diferentes governos ao redor do mundo.

No “velho continente”, a União Europeia já permite fazer chamadas e utilizar aparelhos celulares durante viagens de avião, desde que seja utilizado 5G. A razão por trás disso é que, diferentemente do 4G, 3G ou bandas inferiores, o 5G opera em frequências mais altas que estão longe da largura usada pelos sistemas de rádio das companhias aéreas.

Segundo Thierry Breton, Comissário da UE para o Mercado Interno e Serviços, o 5G abriu novas possibilidades: "O céu já não é o limite no que diz respeito às possibilidades oferecidas pela conectividade super-rápida e de alta capacidade. O 5G permitirá serviços inovadores para as pessoas e oportunidades de crescimento para as empresas europeias."

Tudo indica que, com a expansão do 5G, esta restrição acabará por desaparecer. Muitos celulares modernos permitem ativar o Wi-Fi e bluetooth mesmo com o modo avião ligado. Assim, é possível se conectar à internet (se o avião tiver) e também aos fones de ouvido enquanto o modo avião bloqueia as outras conexões do celular.

Além de toda essa questão de segurança, que como mostramos vai depender de qual avião e qual companhia aérea você estiver, manter o celular no modo avião é muito bom para economizar bateria. Assim, seu smartphone não ficará procurando sinal em vão, o que acaba consumindo bateria.

Via Viny Mathias (IGN Brasil) - Imagem: Xataka México

Decolar ou não decolar? Saiba como usar o MEL (Minimum Equipment List) no avião

Diante de uma falha, a busca por uma solução que permita o voo sem risco à segurança passa pela MEL, um manual que lista os equipamentos essenciais do avião.

(Foto: Airbus)
As aeronaves modernas são projetadas com um alto grau de confiabilidade e redundância. O certificado de homologação de tipo estabelece que todos (sim, todos) os equipamentos instalados devem estar operando.

No entanto, falhas podem ocorrer durante a operação normal de uma aeronave. Atrasar ou cancelar um voo por conta de um defeito em algum equipamento representa um prejuízo considerável para uma empresa e seus clientes. Por outro lado, operar uma aeronave sem que ela esteja em perfeitas condições de segurança é algo absolutamente inadmissível.

Manuais


Encontrar uma solução que atenda aos interesses da empresa sem prejudicar a segurança é a função de manuais conhecidos como MEL (Minimum Equipment List), CDL (Configuration Deviation List) e NEF (Non Essential and Furnishings). Baseado nesses documentos, o piloto em comando de uma aeronave irá determinar se a aeronave está capacitada a fazer um determinado voo.

Durante a homologação de uma aeronave, o fabricante elabora a MMEL (Master Minimum Equipment List), na qual são listados todos os itens que podem estar inoperantes, danificados e/ou ausentes. Nele constam também os procedimentos operacionais/limitações e o tempo máximo de retificação em caso de falhas.

Ao confeccionar a MMEL, o fabricante leva em consideração a redundância de um sistema e o impacto que uma determinada falha terá na segurança do voo, na carga de trabalho da tripulação e na performance da aeronave, bem como analisa as consequências da combinação de falhas múltiplas e/ou críticas.

A interação entre os diversos sistemas da aeronave é levada em conta de modo a assegurar que múltiplas falhas não degradarão a segurança do voo. A partir disso, um item pode ser classificado em três tipos:
  1. GO: Permitido o despacho sem que haja condição ou restrição para a condução do voo em segurança. Exemplo: A aeronave possui dois conjuntos independentes de luzes de navegação. Pode ser despachada caso um deles esteja inoperante.
  2. GO-IF: Permitido o despacho, desde que algumas condições específicas sejam atendidas. Exemplo: A aeronave pode ser despachada com ambos os conjuntos de luzes de navegação inoperantes desde que esteja restrita a voos diurnos.
  3. NO-GO: Não é permitido o despacho da aeronave até que seja retificada a falha. Exemplo: falha em um dos canais do FADEC (Full Authority Digital Engine Control), o computador que controla a operação do motor.
Finalmente, uma equipe de pilotos de teste do fabricante analisa em simulador e na aeronave real o despacho com o item inoperante. Em alguns casos, o despacho da aeronave só será permitido como ”non-revenue”, ou seja, um voo de traslado ou teste, sem passageiros pagantes ou transporte remunerado de carga a bordo.

A MMEL costuma ser dividida em quatro ou cinco seções:
  1. General Information: contém informação a respeito do manual, organização, lista de revisões, aprovação, como usar o manual etc.
  2. MEL ENTRIES (opcional): consiste em uma lista de alarmes do ECAM/EICAS (quando aplicável) e sua correlação com o item que originou o alarme. É uma maneira rápida de o piloto saber se um determinado alarme do ECAM/EICAS resulta em um item GO ou NO-GO e direcioná-lo para o item MEL aplicável. Como nem todas as aeronaves possuem um sistema de alarme do tipo ECAM/EICAS, esta seção pode não estar presente.
  3. MEL ITEMS: é a lista com todos os itens que podem estar inoperantes, seu intervalo de retificação, número instalado, número necessário para despacho e eventuais condições/limitações. Eles estão agrupados por sistemas (Autoflight, Flight Controls, Hydraulic, Navigation etc), de acordo com o padrão ATA-100. Itens que não estejam nesta lista, são considerados NO-GO.
  4. Operational Procedures: nesta seção estão descritas as ações específicas a serem tomadas por parte da tripulação em caso de inoperância de algum item.
  5. Maintenance Procedures: procedimentos executados pela equipe de manutenção afim de garantir a “despachabilidade” da aeronave.

Aviação geral


O desenvolvimento e uso de uma MEL são obrigatórios para os operadores de aeronaves sob o RBAC 121, 125, 135 e 129. Operadores de aeronaves sob o RBHA 91 estão dispensados do uso de uma MEL caso operem aeronaves de asa fixa ou rotativa com motores convencionais pesando menos de 5.700 quilos ou, ainda, aeronaves de categoria primária, planadores e mais leves que o ar, desde que a aeronave tenha todos os sistemas/instrumentos requeridos para a operação pretendida (VFR ou IFR) de acordo com o manual da aeronave ou a legislação aplicável, bem como os requeridos pela seção 91.205 do RBHA.

Cabe lembrar, entretanto, que, para muitas destas aeronaves, foram desenvolvidas MMEL pelos fabricantes e elas são uma fonte valiosa de consulta e ferramenta de segurança de voo. Seu uso é altamente recomendado para quem voa na aviação geral. Elas podem ser obtidas gratuitamente no site da FAA, basta entrar na seção FSIMS, depois publicações e, enfim, em um dos intens MMEL.

Proficiência em inglês


A MEL normalmente está escrita em inglês e sua correta interpretação é fundamental para assegurar que a aeronave está despachável. Um alto nível de proficiência no idioma é essencial para garantir que não haja erro na aplicação de um determinado procedimento.

Muitas vezes você terá de consultar a MEL/CDL em um ambiente de pressão (tempo curto, já com passageiros embarcados, necessidade de replanejar a rota/alternado/combustível etc.) e em tais circunstâncias um erro de interpretação pode causar desde uma multa por operação irregular a um acidente fatal.

Esteja familiarizado com a MEL de sua aeronave. Analise cuidadosamente o item, peça a opinião de outros membros de sua tripulação e/ou equipe de manutenção. Verifique as condições de despacho e os impactos na operação, na performance de decolagem/pouso e autonomia. Como piloto em comando, você tem total autoridade para recusar uma aeronave que, no seu julgamento, não esteja em condições adequadas para uma determinada missão.

Via Paulo Marcelo Soares (Aero Magazine)

Dream Chaser: primeiro avião espacial comercial do mundo se prepara para voo histórico

O Dream Chaser Tenacity, primeiro avião espacial comercial, está prestes a estrear na ISS, transportando cargas e dados científicos.

Testes bem sucedidos do Tenacity em Ohio liberaram o avião espacial para o Kennedy
Space Center antes de sua primeira missão (Imagem: Sierra Space/NASA)
O primeiro avião espacial comercial do mundo, Dream Chaser DC-100, chamado de Tenacity, chegou ao Kennedy Space Center da NASA, na Flórida, para as preparações finais antes de sua primeira missão à Estação Espacial Internacional (ISS), que acontece ainda este ano.

Após completar rigorosas avaliações no Neil Armstrong Test Facility em Ohio, o Tenacity está pronto para passar pelos procedimentos finais de pré-lançamento, incluindo a finalização de seu sistema de proteção térmica e a integração de cargas úteis. O avião espacial será lançado a bordo de um foguete Vulcan da United Launch Alliance (ULA), transportando 3.540 kg de alimentos, água e experimentos científicos para a ISS.

O “sonho” do projeto Dream Chaser finalmente sai do papel

O projeto Dream Chaser, desenvolvido pela Sierra Nevada Corporation (SNC) e agora gerenciado por seu braço independente, Sierra Space, está em andamento desde seu anúncio em setembro de 2004. Inicialmente concebido como parte do programa Commercial Crew da NASA, o Dream Chaser visava transportar astronautas para a ISS.

No entanto, em 2014, os contratos do programa foram concedidos à Boeing e à SpaceX, deixando o Dream Chaser de lado.

Em 2016, a NASA retomou o interesse pelo Dream Chaser, desta vez como um avião espacial não tripulado para missões de carga para a ISS. Esta decisão veio em meio a atrasos e problemas com o Starliner da Boeing, que ainda está pendente de seu primeiro lançamento tripulado, agora reprogramado para 25 de maio.

A aeronave espacial Tenacity

Dream Chaser Tenacity, o avião espacial de carga não tripulado da Sierra Space, dentro do Space Systems Processing Facility (SSPF) no Kennedy Space Center, na Flórida (Imagem: NASA)

Tenacity é o primeiro de uma série de aviões espaciais reutilizáveis e versáteis, projetados para missões de carga em órbita baixa.

Equipado com propulsores internos e asas fixas, ele é capaz de realizar acoplamentos precisos na ISS e pousos autônomos em pistas comerciais.

O design do avião espacial permite um pouso firme no Kennedy Space Center, compatível com pistas em todo o mundo.

O módulo de carga, que não retornará à Terra, foi projetado para queimar na reentrada, descartando efetivamente até 3.175 kg de lixo.

Este módulo, que chegou ao Kennedy em 11 de maio, complementa a missão de Tenacity ao abrigar uma carga significativa para a ISS.

Próximos passos do Tenacity após missão inaugural

Tenacity será lançado do Space Launch Complex-41 na Cape Canaveral Space Force Station, passará aproximadamente 45 dias acoplado à ISS e retornará com até 1.588 kg de carga, incluindo dados científicos valiosos.

A Sierra Space planeja manter uma linha de produção para módulos de carga, essenciais para cada missão, e visa pelo menos sete missões de carga com a NASA, potencialmente estendendo a duração e a capacidade das missões do avião espacial.

Via Ana Luiza Figueiredo, editado por Bruno Capozzi (Olhar Digital)

domingo, 26 de maio de 2024

Os 5 melhores museus de aviação militar do mundo

Alguns desses locais abrigam protótipos exclusivos ou caças que serviram em várias forças aéreas em todo o mundo.


Muitas aeronaves militares icônicas foram construídas ao longo dos anos. Vê-los todos pessoalmente poderia ser difícil se não fosse por alguns dos museus de aviação que abrigam dezenas de bombardeiros, caças e outros tipos de aeronaves militares que várias forças aéreas usaram ao longo dos anos.

5. Musée de l'air et de l'espace (Museu do Ar e do Espaço)


Localizado no Aeroporto Paris-Le Bourget (LBG)

Aeronaves para ver:
  • Nieuport XI 'Bébé'
  • Dassault Mystère IV A
  • Dassault Mirage 2000
Embora o museu seja talvez conhecido por sua impressionante coleção de aeronaves civis, que inclui um Boeing 747-100 da Air France, um Airbus A380 e duas aeronaves Concorde, o Musée de l'air et de l'espace (Museu do Ar e do Espaço) também possui algumas aeronaves que foram importantes para a Força Aérea e Espacial Francesa (Armée de l'air et de l'espace).

Isso inclui o Nieuport XI' Bébé', o caça construído na França. Inicialmente projetado por Gustave Delage, o biplano monoposto não deveria ser uma aeronave militar. Porém, em 1915, o projeto da aeronave foi alterado, incluindo uma asa inferior menor que a superior, proporcionando manobrabilidade excepcional. A aeronave chegou à frente em 1915.

Um Dassault Mirage 2000 da Força Aérea Francesa (Foto: Imagens VanderWolf)
As outras duas exposições dignas de visita incluem duas aeronaves Dassault, o Mystère IV A e um Mirage 2000. O museu descreveu o primeiro como o primeiro caça francês a quebrar a barreira do som, o que foi conseguido por Constantin Rozanoff em janeiro de 1953. Enquanto isso , este último substituiu o Mirage III e o Mirage F1, ambas aeronaves Dassault, entrando em serviço na Força Aérea e Espacial Francesa em 1984.

4. Canadian Warplane Heritage Museum

Localizado no Aeroporto Internacional John C. Munro Hamilton (YHM)

Aeronaves para ver:
  • Avro Canada Canuck
  • Canadair CT-114 Tutor
  • North American Sabre Mk. 6
A Força Aérea Real Canadense (RCAF) tem sido uma parte fundamental do esforço de guerra dos Aliados Ocidentais desde que seu antecessor foi formado durante os anos da Primeira Guerra Mundial, mas não serviu durante esse conflito. No entanto, a RCAF teve muitas aeronaves interessantes na sua frota ao longo dos anos, incluindo, por exemplo, o Canadair CT-114 Tutor. De acordo com o Canadian Warplane Heritage Museum, onde está exposto, a Canadair, com sede em Montreal, Canadá, desenvolveu a aeronave como um potencial treinador RCAF.

Snowbirds se apresentando com sua aeronave Canadair CT-114 (Foto: Michael Brown)
Eles foram eliminados na década de 2000, quando a aeronave acumulou mais de 1 milhão de horas de voo em quase 40 anos de serviço. Alguns ainda voam ativamente, inclusive pelos Snowbirds, a equipe acrobática da RCAF.

Outras aeronaves dignas de nota incluem o Avro Canada Canuck, o primeiro caça a jato a ser projetado e construído em grandes quantidades no Canadá, e o North American Sabre, que serviu na RCAF entre 1951 e 1964. Dos 8.861 F-86 Sabres que foram construídos , 1.815 foram montados no Canadá.

3. Museu da Força Aérea Real (RAF)


Localizado em Londres, Reino Unido

Aeronaves para ver:
  • Supermarine Spitfire
  • Avro Vulcan
  • British Aerospace (BAe) Harrier II
Embora o Museu da Força Aérea Real (RAF) tenha dois locais no Reino Unido, nomeadamente perto de Londres e Cosford, o de Londres abriga algumas fuselagens bastante interessantes. Isso inclui quatro versões diferentes do Supermarine Spitfire: Spitfire I, Spitfire V, Spitfire Mk XVI e Spitfire F24.

Um Avro Vulcan decolando (Foto: Ryan Fletcher)
Outro destaque do Museu RAF em Londres é o Avro Vulcan, o avião bombardeiro britânico. Parte dos 'bombardeiros V' da RAF, o seu objectivo era dissuadir ameaças nucleares contra o Reino Unido, servindo nessa função durante 15 anos entre 1954 e 1969. Os últimos vulcanos retiraram-se do serviço activo em 1984.

2. Museu Nacional da Força Aérea dos Estados Unidos (USAF)


Localizado na Base Aérea de Wright-Patterson (AFB), Dayton, Ohio, Estados Unidos

Aeronaves para ver:
  • Lockheed SR-71A
  • Boeing B-29 Superfortress Bockscar
  • Boeing VC-137C SAM 26000
Naturalmente, se você estiver interessado em visitar museus de aviação militar, o Museu Nacional da Força Aérea dos Estados Unidos (USAF) é uma visita obrigatória, com o local exibindo muitas aeronaves interessantes que serviram na USAF. Isso inclui o Boeing VC-137C SAM 26000 e o Air Force One baseado no Boeing 707 – sempre que o presidente dos EUA estava a bordo da aeronave – que serviu em sua função por 36 anos antes de ser substituído pelos atuais VC-25As, ou seja, dois Boeing 747-200.

Um Boeing VC-137C logo acima da pista (Foto: Kral Michal/Wikimedia Commons)
Uma aeronave única para ver é o Boeing B-29 Superfortress Bockscar, que foi um dos dois bombardeiros B-29 Superfortress que lançou bombas atômicas no Japão, sendo o outro Enola Gay. Outra exposição fascinante é o Lockheed SR-71A, também conhecido como Blackbird.

1. Museu Nacional do Ar e do Espaço do Smithsonian


Localizado em Washington, DC, Estados Unidos

Aeronaves para ver:
  • Grumman F-14D Tomcat
  • McDonnell Douglas F/A-18C Hornet
  • Boeing B-29 Superfortress Enola Gay
Apesar de não ser um museu exclusivamente de aviação militar, o Museu Nacional do Ar e do Espaço do Smithsonian é definitivamente um local digno de ser visitado apenas por causa do grande número de aeronaves e artefatos relacionados à aviação que o museu acumulou ao longo dos anos. Isto inclui o outro Boeing B-29 Stratofortress, apelidado de Enola Gay, que lançou a sua bomba atómica sobre a cidade de Hiroshima.

O Boeing B-29 Superfortress Enola Gay em exibição em um museu
(Foto: Museu Nacional do Ar e do Espaço do Smithsonian)
Embora muitas outras aeronaves também tenham aparecido na lista, outra exposição interessante poderia ser o McDonnell Douglas F/A-18C Hornet, que serviu ativamente na Marinha dos Estados Unidos (USN) durante várias viagens, incluindo a Operação Tempestade no Deserto, em Iraque e Afeganistão antes de ser transferido para os 'Anjos Azuis'.

Com informações do Simple Flying

Milagre no voo 841 da TWA – Mergulho aterrorizante com dois rolamentos de 360 graus


Em 4 de abril de 1979, um voo da TWA com destino a Minneapolis experimentou uma queda repentina e assustadora no ar, perdendo mais de 30.000 pés em questão de segundos. Como a aeronave mergulhou enquanto cruzava a 39.000 pés, ela completou dois giros completos de 360 ​​graus e ultrapassou a velocidade máxima permitida para a aeronave Boeing 727.

Felizmente, a tripulação assumiu o controle da aeronave a cerca de 8.000 pés e pousou com segurança no Aeroporto Metropolitano de Detroit.

Detalhes do voo


O Boeing 727-31 da Trans World Airlines com registro N840TW estava realizando o voo TW841 do Aeroporto JFK de Nova York para o Aeroporto Internacional de Minneapolis-Saint Paul em Minneapolis. O voo estava sob o comando do capitão Harvey G. “Hoot” Gibson, que tinha mais de 15.700 horas de voo em seu registro. O capitão Gibson estava acompanhado pelo primeiro oficial Jess Scott Kennedy, que havia completado mais de 10.300 horas de voo, e pelo engenheiro de voo (segundo oficial) Gary N. Banks, que tinha 4.186 horas de voo.

O Boeing 727, N840TW, da Trans World Airlines (Imagem: Jon Proctor via Wikimedia Commons)
Após um atraso de cerca de 45 minutos devido ao congestionamento do tráfego, o voo 841 partiu de JFK com 82 passageiros e 7 tripulantes a bordo às 20h25 EST. Com cerca de trinta minutos de voo, atingiu o FL350, para o qual havia sido liberado. Às 21h24, o voo ligou para o Toronto Centre e pediu qualquer relatório sobre ventos no FL310 ou FL390. O controlador do Toronto Center respondeu que não tinha relatórios de outros voos.

O voo 841 afirmou que estava enfrentando um vento contrário de 100 nós ou mais e, logo depois, os pilotos solicitaram autorização para o FL390.

Posteriormente, o voo foi liberado para FL390 e o comandante iniciou uma subida a 0,80 mach, nivelou a aeronave a 39.000 pés nessa velocidade e engatou o piloto automático no modo Altitude Hold. As partes de decolagem, subida e rota do voo transcorreram sem intercorrências e nenhum problema foi encontrado até cerca de 9 minutos após a aeronave atingir o FL390.

O voo TWA 841 estava navegando em condições de voo visual no FL390 com todos os sistemas indicando operação normal. O capitão colocou a aeronave no piloto automático no modo Altitude-Hold enquanto classificava mapas e gráficos de sua bolsa de voo no piso esquerdo da cabine. Enquanto classificava mapas ou gráficos, sentiu uma sensação de zumbido. Em 2 ou 3 segundos, o zumbido tornou-se um leve bufê e ele olhou para os instrumentos de voo.

O comandante notou que o piloto automático estava comandando uma curva para a esquerda com o manche deslocado de acordo, embora o indicador do diretor de atitude (ADI) mostrasse a aeronave em uma inclinação de 20° a 30° para a direita. O ADI mostrou que a aeronave continuava a inclinar para a direita em uma taxa de rolagem ligeiramente mais rápida que o normal, então ele desconectou o piloto automático e aplicou mais controle do aileron esquerdo para interromper a rolagem.

Rolo de 360°


No entanto, a aeronave continuou a rolar para a direita, apesar do controle quase total do aileron esquerdo, então ele também aplicou o controle do leme esquerdo. Apesar dessas entradas, a rolagem continuou e o comandante percebeu que a aeronave iria rolar invertida. Ele então retardou os aceleradores para a posição de voo inativo e declarou: "Estamos indo". Ainda em cruzeiro no FL390, a aeronave iniciou repentinamente uma rolagem acentuada e descontrolada para a direita, o que levou a aeronave a entrar em um mergulho em espiral. A aeronave rolou completamente e entrou em um segundo rolo com o nariz para baixo.

Reprodução do voo 841 entrando em um mergulho íngreme (Animação: TheFlightChannel)
Depois que a aeronave entrou em um mergulho descontrolado, o capitão pediu ao primeiro oficial para estender os freios de velocidade. No entanto, o F/O estava ocupado calculando a velocidade de solo da aeronave e não sabia do golpe ou da atitude da aeronave, então ele não entendeu o comando do capitão. O capitão Gibson então estendeu ele mesmo os freios de velocidade, mas a aeronave continuou a descer rapidamente.

No entanto, depois de não receber resposta da extensão do freio de velocidade, o capitão moveu a alavanca de controle para a posição retraída e de volta para a posição estendida. O capitão notou que a agulha de velocidade estava se aproximando rapidamente de seu limite, e ele só conseguia ver “preto” no ADI e áreas claras no para-brisa, que ele pensou serem luzes de cidades brilhando no céu nublado.

O altímetro indicava uma descida rápida e de difícil leitura, mas a aeronave estava a aproximadamente 15.000 pés, descendo rapidamente quando o comandante ordenou a extensão do trem de pouso. O copiloto moveu rapidamente a alavanca de câmbio para a posição “estender” e ouviu-se um som alto semelhante a uma explosão.

Ao longo da descida, o capitão aplicou um aileron totalmente esquerdo e um leme totalmente esquerdo, mas a aeronave continuou a rolar para a direita. Quando o trem de pouso foi estendido, o capitão relaxou um pouco da contrapressão na coluna de controle e a pressão nos controles do aileron e do leme. Como resultado, a velocidade no ar também começou a diminuir. Ele foi capaz de rolar a aeronave para uma atitude quase nivelada com as asas e interromper a descida, e a aeronave subiu em uma subida de 30° a 50°.

O capitão usou a lua no para-brisa como referência visual para manobrar a aeronave e, com a orientação do primeiro e segundo oficiais, nivelou a aeronave a cerca de 13.000 pés.

O voo 841 subiu em uma subida de 30° a 50° (Animação: Mini Air Crash Investigation)
Durante o incidente, o voo 841 desceu rapidamente aproximadamente 34.000 pés (10.000 m) em apenas 63 segundos. O incidente ocorreu à noite, por volta das 21h48.

Falha Hidráulica e Abordagem para Detroit


Após retomar o controle da aeronave, os pilotos perceberam uma luz de advertência indicando falha no sistema hidráulico 'A' e uma bandeira de advertência indicando que o amortecedor de guinada inferior estava inoperante. Depois de analisar a situação, o capitão decidiu pousar a aeronave no Aeroporto Metropolitano de Detroit e instruiu o F/O e o engenheiro de voo a realizar os procedimentos da lista de verificação de emergência e notificar os comissários de bordo para preparar os passageiros para um pouso de emergência.

O comandante tentou estender os flaps de pouso durante a aproximação, mas a aeronave rolou bruscamente para a esquerda. Portanto, o capitão Gibson ordenou que os flaps fossem recolhidos e planejado para um pouso sem flaps.

Os dois principais indicadores do trem de pouso mostraram condições inseguras do trem de pouso, então o capitão fez uma passagem de baixa altitude pela pista para verificar o trem de pouso. A torre de controle e o pessoal de resgate relataram que todos os três trens de pouso pareciam estar estendidos. Por volta das 22h31, o capitão pousou a aeronave na pista 3 de Detroit sem incidentes.

O mergulho do voo TWA 841 (Animação: TheFlightChannel)

Danos na aeronave e ferimentos a bordo


Durante a rolagem e descida violentas, a aeronave experimentou altas forças G, que sobrecarregaram a estrutura do avião. O movimento de rolamento também fez com que objetos dentro da cabine voassem, atingindo passageiros e tripulantes. O gravador de voz da cabine capturou os sons de gritos, objetos caindo e os pilotos lutando para recuperar o controle do avião.

A ripa de ponta nº 7 na asa direita estava faltando. O cilindro do atuador do slat foi quebrado cerca de 1 1/2 polegada à frente de seu munhão; a parte traseira do cilindro permaneceu presa à asa. Ambas as portas de pouso do trem principal e seus mecanismos operacionais foram danificados extensivamente e uma linha hidráulica foi rompida. A porta do trem de pouso frontal também foi danificada.

Embora os tripulantes não tenham sido examinados clinicamente, cinco passageiros relataram ferimentos logo após o pouso em Detroit. Três deles foram levados para um hospital para tratamento de distensões e contusões.

Um passageiro teve um joelho machucado e sangrando e um tornozelo inchado. Mais tarde, mais três passageiros relataram ferimentos, mas apenas um foi hospitalizado por distensão muscular grave e problemas de vertigem/equilíbrio.

Investigação e Descoberta


Após o angustiante incidente do voo 841 da TWA, o National Transportation Safety Board (NTSB) lançou uma investigação que foi a mais longa investigação de acidentes em sua história até então.

O conselho de segurança determinou que o incidente foi causado pelo slat do bordo de ataque nº 7 permanecendo estendido devido a um desalinhamento pré-existente, combinado com a manipulação da tripulação de voo dos controles de flap/slat e as entradas inoportunas do controle de voo do capitão. A análise das evidências constatou que a manobra descontrolada começou quando o slat nº 7 do bordo de ataque da asa direita da aeronave ficou isolado na posição estendida ou parcialmente estendida, causando uma rolagem lenta para a direita de cerca de 35 graus.

No entanto, a Air Line Pilots Association (ALPA) discordou das conclusões do NTSB e alegou que uma interação complexa envolvendo os controles de voo lateral e direcional na aeronave B727 causou o acidente. Os tripulantes negaram que suas ações tenham sido a causa da extensão dos flaps. Pelo contrário, o fabricante afirmou que era impossível que os flaps se estendessem sem manipular os controles.

Superfícies do sistema de controle de voo do Boeing 727 (Imagem: NTSB)
De acordo com a investigação do NTSB, a rolagem foi interrompida brevemente, mas depois retomada, com a aeronave rolando para cerca de 35 graus da margem direita em aproximadamente quatro segundos. Neste ponto, a combinação do número de Mach, ângulo de ataque e derrapagem reduziu a margem de controle lateral da aeronave para zero ou menos, e a aeronave continuou a rolar para a direita em uma espiral descendente. Nos 33 segundos seguintes, a aeronave completou um giro de 360 ​​graus enquanto descia para cerca de 21.000 pés. Durante esse tempo, a ripa nº 7 foi arrancada da aeronave. O controle da aeronave foi recuperado a uma altitude de cerca de 8.000 pés.

A Gibson e a ALPA recorreram várias vezes das conclusões do NTSB de 1983 a 1995. Eles recorreram ao NTSB e ao Tribunal de Apelações do Nono Circuito dos Estados Unidos, mas ambas as apelações foram rejeitadas. O NTSB rejeitou a petição por falta de novas evidências, e o tribunal rejeitou o recurso por falta de jurisdição, uma vez que as decisões do NTSB não estão sujeitas a revisão.

Após a investigação, a aeronave foi reparada e voltou ao serviço no final de maio de 1979.

Via Sam Chui