sexta-feira, 5 de dezembro de 2025

A física contra-ataca: os acidentes do voo Braniff 542 e do voo Northwest Orient 710


Em 29 de setembro de 1959, um novo Lockheed L-188 Electra operando para a Braniff International Airways se desintegrou durante o voo sobre o condado de Leon, Texas, caindo para a destruição em um campo escuro à noite e matando todas as 34 pessoas a bordo. Embora os investigadores tenham feito o seu melhor, não havia muito o que fazer: o avião não tinha caixas pretas e os destroços estavam tão completamente pulverizados que pouca certeza poderia ser obtida deles. Depois de meses coçando a cabeça furiosamente, eles estavam prestes a encerrar o caso quando se depararam com o pior pesadelo de qualquer investigador: exatamente a mesma coisa aconteceu novamente.

Em 17 de março de 1960, outro Lockheed Electra operando o voo 710 da Northwest Orient Airlines perdeu uma asa e caiu perto de Tell City, Indiana, matando todas as 63 pessoas a bordo. Dois Electras que se separaram em voo pouco mais de um ano após a entrada em serviço do tipo simplesmente não poderiam ser uma coincidência. Mas o que arrancou esses dois aviões do céu? 

Os destroços do voo 710 finalmente dariam a resposta: uma falha bizarra de projeto levou a uma vibração harmônica entre a asa e uma hélice “oscilante”, crescendo em amplitude até que a aeronave se despedaçou. O modo de falha apresentou um exemplo fascinante dos desafios da engenharia aeroespacial moderna, mas também colocou em questão a segurança inerente do Electra. 

O avião poderia ser confiável? Como a Lockheed iria consertar isso? A procura pública por respostas acabaria por colidir com a inescrutabilidade da falha de design, à medida que a Lockheed tentava, com sucesso apenas misto, assegurar aos passageiros que tinha resolvido um problema brutalmente complicado que era quase tão difícil de explicar como de descobrir.

◊◊◊

A United Airlines foi a primeira transportadora dos EUA a encomendar o
Vickers Viscount, 
o primeiro avião turboélice (Mach 2 Aircraft Models)
No início da década de 1950, o fabricante britânico Vickers-Armstrong introduziu uma nova aeronave revolucionária no mercado europeu: o avião turboélice. Enquanto as gerações anteriores de aeronaves a hélice eram movidas por motores de combustão interna acionados por pistão, semelhantes aos da maioria dos carros, o novo turboélice, conhecido como Visconde, foi o primeiro a apresentar hélices movidas por turbinas. Mais parecidos com um motor a jato do que com um motor a pistão, os motores turboélice prometiam melhor desempenho, menos ruído e maior eficiência de combustível, e em todas essas áreas o Visconde cumpriu, conquistando a Europa em poucos anos. Na América do Norte, a sua promessa demorou mais tempo a tornar-se aparente, mas, no final de 1953, as companhias aéreas dos Estados Unidos estavam a começar a perceber.

Naquele ano, a American Airlines abordou a Lockheed, então um dos três grandes fabricantes de aviões comerciais dos EUA, e apresentou sua proposta para um turboélice que tiraria o Visconde da água. O que eles pediram foi nada menos que um milagre: um avião que pudesse navegar confortavelmente a 350 nós, operar economicamente em rotas de qualquer extensão, transportar pelo menos 65 passageiros e decolar de qualquer um dos 100 aeroportos mais importantes dos Estados Unidos, incluindo aqueles com pistas muito curtas para receber os aviões a jato então em desenvolvimento na Douglas e na Boeing. Nenhuma aeronave desse tipo jamais havia sido construída, e havia quem duvidasse que isso pudesse acontecer. Mas a Lockheed, que adquiriu uma experiência valiosa na construção do turboélice C-130 Hercules para os militares, acreditava que poderia de fato projetar o avião que a American Airlines desejava – e que o mundo adoraria.

Um novo Lockheed Electra voando para a American Airlines (Smithsonian)
A Lockheed batizou seu projeto de L-188 Electra, em homenagem ao L-10 Electra, um de seus primeiros modelos de passageiros. O novo avião seria movido pelos mesmos motores turboélice Allison 501-D13 usados ​​no C-130 Hercules, transportando até 98 passageiros em altitudes de cruzeiro de até 28.000 pés e em velocidades de até 389 nós, excedendo a American Airlines. 'exige em todos os aspectos.

Internamente, a Lockheed planejou que o L-188 Electra fosse a aeronave mais testada já construída, com uma filosofia de design centrada nos conceitos de tolerância a danos e estruturas à prova de falhas. A primeira fuselagem do Electra foi submetida a todos os tipos de abusos que os engenheiros da Lockheed poderiam imaginar, muitos dos quais são agora uma prática padrão, mas foram revolucionários na época. Eles dobraram as asas até quebrarem, abriram enormes cortes na fuselagem, bateram na pele com machados controlados remotamente e atingiram a fuselagem com ventos semelhantes aos de um tornado, muitas vezes todos ao mesmo tempo. Seus métodos teriam sido considerados um tanto grosseiros hoje, e o resultado foi um avião que foi, no mínimo, significativamente superconstruído. Na verdade, quase 65 anos após o seu primeiro voo em dezembro de 1957, o Electra ainda tem a reputação de ser um dos aviões mais resistentes já projetados, e é por esse fato que o Electra e sua variante militar, o P-3 Orion, ainda estão em serviço hoje, realizando trabalhos tão rigorosos como combate aéreo a incêndios e voos contra furacões.

Quando o primeiro protótipo voou em 1957, os pilotos de teste ficaram imediatamente apaixonados. O avião era resistente, maneava-se bem mesmo em emergências e, acima de tudo, era potente. Suas hélices eram anormalmente grandes em proporção à fuselagem, e a hélice cobria uma porcentagem incomumente alta da asa, proporcionando ao Electra mais sustentação do que os modelos contemporâneos. Os primeiros pilotos ficaram surpresos ao descobrir que o Electra foi um dos, senão o primeiro avião comercial a ser capaz de impedir um pouso após o pouso. Outros tomaram nota das inúmeras medidas de qualidade de vida que a Lockheed implementou para tornar o avião fácil de pilotar e, como os mecânicos observaram com satisfação, fácil de manter. Quando entrou em serviço pela primeira vez em janeiro de 1959 o Electra recebeu ótimas críticas tanto dos pilotos quanto dos passageiros embora como qualquer novo avião comercial

Um jornal local em Massachusetts dá a notícia do acidente da American Airlines
em fevereiro de 1959 (Timothy Hughes Rare Newspapers)
Na verdade, o período de lua-de-mel durou apenas 22 dias antes, no que era, mesmo para os padrões da década de 1950, uma reviravolta do destino chocantemente precoce, um American Airlines Electra caiu no East River de Nova Iorque ao aproximar-se de LaGuardia, matando 65 pessoas. Este foi o tempo de resposta mais rápido de sempre entre a introdução de um avião comercial no serviço de passageiros e o seu primeiro acidente fatal, e ainda o é hoje, um facto que não passou despercebido na altura. A causa do acidente foi, no entanto, atribuída à falha dos pilotos em manter a altitude correta, e o altímetro do Electra foi redesenhado para facilitar a leitura. Em poucas semanas, a indústria mudou.

◊◊◊

O N9707C, avião irmão do N9705C, a aeronave da Braniff envolvida no acidente. Como o N9705C esteve em serviço por um breve período, não existem fotos conhecidas dele. O próprio N9707C foi perdido em um acidente junto com 85 vidas em 1968 (Mel Lawrence)
Quase oito meses depois, em 29 de setembro de 1959, a tripulação de um Lockheed Electra totalmente novo embarcou em seu avião no pátio de estacionamento em Houston, Texas, em preparação para o voo 542 da Braniff International Airways, uma viagem noturna para Nova York via Dallas e Washington. A tripulação de vôo consistia do capitão Wilson Elza Stone, de 47 anos, do primeiro oficial Dan Hollowell, de 39 anos, e do engenheiro de voo Roland Longhill, de 29 anos, todos muito novos no Electra - nenhum deles poderia reivindicar mais de 95 horas no tipo. O avião em si era ainda mais novo, tendo voado pela primeira vez em 4 de setembro antes de ser entregue a Braniff em 18 de setembro. Ele transportava passageiros há apenas dez dias e ainda não havia chegado à primeira inspeção programada.

A primeira etapa do voo noturno teve poucas reservas, com apenas 28 passageiros juntando-se aos três pilotos e três comissários de bordo. O avião saiu do pátio bem abaixo do peso máximo e com apenas alguns pequenos problemas em seu registro técnico, um dos quais já havia sido corrigido. Um representante dos motores Allison, que conversou com o primeiro oficial Hollowell antes do voo, lembrou-se dele dizendo que “esta aeronave tem um acabamento engraçado”, mas fora isso tudo estava normal. O significado do comentário de Hollowell, infelizmente, permanece um mistério.

Às 22h44, o voo 542 decolou de Houston, com tempo estimado de voo para Dallas de 41 minutos. O vôo foi autorizado a subir até a altitude de cruzeiro de 15.000 pés, e às 23h05 fez uma chamada de rádio de rotina para o controle da área de San Antonio, informando ao centro que estavam nivelados a 15.000 pés e passando pelo VOR Leona. Pouco tempo depois, o engenheiro de voo ligou para o despacho da empresa em Dallas e perguntou se eles estariam prontos para consertar o outro pequeno defeito que havia sido adiado em Houston. Eles responderam que sim, e Longhill desligou, anotando a hora em seu diário. Eram 23h07. Ninguém sabia ainda, mas esta seria a última vez que alguém teria notícias do voo 542 da Braniff.

Uma foto real do diário de bordo do engenheiro de voo, recuperado dos destroços do voo 542, conforme apareceu em “Desastres Aéreos: Volume 4” de Macarthur Job. A foto original foi divulgada pelo CAB
Aproximadamente dois minutos depois, moradores da zona rural do condado de Leon, no Texas, perto da pequena cidade de Buffalo, ouviram um som estridente misturado com o rangido e o rasgo do metal, emanando do céu escuro acima deles. Eles saíram ou espiaram pelas janelas para ver melhor, e lá tiveram uma visão incrível: uma explosão de fogo acesa na noite anterior se dissipando rapidamente, alguns raios de chama caindo como estrelas cadentes antes de desaparecer na escuridão. .

Numa fazenda próxima, o fazendeiro Richard E. White ouviu o barulho e viu a explosão, após a qual o som continuou a se transformar em um rugido de fazer tremer a terra. Enquanto ele e sua esposa assistiam atônitos, um objeto caiu no chão a apenas algumas centenas de metros de sua casa, explodindo com o impacto. Momentos depois, uma leve névoa começou a cair sobre a varanda.

“Está chovendo”, teria comentado a Sra. White.

“Não poderia ser”, disse o Sr. White. "Olhe para as estrelas."

Foi então que perceberam que a umidade que caía sobre eles não era chuva. Era querosene.

◊◊◊

Um mapa da trajetória de voo do voo 542, conforme renderizado por Aero Illustrations
para “Air Disasters: Volume 4” de Macarthur Job
Os serviços de emergência correram para a fazenda White, onde encontraram um cenário de devastação total. A uma curta distância atrás da casa da fazenda, a fuselagem dianteira do voo 542 da Braniff bateu no chão com uma força tremenda, cavando uma cratera na terra. A seção central parou a cerca de 60 metros de distância, enquanto a cauda, ​​ainda estampada com as palavras “Fly Braniff”, caiu no chão em uma floresta a alguma distância mais adiante. Da cabine de passageiros não sobrou nada – era óbvio que nenhum dos 34 passageiros e tripulantes havia sobrevivido. Na verdade, a mídia noticiou que a cena era tão horrível que o chão estava encharcado de sangue – antes de serem informados de que o avião carregava um carregamento de sangue medicinal no porão de carga, que agora estava espalhado sobre o local do acidente, e que os ocupantes morreram instantaneamente,

Em 1959, a responsabilidade pela investigação de acidentes aéreos nos Estados Unidos pertencia ao Civil Aeronautics Board, ou CAB, o antecessor do atual NTSB. O trabalho de um investigador do CAB na década de 1950 teria sido muito mais difícil do que o do seu homólogo moderno. Os aviões ainda não transportavam gravadores de voo, agora o principal meio de determinar a causa de um acidente, e era comum que os casos ficassem sem solução, ou resolvidos apenas no nome, com a culpa atribuída a algum erro mal definido do piloto. Consequentemente, os investigadores do CAB que chegaram ao condado de Leon no dia seguinte ao acidente sabiam que havia uma chance de não encontrarem a resposta – mas não tinham ideia de quão difícil seria.

Esta foi a única fotografia que consegui encontrar que poderia ser positivamente identificada
como mostrando os destroços do voo 542 (Bettmann)
A primeira pista, pelo menos, era evidente: o Electra havia claramente quebrado durante o voo e caído no chão em vários pedaços distintos. A asa esquerda foi encontrada a cerca de 2,4 quilômetros da cratera de impacto principal, e outros destroços, principalmente dos motores esquerdos e da asa esquerda, continuaram por uma trilha de destroços que se estende por mais de 4,2 quilômetros. A peça mais distante que os pesquisadores conseguiram encontrar foi uma seção de 23 centímetros de linha hidráulica da asa esquerda, que não ofereceu nenhuma informação realmente útil, exceto para confirmar o fato já evidente de que esta asa havia se rompido primeiro. A asa direita também se separou durante o voo, embora mais tarde e em várias etapas, pois os seus restos foram encontrados espalhados por toda a área que se estende desde a asa esquerda até à cratera de impacto.

À medida que cada peça era encontrada, ela era transportada para uma instalação do CAB para análise e reconstrução. O exame desses destroços em busca de sinais de uma explosão durante o vôo revelou algumas evidências de fogo aéreo, mas de natureza breve, e somente depois que a asa esquerda começou a se separar. A sabotagem por um dispositivo explosivo ou a explosão de um tanque de combustível foram rapidamente descartadas. Uma revisão do registro técnico não revelou nenhum defeito que pudesse estar relacionado ao acidente. A análise das condições meteorológicas mostrou que o céu estava limpo e calmo, sem o menor indício de turbulência ou relâmpagos. Nenhuma outra aeronave estava por perto que pudesse ter colidido com o Electra. Os investigadores procuraram sinais de fadiga do metal, que pudessem indicar uma quebra prematura da estrutura da asa, talvez devido a algum erro de fabricação, mas nenhum foi encontrado. Cada superfície de fratura na asa esquerda, e na verdade em todos os outros lugares, foi criada por simples sobrecarga. Foi como se uma mão gigante tivesse simplesmente agarrado a asa e arrancado-a.

As pistas que os investigadores conseguiram encontrar eram bastante díspares. Havia alguma evidência de elementos estruturais terem quebrado em várias direções aleatórias, e o motor №1 parecia ter oscilado em suas montagens antes de se romper, mas não havia como dizer se isso ocorreu antes ou depois da falha da asa. e se os investigadores tivessem que apostar num ou noutro, teriam dito “depois”. A asa em si parecia ter sido arrancada da fuselagem para cima, como seria de esperar se os pilotos tivessem tentado sair de um mergulho em alta velocidade, mas o exame dos sistemas de controle sobreviventes não revelou nenhum sinal de qualquer mau funcionamento que poderia ter causado tal mergulho em primeiro lugar.

E depois havia a questão do depoimento das testemunhas. Triangulando onde cada testemunha viu a bola de fogo, os investigadores situaram-na aproximadamente entre 17.000 e 24.000 pés, indicando que o avião provavelmente não estava abaixo da sua altitude de cruzeiro de 15.000 pés quando a asa se partiu. (As testemunhas tendem a superestimar o ângulo entre sua posição e um objeto no céu.) Os investigadores também tentaram determinar a origem do ruído que muitas testemunhas ouviram antes da explosão, e depois de apresentar a essas testemunhas gravações de vários ruídos, reais e aleatoriamente, a maioria selecionou o som de uma hélice supersônica como o mais próximo de sua experiência. No entanto, se uma hélice tivesse sido acelerada dessa maneira, não deixaria necessariamente nenhuma evidência, nem explicaria por que a asa havia se soltado,

A primeira página do relatório final do CAB
Necessariamente, o CAB ficou se perguntando: o que poderia arrancar a asa de um avião além da fadiga do metal, da turbulência, de uma explosão ou da perda de controle em um mergulho? E para essa pergunta só havia uma resposta: vibração aeroelástica. Flutter, como será explicado com mais detalhes posteriormente, é um fenômeno mortal e violento que pode, nas condições certas, destruir totalmente uma asa sem qualquer falha pré-existente. Mas a evidência de vibração na asa esquerda do voo 542 foi inconclusiva, nem os investigadores puderam imaginar o que poderia ter causado isso. E assim, em 8 de março de 1960, o CAB convocou uma reunião com todos os intervenientes na investigação, anunciando a sua intenção de encerrar o caso. A queda do voo 542 da Braniff não foi resolvida e provavelmente insolúvel. Era hora de jogar a toalha.

Mas a Air Line Pilots Association (ALPA) resistiu, insistindo que o CAB examinasse algumas áreas finais de investigação inexploradas. A contragosto, o CAB concordou. Os investigadores voltaram ao local em busca de peças que pudessem ter sido perdidas, mas não encontraram nada. Mais alguns cálculos foram feitos, sem fim. Em 17 de março, todas as pistas da ALPA estavam quase esgotadas e os investigadores estavam prontos para desistir novamente.

◊◊◊

O N121US, a aeronave da Northwest envolvida no acidente (Leo J. Kohn)
Naquele mesmo dia, um Lockheed Electra da Northwest Orient Airlines partiu de Minneapolis, Minnesota, com destino a Miami, Flórida, com escala em Chicago. Nos controles estavam o capitão Edgar LaParle, de 57 anos, o primeiro oficial Joseph Mills, de 27 anos, e o engenheiro de voo Arnold Kowal, de 40 anos, cada um dos quais tinha longas carreiras na aviação, mas não muito mais experiência em tipo do que o tripulação do voo 452 da Braniff.

Antes da partida de Minneapolis, os pilotos revisaram as previsões meteorológicas emitidas pelo US Weather Bureau, que notaram algumas tempestades e áreas nubladas ao longo da rota, mas nada muito grave. A primeira etapa de Minneapolis a Chicago transcorreu sem intercorrências, embora alguns passageiros tenham relatado que o pouso foi excepcionalmente difícil. Vários ocupantes desembarcaram, outros embarcaram e, às 14h38, o voo 710 da Northwest Orient partiu de Chicago com 57 passageiros e 6 tripulantes a bordo, subindo suavemente até sua altitude de cruzeiro de 18.000 pés. Às 15h13, cruzando Indiana, o controle de tráfego aéreo disse ao voo para entrar em contato com o centro de Memphis às 15h30, e a tripulação reconheceu. Esta seria a última transmissão do voo 710.

A impressão deste artista sobre a separação do voo 710 apareceu na capa de certas edições do livro de Robert J. Serling de 1963, “The Electra Story”. Observe que ele usou a pintura errada!
Por volta das 15h25, testemunhas perto de Tell City, Indiana, na fronteira com Kentucky, avistaram o avião em vôo nivelado a 18.000 pés, passando entre nuvens dispersas que cobriam a área. Então, surgiram duas nuvens de fumaça branca, seguidas, segundos depois, por uma grande nuvem de fumaça preta, que envolveu o avião de ponta a ponta. Uma explosão foi ouvida e um objeto em chamas caiu da aeronave, espiralando para baixo, deixando um rastro de fumaça e fogo. A fuselagem, sem a asa direita, emergiu da nuvem, ficou suspensa no ar por um momento e finalmente mergulhou em um longo arco descendente em direção ao solo, girando e girando até cair no chão a uma velocidade de quase 1.000 quilômetros. por hora. Um gêiser de detritos subiu mais de 75 metros no ar, virou-se e desabou, espalhando chuva metálica sobre as florestas e campos cobertos de neve, antes que finalmente esta cacofonia ruinosa desse lugar mais uma vez ao silêncio.

A maior parte dos destroços foi feita em pedaços e enterrada nesta cratera lamacenta
(World Wide Photos, publicado em “Air Disaster: Volume 4” de Macarthur Job)
Correndo para o local do acidente, testemunhas descobriram que nada restava do avião, exceto uma cratera infernal de nove metros de comprimento, doze metros de largura e três metros e meio de profundidade. Pequenos fragmentos da aeronave e de seus ocupantes estavam espalhados como confetes. Nenhuma das 63 pessoas a bordo sobreviveu.

Assim que os investigadores do CAB chegaram ao local, foram afligidos por uma estranha sensação de déjà vu. A maior parte do Electra estava na cratera de impacto, mas mais uma vez, uma asa se separou durante o voo, desta vez a asa direita, que parou 3,4 quilômetros ao norte do local principal do acidente. Entre a asa direita e a cratera, encontraram partes dos motores 1, 2 e 4, juntamente com a ponta da asa esquerda, enquanto pequenos pedaços adicionais de destroços, impulsionados pelo vento, haviam caído ao solo ao longo de um percurso de 11 quilômetros. caminho de detritos secundário perpendicular ao primário.

Mais uma vez, causas como explosão do tanque de combustível, sabotagem, colisão no ar e fadiga do metal foram descartadas. Numerosas outras aeronaves na área relataram turbulência de ar claro forte a severa, que não havia sido incluída na previsão meteorológica dada à tripulação de voo, mas embora os passageiros tivessem passado por uma viagem difícil, uma análise exaustiva da situação meteorológica sugeriu fortemente que a turbulência não foi forte o suficiente para arrancar uma asa do avião. As pistas que encontraram sugeriam que vários elementos estruturais na asa direita quebraram em direções aparentemente aleatórias antes que a asa se separasse na flexão para trás, e que o motor №4 havia oscilado em suas montagens, deixando marcas de arranhões circulares semelhantes, mas muito mais claras do que , aqueles encontrados nos destroços do voo 542 da Braniff. Na verdade, quanto mais eles olhavam, mais o acidente começava a se parecer com o Braniff novamente - e com aquele acidente ainda sem solução, isso se transformava em um enorme problema.

◊◊◊

Asa direita cortada do voo 710 (Twin Cities Pioneer Press)
Como antes, os investigadores suspeitaram que a separação da asa tinha algo a ver com a vibração aeroelástica. E entender o que isso significa – não é uma tarefa fácil! – precisamos nos aprofundar nas forças físicas que afetam um avião em voo.

Começando de baixo para cima, devemos notar que tudo vibra – não apenas as asas dos aviões, mas tudo . Uma ponte vibra, sua mesa vibra, o oceano vibra. Enquanto existir alguma fonte de energia, esses objetos ou sistemas de objetos vibram em uma frequência específica, medida em ciclos por segundo, que é chamada de frequência natural.

Quando uma força externa com periodicidade própria afeta um objeto ou sistema, ela introduz uma fonte de vibração adicional junto com as vibrações naturais. E se a frequência dessas vibrações induzidas estiver próxima da frequência natural do sistema, ocorre ressonância.

Uma representação matemática da ressonância (Usuário da Wikimedia MasterHD)
Ressonância é a tendência de uma vibração (ou oscilação) dentro de um objeto ou sistema de aumentar em amplitude quando a frequência de uma vibração induzida está próxima da frequência natural. Com efeito, quando um objeto deseja vibrar naturalmente na direção A, o tamanho da sua oscilação será maior se a segunda vibração induzida também quiser vibrar na direção A. Por outro lado, se as duas vibrações não tiverem a mesma frequência, a a vibração induzida pode tentar oscilar na direção B quando o objeto deseja mover-se naturalmente na direção A; as duas forças trabalham uma contra a outra, fazendo com que a oscilação tenha uma amplitude menor. Isso é chamado de amortecimento, que é o oposto da ressonância.

Um bom exemplo de ressonância versus amortecimento pode ser encontrado ao empurrar uma criança em um balanço. Se você empurrar o balanço na direção em que ele já está se movendo, ele balançará mais alto do que seria de outra forma. Por outro lado, se você tentar avançar no balanço enquanto ele se move para trás, ele simplesmente irá parar. No primeiro caso, você aproveita a ressonância para aumentar a amplitude da oscilação do balanço, enquanto no segundo caso, você amortece a oscilação.

O exemplo do balanço é um caso de ressonância linear forçada externamente - isto é, ressonância causada por uma força externa com periodicidade própria. No entanto, os engenheiros, especialmente os aeroespaciais, também precisam se preocupar com um tipo de ressonância ligeiramente diferente, chamado flutter aeroelástico. Embora o resultado pareça muito semelhante ao exemplo do balanço, a vibração aeroelástica é causada não pela ligação de duas forças com a mesma frequência, mas pela auto-oscilação de um objeto sob aplicação contínua e constante de energia. No caso de um avião, esta fonte de energia é a força aerodinâmica gerada à medida que o avião se move no ar. Um exemplo intuitivo de vibração aeroelástica é o movimento de oscilação para cima e para baixo assumido por um objeto flexível atrás de um veículo em movimento, como - vamos escolher um exemplo humorístico - a capa do Super-Homem.

A ponte Tacoma Narrows desabou devido à vibração aeroelástica do tabuleiro da ponte
(US Department of Transportation)
Na indústria aeroespacial, o perigo deste tipo de vibração é que se um avião voar muito rápido, então a energia aplicada às asas pela força aerodinâmica pode tornar-se maior do que a quantidade necessária para sustentar a oscilação perpétua da estrutura, ponto em que a amplitude de sua oscilação natural começará a aumentar sem qualquer limitação até que a estrutura falhe. É por isso que os aviões se desintegram se voam muito além da velocidade de “nunca exceder” (ou melhor, a velocidade de “nunca exceder” é determinada pela velocidade com que o avião pode voar antes que a vibração o destrua).

Embora o famoso colapso da ponte Tacoma Narrows em 1940 seja frequentemente descrito como um caso de ressonância linear (ou harmônica) forçada externamente, ele foi na verdade causado por vibração aeroelástica, já que qualquer vento sustentado acima de 56 km/h continha energia suficiente para se excitar. -oscilações de amplitude continuamente crescente no tabuleiro da ponte. A razão para esta vibração foi a simples falta de fontes de amortecimento que pudessem aumentar a quantidade de energia necessária para induzir a autooscilação – em outras palavras, a ponte simplesmente não era rígida o suficiente. Da mesma forma, ao projetar um avião, os engenheiros aeroespaciais devem garantir que suas asas, superfícies de controle e estabilizadores sejam suficientemente rígidos para evitar que esse tipo de vibração aeroelástica ocorra nas velocidades em que se espera que o avião opere. No caso da Electra, Os engenheiros da Lockheed trabalharam arduamente para garantir que as asas não sofressem nenhuma vibração até que o avião atingisse 120% de sua velocidade máxima de operação de 389 nós. Mas o voo 710 da Northwest Orient estava navegando a apenas 260 nós quando a vibração arrancou sua asa direita. Como isso foi possível?

Outra vista da asa direita do voo 710
(Foto original da UPI, publicada em “Air Disaster: Volume 4” de Macarthur Job)
Até que o CAB pudesse descobrir, estava claro que era necessário tomar medidas para evitar que este misterioso assassino atacasse novamente. A questão enfrentada pelos reguladores era óbvia: o Electra deveria ser aterrado? Muitos grupos de interesse argumentaram que deveria ser assim. Jornais e membros do Congresso pediram o encalhe, mas os pilotos da Electra, ainda apaixonados pelo novo avião, manifestaram-se fortemente contra. Foram realizadas audiências no Congresso e reuniões a portas fechadas; editoriais foram escritos; os passageiros começaram a evitar o Electra como uma praga. o que era para ser feito?

Essa escolha pertencia apenas a Elwood Quesada, o enigmático administrador da recém-criada Agência Federal de Aviação (agora Administração), ou FAA. No final, depois de muitas reuniões e discussões, ele chegou a uma decisão cientificamente razoável, embora mal compreendida: o Electra não precisava ser aterrado, desde que estivesse restrito a uma velocidade muito baixa para que esta forma desconhecida de vibração ocorresse. Houve alguma discussão sobre exatamente até que ponto descer, mas depois de analisar os números, todas as partes interessadas concordaram que a nova velocidade máxima de operação do Electra seria de 225 nós, e a sua velocidade “nunca excedida” seria de 245 nós. Dias após a queda do voo 710, a FAA anunciou as novas restrições de velocidade, às quais os pilotos teriam de aderir, ou, por razões óbvias, correriam o risco de morte. O Electra de alto desempenho, portanto, não se tornou mais rápido do que um antigo DC-6 com motor a pistão, mas as companhias aéreas poderiam continuar voando com ele de qualquer maneira, se quisessem. E se o fizessem, também teriam de cumprir toda uma série de outras salvaguardas destinadas a garantir que todas as causas possíveis tivessem sido cobertas: especificamente, a utilização do piloto automático seria proibida, seriam feitas inspecções diárias à caixa de velocidades da hélice, e os inspetores da FAA verificariam as asas de todos os Electra em serviço, entre outras ações.

Ao mesmo tempo, a FAA, a Lockheed e a NASA lançaram uma reavaliação abrangente de todo o projeto estrutural e certificação do Electra. A Lockheed testaria todos os membros estruturais, todos os tipos de vibração, todas as combinações de danos e vibrações, e não apenas no laboratório. Em uma série de experimentos ousados, os pilotos de teste da Lockheed (usando pára-quedas e com as portas abertas!) voaram deliberadamente um Electra em velocidade máxima na turbulência mais forte que puderam encontrar, na esteira das montanhas de Sierra Nevada, na Califórnia, enquanto um dispositivo especializado vibrava o asas, e então puxou bruscamente para cima na tentativa de quebrar as asas. Mas não importa o quanto tentassem, o avião permaneceu inteiro. Na verdade, foi no laboratório que eles finalmente encontraram a prova definitiva: um fenômeno conhecido na engenharia como “modo turbilhão”.

◊◊◊

Embora muitas vezes se afirme que a língua Inuit tem mais de 100 palavras para neve, na verdade isso não acontece; portanto, um fato um pouco menos duvidoso a ser invocado seria que os engenheiros têm mais de 100 palavras para vibrações. O “modo Whirl” é um deles.

Para entender o modo turbilhão, é útil começar observando que uma hélice, como qualquer objeto giratório, possui características giroscópicas: isto é, devido à conservação do momento angular, ela tende a resistir a qualquer esforço para mudar seu plano de rotação. Você pode ter sentido essa resistência se já tentou pegar e mover um objeto com um componente giratório rápido, como um liquidificador. Da mesma forma, a hélice de uma aeronave tentará permanecer parada quando a aeronave embarcar em uma manobra repentina; portanto, se uma aeronave em vôo nivelado levantar repentinamente o nariz, a hélice tentará momentaneamente permanecer no ângulo de inclinação original, transmitindo assim uma força de flexão para baixo em seus pontos de fixação.

O melhor diagrama que consegui encontrar do fenômeno extremamente
contra-intuitivo conhecido como precessão giroscópica (FAA)
Contra-intuitivamente, esta força descendente fará com que a hélice se mova não para baixo, mas para a esquerda, devido à precessão giroscópica. A precessão giroscópica, em termos simples, é a tendência de uma força aplicada a um objeto giratório de produzir um movimento de 90 graus na direção da força aplicada, conforme mostrado no diagrama acima. Neste caso, se você lançar uma hélice rotativa para baixo, sua rotação transformará a força de inclinação aplicada em um movimento de guinada. Se a hélice estiver girando no sentido horário, essa guinada, ou precessão, será para a esquerda, devido ao efeito Coriolis.

Agora, à medida que a hélice gira para a esquerda, a precessão giroscópica acontece novamente! Essa guinada é transformada em 90 graus em uma inclinação para cima, fazendo com que a hélice se mova para cima, onde a precessão transforma o movimento em uma guinada para a direita e depois de volta para uma inclinação para baixo, e agora você está de volta ao ponto de partida, tendo completado uma rotação completa. 360 graus. Este movimento cíclico, ou oscilação da hélice, é o que os engenheiros chamam de modo turbilhão.

Modo de giro amortecido versus não amortecido
O modo Whirl é um elemento básico para lidar com hélices, pois ocorre sempre que a inclinação do avião muda. Portanto, os engenheiros projetam hélices de modo que a tendência do modo turbilhão seja amortecida imediatamente pela estrutura circundante. Intuitivamente, uma hélice é projetada para girar em torno de apenas um eixo específico, de modo que não irá inclinar-se ou guinar muito antes que a rigidez inerente da estrutura circundante cancele ou amorteça sua oscilação. No momento em que completa alguns dos ciclos de 360 ​​graus descritos acima, ele volta ao seu estado original, porque a energia que excitou o modo de turbilhão foi toda absorvida pela estrutura circundante. Uma representação visual disso pode ser vista no diagrama à esquerda do gráfico acima.

Mas o que aconteceria se não houvesse suportes para segurar a hélice no lugar? Nesse caso, você obteria o modo de turbilhão não amortecido. O modo de turbilhão não amortecido é na verdade uma forma de vibração aeroelástica (sim, afinal, você precisava prestar atenção a essa seção!). Basicamente, se a energia aerodinâmica alimentada no sistema (o “sistema” neste caso é a hélice) for maior do que aquela que pode ser absorvida pela estrutura circundante, a amplitude de cada ciclo ou “oscilação” do modo de turbilhão aumentará sem limite em vez de ser amortecido. Uma representação visual disso pode ser vista no diagrama à direita do gráfico acima.

Neste vídeo de demonstração da NASA, um pesquisador induz o modo turbilhão em uma hélice com pontos de montagem fracos. Mais tarde, o vídeo mostra que ao diminuir a velocidade do ar que se aproxima no túnel de vento, a amplitude das oscilações foi reduzida e o modo de turbilhão foi eventualmente amortecido
Idealmente, se o modo de turbilhão não amortecido se desenvolvesse de alguma forma, ele aumentaria até que a hélice simplesmente se interrompesse e voasse para longe no grande azul. O resto do avião continuaria então para um pouso seguro. Mas, como descobriram os engenheiros da Lockheed e da NASA, o modo de rotação sem amortecimento no Electra seria na verdade catastrófico.

Durante os testes do modo turbilhão após a queda do voo 710 da Northwest Orient, os engenheiros observaram que quando o modo turbilhão não amortecido é iniciado, ele tem uma frequência de cerca de cinco ciclos por segundo. Porém, à medida que a amplitude de cada ciclo aumenta, a frequência dos ciclos começa a diminuir, porque a hélice percorre uma distância maior. E os engenheiros descobriram, para sua surpresa e horror, que a frequência do modo turbilhão tendia a se aproximar de três ciclos por segundo, onde se acoplava à frequência natural da asa, desencadeando ressonância.

Com a vibração induzida da hélice oscilante ressoando com a vibração natural da asa, a amplitude de cada oscilação começou a aumentar, para frente e para trás, repetidamente, três vezes por segundo, até que as oscilações se tornaram tão poderosas que excederam a resistência à tração da a asa, fazendo com que ela quebre em 20 a 40 segundos. De forma dramática, os engenheiros da NASA replicaram este processo e conseguiram arrancar a asa de um modelo em escala Electra num túnel de vento, como mostrado abaixo.

Os resultados da tentativa altamente bem-sucedida da NASA de replicar a
sequência de eventos que derrubaram os dois voos (NASA)
Na verdade, as marcas nos destroços apoiaram fortemente a conclusão de que foi isso que aconteceu ao voo 710 da Northwest Orient e ao voo 542 da Braniff. Os suportes das hélices de ambos os aviões foram expostos a forças imensas; numerosos membros estruturais quebraram-se em direções aleatórias, apenas para voltarem a colidir repetidamente; e várias áreas contatadas pelo conjunto da hélice oscilante exibiam marcas circulares de arranhões. No caso do voo 542, havia evidências de que a hélice estava oscilando incríveis 35 graus antes da asa se separar. Este foi um movimento tão extremo que os investigadores o rejeitaram originalmente, acreditando que uma oscilação tão grande só poderia ter se desenvolvido depois que a asa perdeu sua integridade estrutural durante a ruptura.

O modo Whirl também poderia explicar os sons ouvidos pelas testemunhas antes da queda do voo 542 da Braniff. Testes mostraram que as pontas das pás da hélice poderiam ficar supersônicas enquanto a hélice balançava, gerando o som de excesso de velocidade da hélice identificado pelas testemunhas. Além disso, como levou de 20 a 40 segundos para o modo turbilhão evoluir para uma falha catastrófica, esse som teria tido tempo de chegar às testemunhas e levá-las a olhar para cima antes que a asa se partisse, explicando por que ouviram os sons antes de verem o explosão.

O trem de pouso principal direito do voo 710 parou perto da asa (Bureau of Aircraft Accidents Archives)
No entanto, esta conclusão surpreendente levantou outra questão importante: como é que o modo de turbilhão não amortecido começou? Os testes mostraram que a estrutura ao redor da hélice deveria ser rígida o suficiente para amortecer o modo de giro na velocidade em que os aviões acidentados voavam. Na verdade, os cálculos originais da Lockheed foram verificados duas ou três vezes sem encontrar quaisquer discrepâncias. A única outra explicação, então, era que algo tinha danificado esta estrutura, reduzindo a sua rigidez – isto é, a sua capacidade de resistir à vibração aeroelástica.

As hélices do Lockheed Electra eram mantidas no lugar pela rede de suportes, escoras, reforços e painéis de revestimento que compõem a nacela do motor. No Electra, esta nacela foi construída diretamente na asa, de modo que quaisquer vibrações transmitidas à nacela foram, por definição, também transmitidas à asa. Portanto, a rigidez estrutural da própria nacela foi a principal salvaguarda contra o desenvolvimento do modo de turbilhão não amortecido que poderia entrar em ressonância com a asa.

No entanto, os testes mostraram que se certos componentes críticos fossem danificados, a rigidez da nacela cairia abaixo do nível necessário para amortecer o modo de rotação na velocidade normal de cruzeiro do Electra. A caixa de engrenagens da hélice (literalmente a caixa que contém as engrenagens de redução) foi considerada o mais crítico desses componentes porque tanto os suportes da hélice quanto os suportes laterais da nacela estavam presos a ela e, de fato, se a caixa de engrenagens falhasse, a rigidez estrutural do toda a nacela seria reduzida em 83%. Cálculos adicionais mostraram que se qualquer falha de uma peça ou combinação de peças deixasse a rigidez da nacela abaixo de 51% do normal, a oscilação da hélice no modo turbilhão induziria mais danos, enfraquecendo ainda mais a estrutura, e assim por diante, até que toda a capacidade de amortecimento se foi.

Um incêndio continuou a arder no subsolo sob a cratera de impacto do vôo 710 por vários
 dias após o acidente (Bureau of Aircraft Accidents Archives)
Os investigadores começaram agora a pesquisar os históricos de ambas as aeronaves para tentar determinar quando e como as estruturas da nacela do motor podem ter sido comprometidas. No caso do voo 710 da Northwest Orient, foi sugerido que o pouso forçado que supostamente ocorreu em Chicago naquele dia poderia ter causado danos que foram agravados por forte turbulência de ar claro, até que eventualmente a rigidez da nacela caiu abaixo do valor crítico. Nesse ponto, qualquer mudança brusca de tom como resultado da turbulência poderia ter excitado o modo de turbilhão não amortecido. Não houve prova direta deste cenário, mas algo semelhante deve ter ocorrido para explicar os sinais óbvios de turbilhão não amortecido encontrados nos destroços.

Encontrar uma resposta foi muito mais difícil no caso do voo 542 da Braniff. Esse avião estava em serviço há apenas 10 dias e não havia registros de que ele tivesse experimentado qualquer pouso forçado ou turbulência severa que pudesse ter danificado a asa ou estrutura da nacela. Nem ficou claro por que aquele voo teria experimentado uma mudança repentina de inclinação suficiente para ativar o modo turbilhão. E, além disso, a asa esquerda falhou para cima, o que era inconsistente com a vibração, ao contrário da asa direita do voo 710, que falhou na curvatura para trás.

Em relação à primeira questão, os investigadores notaram que uma semana antes do acidente, o Braniff Electra foi usado durante um voo de treinamento no qual o estagiário estragou a recuperação de um estol, desencadeando um segundo estol que apresentou golpes incomumente severos. Nenhuma inspeção foi realizada após este incidente porque o instrutor considerou insuficientemente sério para exigir uma. Curiosamente, o CAB parece ter acreditado na sua palavra, o que foi um claro sinal dos tempos. Hoje, não caberia a ele – o gravador de dados de voo seria removido, os dados seriam analisados ​​em busca de quaisquer excedências de carga G e uma inspeção seria realizada se fossem encontradas excedências. Mas como o Electra não tinha gravadores de voo e a percepção humana das cargas de voo não é muito precisa, era inteiramente possível que o impacto fosse suficientemente grave para danificar a nacela sem que o piloto se apercebesse disso.

Quanto ao que despertou o modo turbilhão e por que a asa falhou para cima em vez de para trás, os investigadores apresentaram um cenário plausível, embora não houvesse nenhuma evidência direta de uma forma ou de outra. Se ocorresse um mau funcionamento do motor, causando excesso de velocidade da hélice, este poderia ter sido o ruído ouvido pelas testemunhas, e também teria levado o capitão Wilson Stone a inclinar o avião para reduzir a velocidade no ar, o que por sua vez reduziria a velocidade da hélice. Esse aumento poderia ter excitado o modo turbilhão. Então, quando o modo de turbilhão começou a aumentar, o Capitão Stone poderia muito bem ter identificado as vibrações como vibração, fazendo com que ele aumentasse ainda mais na tentativa de reduzir ainda mais a velocidade. Isso poderia ter causado a falha ascendente da ala esquerda, pois já estava enfraquecida pelas oscilações.

Algumas das mudanças feitas no design do Electra após os acidentes
(Imagens originais da Lockheed, publicadas em “Air Disasters: Volume 4” de Macarthur Job)
No final, porém, tudo isso foi apenas especulação. A única coisa sobre a qual os investigadores podiam ter certeza era que o modo de turbilhão não amortecido, em ressonância com a frequência natural da asa, havia derrubado os dois aviões. Além disso, este modo de falha só poderia ocorrer em altas velocidades, onde a energia do fluxo de ar era maior, justificando a decisão do administrador da FAA, Elwood Quesada, de restringir o Electra a baixas velocidades. Agora a questão era o que a Lockheed faria a respeito.

Assim que a causa foi encontrada, a Lockheed informou todos os operadores da Electra sobre a descoberta e anunciou imediatamente que cobriria todos os custos das modificações necessárias. Essas correções incluíram inúmeras alterações na nacela para aumentar sua rigidez, mesmo com múltiplos componentes danificados, como aumentar o número de escoras de apoio de duas para cinco, bem como melhorias significativas na rigidez da própria asa, projetadas para evitar que ela desmorone. quebrando mesmo que o modo de turbilhão não amortecido acontecesse de alguma forma. Houve dezenas de mudanças no total, algumas das quais são mostradas nos diagramas acima e abaixo.

Após as mudanças, a Lockheed realizou mais uma rodada de testes rigorosos para comprovar que as modificações haviam resolvido o problema. Em um teste, eles quebraram deliberadamente a caixa de câmbio da hélice; embora isto anteriormente tivesse reduzido a rigidez da nacela em 83%, a redução era agora de apenas 4%. Em outro teste, eles afrouxaram uma hélice para incitar o modo de turbilhão violento, mas a nacele recém-endurecida amorteceu a oscilação imediatamente. Finalmente, eles enfraqueceram deliberadamente a nacela, incitaram o modo de turbilhão na hélice e voaram em velocidade máxima para a onda da Sierra, mas ainda assim a asa reforçada manteve-se unida. Depois, só para ter certeza, fizeram isso mais seis vezes, com o mesmo resultado. Depois disso, todas as dúvidas desapareceram. As restrições de velocidade foram levantadas para Electras modificados e a Lockheed abriu uma nova linha de montagem em sua fábrica em Burbank para implementar as mudanças. Em setembro de 1961, toda a frota foi reformada com sucesso.

Um diagrama das melhorias na rigidez da asa
(Imagens originais da Lockheed, publicadas em “Air Disasters: Volume 4” de Macarthur Job)
◊◊◊

Resolver o problema foi metade da batalha – a outra metade foi convencer o público. Apesar das repetidas declarações a favor do avião por parte da FAA, das companhias aéreas e do sindicato dos pilotos, o cepticismo era profundo, por razões óbvias. Antes da implementação das correções, milhares de passageiros cancelaram ou transferiram deliberadamente os seus bilhetes depois de descobrirem que tinham sido reservados num Electra. Os factores de carga da Electras caíram vertiginosamente. Os comediantes contaram “piadas da Electra” (“Você leu o novo livro da Electra: 'Olha mãe, sem asas'?”). Mesmo depois de a causa ter sido anunciada, esta atitude persistiu, compreensivelmente. Mais dois acidentes do Electra em 1960 e 1961, um devido a uma colisão com um pássaro e outro devido a um erro de manutenção, exacerbaram ainda mais a reputação duvidosa do avião, embora a Lockheed não tenha sido culpada em nenhum deles. Na verdade, a falta de culpabilidade óbvia da Lockheed nestes acidentes apenas aumentou a noção mística de que o Electra foi de alguma forma amaldiçoado desde o início.

Entretanto, havia também a questão da responsabilidade legal. Nesta frente, a Lockheed acabou numa contundente disputa legal com a divisão Allison da General Motors, que fabricava os motores e as hélices, sobre quem deveria assumir a responsabilidade pelos dois desastres. A Lockheed argumentou que as falhas nas caixas de câmbio das hélices de Allison causaram o modo de rotação, enquanto Allison afirmou que o modo de rotação, se é que aconteceu, só levou aos acidentes porque a asa da Lockheed estava muito fraca. Uma série de argumentos interessantes foram apresentados, incluindo alegações de que a asa do Electra só passou nos testes de resistência à vibração exigidos por um detalhe técnico. Por sua vez, o vice-presidente da Lockheed chamou as acusações de Allison de “totalmente falsas” e afirmou que o modo turbilhão era tão violento que “teria falhado uma asa feita de ferro fundido”.

A American Airlines conduziu voos turísticos da Electra para tentar melhorar a reputação pública da aeronave. Durante esses voos, esses modelos Electra foram distribuídos para crianças que conseguiam adivinhar a velocidade e altitude atuais do avião. Os modelos normalmente custavam US$ 1,00 (Worthpoint)
No final, o tribunal dividiu a culpa em 50-50, as famílias das vítimas receberam o pagamento e o número de passageiros da Electra finalmente voltou ao normal. Mas restaram alguns ângulos de análise que não foram seguidos na altura, mas que, em retrospectiva, deveriam ser considerados. Uma delas foi a adequação da supervisão regulatória da Lockheed. Quando o Electra foi certificado originalmente em 1957, a FAA ainda não existia; este esforço foi efectivamente realizado pela sua antecessora, a Agência de Aviação Civil, que tinha autoridade muito mais limitada, menos pessoal e menos capacidade de supervisão. Deveria ter detectado a vulnerabilidade do Electra ao modo turbilhão? Um livro sobre os acidentes, publicado em 1963, argumentou que isso não poderia ter acontecido, porque, na prática, todos os testes de certificação foram delegados ao fabricante (em uma extensão ainda maior do que hoje), e os inspetores da CAA simplesmente revisaram os resultados. Além disso, não estava claro se algum dos testes exigidos para a certificação teria revelado o perigo de qualquer maneira.

E depois há a questão de por que as naceles eram tão fracas em primeiro lugar. Para que duas nacelas tenham sido enfraquecidas o suficiente para permitir o modo de rotação sem amortecimento durante os primeiros quatorze meses de serviço do avião, seu projeto deve ter sido deficiente. Outras aeronaves certamente não tiveram esse problema. E, no entanto, nem o relatório do CAB, nem o livro, nem qualquer outra fonte de informação sobre a saga Electra levanta sequer esta questão. Na verdade, a maioria destas fontes elogiou a dedicação da Lockheed em resolver o problema e enfatizou a crença partilhada entre os fabricantes de que o que aconteceu à Lockheed poderia ter acontecido a qualquer um deles. Mas foi realmente esse o caso? Foi realmente correto dizer que esses acidentes não poderiam ter sido previstos? “A nacela é forte o suficiente para fazer um pouso forçado” parece uma pergunta que a Lockheed deveria ter feito.

◊◊◊

A NOAA usa P-3 Orions fortemente modificados para penetrar em furacões (Seeker)
Apesar de seu início difícil, o L-188 Electra finalmente alcançou uma vida útil longa e próspera, filtrando seu caminho através das principais companhias aéreas dos EUA, passando por pequenas companhias aéreas estrangeiras e fretando de terceiro nível, onde sua reputação de robustez - sem dúvida, em parte, resultado do modificações feitas após os acidentes no modo turbilhão – concederam-lhe longevidade adicional. Vários Electras ainda estão em condições de aeronavegabilidade hoje, incluindo alguns que transportam carga para a Buffalo Airways no norte do Canadá. Outros foram convertidos em aviões-tanque. Uma variante militar do Electra, o P-3 Orion, ainda está em serviço ativo em muitas forças armadas em todo o mundo. Os P-3 Orions especialmente modificados também são usados ​​pela Administração Oceanográfica e Atmosférica Nacional para realizar voos de reconhecimento em furacões. Restam aviões suficientes, e seus casos de uso são suficientemente específicos, para que Electras e Orions provavelmente continuem a operar por muitos anos ainda.

Essa longevidade ocorreu apesar do fato de que a Lockheed nunca recebeu outro pedido do Electra depois de março de 1960 e encerrou a linha de produção com o número de série 170. Recontagens modernas muitas vezes implicam que nenhum outro Electra foi encomendado por causa dos acidentes, mas relatos contemporâneos refutam isso: aparentemente a Lockheed acreditava que o mercado para o seu grande turboélice de quatro motores já estava saturado, e os executivos decidiram parar de receber encomendas poucas horas antes da queda do voo 710, sem saberem o que estava por vir. Ou esta história poderia ter sido a Lockheed tentando salvar a face – quem pode dizer?

Um memorial às vítimas do voo 710 da Northwest Orient agora fica perto do
local do acidente, no sul de Indiana (Sarah Ewart)
Em qualquer caso, já faz tempo suficiente que esta questão seja assunto para historiadores e não para jornalistas. Seis décadas de águas passadas distanciaram-nos a todos das tragédias gémeas e de quaisquer erros humanos que as possam ter causado. A passagem do tempo, inteiramente sem acidentes repetidos, também provou que o modo turbilhão, a ressonância e a vibração são problemas resolvidos em grandes aeronaves de transporte. Esse fato deve nos fazer apreciar os engenheiros aeroespaciais que não apenas precisam entender a física descrita neste artigo, mas também trabalhar com ela e em torno dela na vida real. 

O cidadão comum que viaja provavelmente não percebe que é preciso fazer milagres para evitar que os aviões se desintegrem por vibração. Os pilotos daquela época, ou mesmo desta, provavelmente também não entenderam isso. As tripulações do voo 542 da Braniff e do voo 710 da Northwest Orient não tiveram suas palavras finais preservadas para a posteridade, mas certamente devemos imaginar que deixaram este mundo confusos e aterrorizados. Ressonância, vibração aeroelástica, modo de turbilhão, precessão giroscópica, efeito Coriolis – todos esses conceitos que poderiam levar horas ou dias para serem explicados se juntaram e mataram eles e seus passageiros em menos de 40 segundos. Na verdade, a física, por vezes ridicularizada como enfadonha, não aceita bem os desinteressados ​​– por vezes, exige apenas medo.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos) com informações de Admiral Cloudberg

Vídeo: O Acidente inevitável do avião da FAMA


Na noite quente de 10 de junho de 1947, um brilho cruzou o céu de Natal. Um quadrimotor britânico, trazendo diplomatas, correspondência internacional e uma tripulação experiente, se aproximava do aeroporto de Parnamirim para mais uma escala transatlântica. Mas segundos depois do toque na pista… uma explosão iluminou o litoral potiguar.

4 aeronaves militares dos EUA que podem ficar obsoletas em uma guerra de pares com a China


Que aeronave militar dos EUA seria obsoleta (no sentido de ser proibitivamente vulnerável) em uma guerra contra a China? As aeronaves listadas abaixo não são necessariamente obsoletas em outras guerras em espaços aéreos menos disputados. Por exemplo, o A-10 Warthog e o AC-130J provavelmente permanecerão muito úteis ao combater ambientes de baixa ameaça contra insurgentes.

Também deve ser notado que uma grande porcentagem da Força Aérea Chinesa (no mínimo, o Shenyang J-8 e o Chengdu J-7) também ficaria obsoleta em uma guerra contra os EUA. Abaixo está uma lista incompleta. Outras aeronaves, como o avião espião U-2 Dragon Lady ainda em voo , provavelmente também seriam mantidas longe de qualquer zona de conflito com a China.

1. A-10 Warthog


Aproximadamente 282 A-10 estão em serviço
  • Papel: Apoio aéreo aproximado
  • Entrada em serviço: Outubro de 1977
  • Futuro: Aposentado até 2028-2029
Poucas aeronaves são tão amadas e incendeiam as seções de comentários online tanto quanto o Fairchild Republic A-10 Thunderbolt II. A aeronave é uma maravilha da engenharia e seu canhão é simplesmente legal. No debate sobre se o A-10 ainda é relevante, os oponentes podem ir tão longe a ponto de dizer que ele sempre foi obsoleto e insustentável (só que ele nunca viu serviço contra um adversário igual para descobrir - o Iraque em 1991 não conta, pois sua defesa aérea foi completamente desmontada). 

Independentemente disso, a Força Aérea dos Estados Unidos está agora no processo de alienar seus 282 restantes (outros 56 devem ser aposentados em 2025).

Foto em close de uma aeronave A-10 vista de frente (Foto: USAF)
Embora o A-10 possa suportar muita punição, é difícil ver como ele poderia operar nas inevitavelmente formidáveis ​​redes de defesa aérea que os chineses estabeleceriam. Se os A-10 fossem lançados em batalha — digamos, contra um desembarque anfíbio chinês — é difícil imaginar qualquer outro resultado além de serem abatidos em grandes números. O jato ainda é uma parte fundamental das operações de ataque terrestre da Força Aérea dos EUA.

2. AC-130J Ghostrider


Aproximadamente 32 AC-130Js estão em serviço
  • Papel: Navio de ataque terrestre e apoio aéreo aproximado
  • Entrada em serviço: 1968 (AC-130A) - 2017 (AC-130J)
  • Futuro: Em serviço para o futuro previsível
Os problemas com o AC-130J Ghostrider são muito parecidos com os do AC-10. Embora ofereça uma enorme quantidade de poder de fogo de apoio terrestre, é pouco mais do que um alvo fácil para a defesa aérea moderna. Isso não quer dizer que o Ghostrider seja indefeso e não possa se defender (a última variante tem mísseis Hellfire, contramedidas infravermelhas e contramedidas de radiofrequência).

A razão pela qual o AC-130J está listado aqui e não o B-52 Superfortress é que o AC-130J só pode ser usado para apoio aéreo aproximado. Em contraste, o B-52 pode ser usado para lançar mísseis stand-off de fora do espaço aéreo contestado.

AC-130 em treinamento (Foto: Aviador Sênior Julianne Showalter/Wikimedia Commons)
Embora o Ghostrider possa não ser útil em uma guerra no Pacífico Leste, isso não significa que ele esteja obsoleto. A Força Aérea acaba de modernizar sua frota de cerca de 32 AC-130Js, com a última aeronave atualizada prevista para ser entregue em 2024. 

É provável que o Ghostrider entre em ação nos próximos anos. O AC-130J Ghostrider reina como o rei dos helicópteros de ataque modernos e fornecerá fogo concentrado e em massa para apoio terrestre nos próximos anos.

3. MQ-9 Reaper


Cerca de 50 MQ-9 Reapers estão em serviço na Força Aérea
  • Papel: Veículo aéreo de combate não tripulado (ataques aéreos e vigilância)
  • Entrada em serviço: 2007
  • Futuro: Permanecer em serviço até 2035
O MQ-9 Reaper é listado como obsoleto em uma guerra com a China por dois motivos. Primeiro, ele é vulnerável e, segundo, é caro - custando cerca de US$ 30 milhões cada (cerca de metade do custo de um novo jato de combate F-16 Block 70/72). 

A vulnerabilidade do Reaper ficou totalmente exposta em 2024 sobre o Iêmen, onde os rebeldes Houthis de baixa tecnologia abateram talvez dezenas de Reapers (o número exato é incerto, pois a Força Aérea nem sempre confirma as perdas e os Houthis rotineiramente exageram). Sabe-se que os Houthis abateram MQ-9s em 2017, 2019, 2023 e 2024. No momento em que este artigo foi escrito, novos relatórios nas últimas 24 horas sugerem que outro pode ter sido abatido.

MQ-9 (Foto: Força Aérea dos Estados Unidos)
Enquanto isso, o custo do Reaper significa que ele não pode ser usado como um drone descartável barato. Em caso de guerra com a China, os EUA precisarão usar ativos que sejam mais sobreviventes (por exemplo, furtivos) e/ou mais baratos para que perdê-los não seja um problema. A Força Aérea dos EUA está trabalhando para desenvolver uma variedade de drones furtivos - como o drone espião XQR-73 da DARPA. 

O fato de a Índia estar comprando o MQ-9 Reaper sugere que ele será útil por muitos anos (por exemplo, com missões de patrulha), mas provavelmente não pode ser usado em espaço aéreo contestado. A Índia espera usar seus novos drones para combater a China, inclusive na área do Oceano Índico.

4. AV-8B Harrier II


Aproximadamente 87 Harrier IIs permanecem em serviço
  • Papel: Aeronave de ataque ao solo
  • Entrada em serviço: Novembro de 1981
  • Futuro: Aposentar-se até 2027
O AV-8B Harrier II pode não ser tão obsoleto quanto o STOVL F-35B o supera enormemente. Em uma guerra peer-on-peer, os fuzileiros navais provavelmente lutariam com o F-35B, se possível. O V/STOL Harrier (e seu equivalente britânico, o Sea Harrier) são icônicos - e são particularmente lembrados por seu papel na Guerra das Malvinas de 1982. 

Os britânicos aposentaram o Harrier em 2010, e agora os italianos e os fuzileiros navais dos EUA estão eliminando-os e aposentando-os. Mas eles ainda não terminaram, pois viram ação contra drones Houthi no Mar Vermelho em 2024.

AV-8B Harrier com o Esquadrão de Ataque de Fuzileiros Navais (Foto: Aqeela_Image/Shutterstock)
O F-35B é um salto quântico sobre o Harrier - enxergando mais longe e atirando mais longe. O F-35B não é apenas um super sensor e supercomputador voador furtivo, mas o F-35B também tem uma carga útil de armas de 15.000 libras (contra 9.200 libras do Harrier) e um alcance de combate de 770 milhas (contra 350 milhas do Harrier). 

A ameaça de mísseis antinavio pode empurrar a Marinha dos EUA para mais longe da zona de conflito, tornando o alcance de suas aeronaves ainda mais crítico. No ar, a família F-35 é uma plataforma formidável e sobrevivente; no solo, é um alvo fácil, e sua maior ameaça é considerada mísseis chineses destruindo-os no solo.

Com informações do Simple Flying

Homem morre durante voo e avião precisa fazer pouso de emergência em Recife (PE)

Um voo internacional da Turkish Airlines que partiu de Istambul com destino a São Paulo precisou realizar um pouso não programado no Aeroporto Internacional do Recife, na madrugada desta quarta-feira (4), após um passageiro apresentar um grave problema de saúde a bordo. 

(Imagem: AirNav Radar)
A aeronave, o Airbus A350-941, prefixo TC-LRG, da Turkish Airlines, tocou o solo por volta das 2h40 para permitir o atendimento médico urgente.

De acordo com informações da Aena Brasil enviadas ao Portal iG, empresa responsável pela administração do terminal pernambucano, a decisão pelo pouso foi tomada pela tripulação depois que a situação clínica do passageiro se agravou durante a viagem. Assim que o avião estacionou, equipes do serviço de Atendimento Pré-Hospitalar do aeroporto foram acionadas para prestar auxílio.


O passageiro já vinha recebendo suporte de médicos que estavam no voo, os quais iniciaram os procedimentos de reanimação ainda na aeronave. Com a chegada das equipes em solo, as tentativas de socorro foram mantidas, porém, apesar de todos os esforços, a morte foi constatada no local.

Após a conclusão dos protocolos necessários, a aeronave foi liberada para seguir viagem, decolando novamente rumo a São Paulo por volta das 4h35, quase duas horas depois da parada emergencial.

Confira anota na íntegra: 

"Na madrugada desta quinta-feira (4), às 2h38, o voo THY215 Istambul-São Paulo, operado pela Turkish Airlines, fez um pouso não programado no Aeroporto Internacional do Recife por conta de uma emergência médica. A equipe do Posto de Atendimento Pré-Hospitalar do aeroporto foi acionada para atendimento a um passageiro, que já estava sendo assistido por médicos a bordo. Os profissionais locais deram continuidade aos procedimentos de reanimação iniciados durante o voo, mas constataram o óbito do passageiro. A aeronave decolou da capital pernambucana às 4h36 e seguiu para o destino inicial."

Via Portal iG e Aeroin

Avião faz pouso de emergência logo após decolagem no aeroporto de Navegantes (SC)

Procedimento foi feito em total segurança, conforme companhia aérea.

Vídeo registrou momento em que avião retorna após decolagem em Navegantes
(Foto: Diego Ronchi Seger/Reprodução)
O avião Embraer ERJ-190-200LR (E195AR), prefixo PR-AXP, da Azul, precisou fazer um pouso de emergência no Aeroporto Ministro Victor Konder, em Navegantes, o principal do Litoral Norte de Santa Catarina, na tarde de terça-feira (2). A aeronave decolou às 14h47 e, pouco depois, o piloto pediu reserva de pista. Com isso, o aeroporto ficou bloqueado para pousos e decolagens até o retorno da aeronave, que ocorreu 40 minutos depois.

A companhia aérea Azul, responsável pela aeronave, disse em nota que o procedimento aconteceu em "total segurança". Segundo a administradora do aeroporto, o voo 4630 sairia de Navegantes em direção a Viracopos, em Campinas, no interior de São Paulo.


A aterrissagem de emergência foi acompanhada por equipes dos bombeiros e operacional do aeroporto. A pista foi liberada às 15h50 após inspeção da aeronave. Os demais pousos e decolagens ocorreram na sequência.

Ainda na nota, a Azul disse que a aterrissagem de emergência ocorreu por "questões técnicas". Por causa delas, precisou retornar ao aeroporto de origem.

Declarou ainda que "medidas como essas são necessárias para garantir a segurança de suas operações, valor primordial para a Azul".


Veja abaixo a nota da companhia na íntegra.

“A Azul informa que, por questões técnicas, o voo AD4630 (Navegantes-Viracopos) precisou retornar para o aeroporto de origem. A tripulação declarou emergência, preventivamente, e o pouso aconteceu em total segurança.  Após inspeção dos bombeiros a aeronave seguiu para posição de parada normalmente. A companhia lamenta eventuais transtornos e reforça que medidas como essas são necessárias para garantir a segurança de suas operações, valor primordial para a Azul”.

Via g1 e NSC Total

Vídeo: Entrevista - O chefe - A História de uma lenda na Esquadrilha da Fumaça


Geraldo Ribeiro Jr, foi uma lenda no time da Esquadrilha da Fumaça. Conhecido com "CHEFE" ele tinha personalidade marcante, líder nato de esquadrilha. Voou todos os modelos do EDA, infelizmente não teve tempo de voar o A29 Super Tucano. Também foi o responsável pela a introdução do Tucano T27 no EDA.

Via Canal Porta de Hangar de Ricardo Beccari

Aconteceu em 5 de dezembro de 1995: Voo Azerbaijan Airlines 56 - Queda de Tupolev deixa 52 mortos

Um Tupolev Tu-134B-3 similar ao envolvido no acidente (Foto: Tomasz Kozakowski)
O voo 56 da Azerbaijan Airlines era um voo doméstico regular de Nakhchivan para Baku, ambas localidades do Azerbaijão, operado pela Azerbaijan Airlines, que caiu em 5 de dezembro de 1995, matando 52 pessoas.

O avião envolvido no acidente era o Tupolev Tu-134B-3, prefixo 4K-65703, da Azerbaijan Airlines, que foi fabricado em 28 de agosto de 1980 e era movido por dois motores turbofan Soloviev D-30. 

A aeronave tinha 35.000 horas de voo antes do acidente e teve sua última manutenção em realizada em 25 de julho de 1995. Um reparo não especificado foi realizado em 30 de março de 1993. O motor nº 1 motor (esquerdo) passou por oito reparos não especificados e o motor nº 2 (à direita) realizou cinco reparos não especificados antes do acidente.

O voo partiu de Baku às 15h28, chegando a Nakhichevan às 16h37 após um voo sem intercorrências. O avião foi reabastecido e preparado para o voo de volta a Baku. O copiloto seria o piloto no comando. 

O avião decolou às 17h52, levando a bordo 76 passageiros e seis tripulantes. Ao escalar uma altura de 60 metros após a decolagem e a uma velocidade no ar de 317 km/h, o motor nº 1 falhou. 

O copiloto reagiu contrariando a margem esquerda e cinco segundos depois o engenheiro de voo relatou que o motor direito (nº 2) havia falhado. O capitão, então, assumiu o controle do avião. 

Como o copiloto tinha contra-atacado a margem esquerda, o capitão não tinha informações sensoriais que o alertassem de que era o motor esquerdo que havia falhado. 

O avião continuou a subir 140 metros, passando por uma camada de névoa após a qual o comandante ordenou que o motor do lado direito fosse desligado. O engenheiro de voo retardou a aceleração certa e percebeu que a potência do motor em operação estava diminuindo. Ele trouxe o acelerador de volta à posição original, mas o motor já havia parado.

Oito segundos depois, o engenheiro de voo relatou que ambos os motores haviam falhado. O avião havia alcançado uma altitude de 197 metros e a velocidade havia diminuído para 290 km/h. O capitão decidiu então fazer um pouso forçado.

O avião foi então manobrado para um pouso forçado durante o qual uma curva fechada à direita foi feita para evitar um bloco de apartamentos. Em uma margem direita de 37 graus com uma taxa de descida de 10 m/s (1960 pés/min), o avião colidiu contra um campo na periferia sudoeste de Nakhichevan, no Azerbaijão, a 3.850 m da pista

Cinquenta passageiros e dois tripulantes morreram na queda. Vinte e seis passageiros e quatro tripulantes sobreviveram ao desastre.

Uma investigação conjunta do Comitê de Aviação Interestadual Russa, a fabricante de aeronaves, a fabricante de motores e o Ministério de Segurança Nacional do Azerbaijão foi lançada. 

A Azerbaijan Airlines acredita que peças sobressalentes defeituosas causaram o acidente. A comissão de investigação conjunta descobriu que a vibração fez com que as porcas nos suportes do motor se soltassem e caíssem. Isso fez com que as turbinas do motor mudassem de posição e ficassem danificadas, levando ao acidente. 

O vice-chefe da Azerbaijan Airlines, Nazim Javadov, no entanto, disse que o uso das peças defeituosas para reparos foi permitido pelo fabricante do motor, a empresa russa Perm Motors.

O acidente foi o pior acidente da Azerbaijan Airlines. A companhia aérea não opera mais o Tu-134.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia e ASN

Vídeo: Documentário BBC - "O Triângulo das Bermudas sob as ondas"


Ative a legenda em português nas configurações do vídeo

Caso tenha dificuldade em ativar a legenda, veja este tutorial:

Aconteceu em 5 de dezembro de 1945: O mistério do voo 19 - O desaparecimento dos aviões da Marinha dos EUA no Triângulo das Bermudas


O voo 19 foi a designação de um grupo de cinco torpedeiros General Motors Grumman TBM Avenger que desapareceram sobre o Triângulo das Bermudas em 5 de dezembro de 1945, após perder contato durante um voo de treinamento de navegação sobre a água da Marinha dos Estados Unidos a partir da Estação Aérea Naval de Fort Lauderdale, na Flórida. Todos os 14 aviadores navais do voo foram perdidos, assim como todos os 13 tripulantes de um hidroavião Martin PBM Mariner que posteriormente partiu da Estação Aérea Naval de Banana River para procurar o voo 19.

Um voo semelhante de cinco Grumman TBF Avengers

Um relatório de investigadores da Marinha concluiu que o líder do voo, tenente Charles C. Taylor, confundiu pequenas ilhas offshore com Florida Keys depois que suas bússolas pararam de funcionar, resultando no vôo sobre o mar aberto e longe da terra. O relatório foi posteriormente alterado pela Marinha para ser "causa desconhecida" para evitar culpar Taylor pela perda de cinco aeronaves e 14 homens. O relatório atribuiu a perda da aeronave de busca PBM a uma explosão no ar durante a busca pelo voo.

Voo de treinamento de navegação


O voo 19 realizou um exercício de rotina de navegação e treinamento de combate em aeronaves do tipo TBM. A tarefa foi chamada de "Problema de navegação nº 1", uma combinação de bombardeio e navegação que outros voos haviam concluído ou estavam programados para realizar naquele dia. 

O líder do voo, Tenente da Marinha dos Estados Unidos Charles Carroll Taylor (foto ao lado), tinha cerca de 2.500 horas de voo, principalmente em aeronaves deste tipo, enquanto seus pilotos estagiários tinham cada um 300 no total e 60 horas de voo no Avenger.

Taylor completou uma viagem de combate no teatro do Pacífico como piloto de torpedeiro no porta-aviões USS Hancock e recentemente chegou do NAS Miami, onde também foi instrutor de VTB (avião de bombardeio de torpedo). 

Os alunos pilotos haviam concluído recentemente outras missões de treinamento na área onde seria realizado o voo. Eles eram os capitães da Marinha dos EUA Edward Joseph Powers e George William Stivers, o segundo-tenente da Marinha dos EUA Forrest James Gerber e o alferes da USN Joseph Tipton Bossi.

Os integrantes do voo 19
As aeronaves eram três TBM-1Cs (BuNo 45714, 'FT3'; BuNo 46325, 'FT81'; BuNo 73209, 'FT117'), um TBM-1E (BuNo 46094, 'FT36'); e um TBM-3 (BuNo 23307, 'FT28'). Cada aeronave era uma versão do Grumman TBF Avenger, construído pela Eastern Aircraft Division da General Motors sob licença de produção durante a guerra. 


Sob o sistema de designação de aeronaves da Marinha dos EUA usado durante a Segunda Guerra Mundial, os Avengers construídos pela Grumman foram designados TBF e as aeronaves construídas pela GM, como estas, foram designadas TBM. 

Cada um estava totalmente abastecido e, durante as verificações pré-voo, descobriu-se que todos estavam com relógios faltando. A navegação da rota pretendia ensinar princípios de cálculo morto, que envolviam o cálculo, entre outras coisas, do tempo decorrido. A aparente falta de equipamento de cronometragem não era motivo de preocupação, pois presumia-se que cada homem tinha o seu próprio relógio. 


A decolagem estava marcada para as 13h45, horário local, mas a chegada tardia de Taylor atrasou a partida para as 14h10. O clima no NAS Fort Lauderdale foi descrito como "favorável, estado do mar moderado a agitado". Taylor estava supervisionando a missão, e um piloto estagiário tinha o papel de líder na frente.

O exercício envolveu três etapas, sendo que o vôo realizou quatro, sendo a quarta retornando ao NAS Ft. Lauderdale depois de chegar à costa da Flórida. Após a decolagem, eles voaram na direção 091° (quase leste) por 56 milhas náuticas (64 mi; 104 km) até chegar a Hens and Chickens Shoals, comumente chamados de Chicken Rocks, onde foram realizadas práticas de bombardeio de baixo nível. 

O voo deveria continuar nessa direção por mais 67 milhas náuticas (77 milhas; 124 km) antes de virar para um curso de 346° por 73 milhas náuticas (84 milhas; 135 km), no processo sobrevoando a ilha de Grand Bahama. A próxima curva programada foi para um rumo de 241° para voar 120 milhas náuticas (140 mi; 220 km) ao final da qual o exercício foi concluído, e os Vingadores virariam à esquerda para retornar ao NAS Ft. Lauderdale.


De acordo com o mapa acima, o exercício de navegação programado do voo 19 foi em 5 de dezembro de 1945, foi assim:
  1. Deixe NAS Fort Lauderdale às 14h10 na direção 091° por 56 milhas náuticas (104 km), jogue bombas em cardumes de Hens and Chickens (B) até cerca de 15h. continue na direção 091° por 67 milhas náuticas (124 km).
  2. Vire à esquerda para a direção 346° e voe 73 milhas náuticas (135 km).
  3. Vire à esquerda na direção 241° por 120 milhas náuticas (222 km) para encerrar o exercício ao norte do NAS Fort Lauderdale.
  4. A triangulação de rádio às 17h50 estabelece a posição do voo dentro de 50 milhas náuticas (93 km) de 29°N 79°W e seu último curso relatado, 270°. 
  5. PBM Mariner deixa NAS Banana River às 19h27.
  6. Às 19h50, Mariner explode perto de 28°N 80°W.
As conversas de rádio entre os pilotos foram ouvidas pela base e outras aeronaves na área. Sabe-se que a operação prática de bombardeamento foi realizada porque, por volta das 15h00, um piloto solicitou e obteve autorização para lançar a sua última bomba. Quarenta minutos depois, outro instrutor de voo, o Tenente Robert F. Cox no FT-74, que estava se formando com seu grupo de alunos para a mesma missão, recebeu uma transmissão não identificada.

Um membro da tripulação não identificado perguntou a Powers, um dos alunos, a leitura da bússola. Powers respondeu: "Não sei onde estamos. Devemos ter nos perdido depois daquela última curva." 

Cox então transmitiu; "Aqui é FT-74, avião ou barco chamando 'Powers', identifique-se para que alguém possa ajudá-lo." A resposta depois de alguns momentos foi um pedido de sugestões dos demais no voo. 

O FT-74 tentou novamente e um homem identificado como FT-28 (Taylor) apareceu. "FT-28, aqui é FT-74, qual é o seu problema?" 

"Ambas as minhas bússolas estão erradas", respondeu Taylor, "e estou tentando encontrar Fort Lauderdale, Flórida. Estou sobre terra, mas está quebrada. Tenho certeza de que estou em Keys, mas não sei a que distância e não sei como chegar a Fort Lauderdale."

O FT-74 informou ao NAS que as aeronaves foram perdidas, então aconselhou Taylor a colocar o sol em sua asa de bombordo e voar para o norte, subindo a costa até Fort Lauderdale. 

As operações da base então perguntaram se a aeronave do líder do voo estava equipada com um YG padrão (transmissor IFF), que poderia ser usado para triangular a posição do voo, mas a mensagem não foi reconhecida pelo FT-28 (Mais tarde, ele indicaria que seu transmissor estava ativado).

Em vez disso, às 16h45, o FT-28 comunicou pelo rádio: "Estamos indo 030 graus por 45 minutos, depois voaremos para o norte para ter certeza de que não estamos sobre o Golfo do México." 

Durante esse período, nenhuma orientação pôde ser feita no voo e o IFF não pôde ser recolhido. Taylor foi instruído a transmitir em 4.805 kHz. Esta ordem não foi reconhecida, então ele foi solicitado a mudar para 3.000 kHz, a frequência de busca e salvamento. Taylor respondeu - "Não posso mudar de frequência. Devo manter meus aviões intactos."

Às 16h56, Taylor foi novamente solicitado a ligar seu transmissor para YG , se ele tivesse um. Ele não reconheceu, mas, alguns minutos depois, aconselhou seu voo "Mude o curso para 090 graus (para leste) por 10 minutos." 

Quase ao mesmo tempo, alguém no voo disse: "Droga, se pudéssemos voar para oeste, chegaríamos em casa; siga para oeste, droga."

Esta diferença de opinião mais tarde levou a questões sobre por que os estudantes simplesmente não seguiram para o oeste por conta própria. Foi explicado que isto pode ser atribuído à disciplina militar. 

À medida que o tempo piorava, o contato de rádio tornou-se intermitente e acreditava-se que as cinco aeronaves neste ponto estavam a mais de 200 milhas náuticas (230 milhas; 370 km) mar adentro, a leste da península da Flórida. 

Taylor comunicou pelo rádio "Vamos voar 270 graus oeste até pousar ou ficar sem gasolina" e solicitou uma verificação do tempo às 17h24. 

Às 17h50, várias estações de rádio terrestres triangularam a posição do voo 19 como estando dentro de um raio de 100 milhas náuticas (120 milhas; 190 km) de 29°N 79°W; O voo 19 ocorreu ao norte das Bahamas e bem longe da costa central da Flórida.

Às 18h04, Taylor comunicou por rádio para seu voo "Esperando 270. Não voamos longe o suficiente para o leste; podemos muito bem dar meia-volta e voar para o leste novamente". 

Nessa altura, o tempo tinha piorado ainda mais e o sol tinha-se posto. Por volta das 18h20, a última mensagem de Taylor foi recebida (Também foi relatado que a última mensagem de Taylor foi recebida às 19h04). Ele foi ouvido dizendo: "Todos os aviões fiquem próximos... teremos que pousar, a menos que amerissem... quando o primeiro avião cair abaixo de 10 galões [38 litros], todos nós afundamos juntos." 

Quando ficou óbvio que o voo 19 estava perdido, bases aéreas, aeronaves e navios mercantes foram alertados. Um Consolidated PBY Catalina partiu depois das 18h para procurar o voo 19 e guiá-los de volta, caso pudessem ser localizados. 

Depois de escurecer, dois hidroaviões Martin PBM Mariner originalmente programados para seus próprios voos de treinamento foram desviados para realizar buscas de padrão quadrado na área a oeste de 29°N 79°W. 

O avião Martin PBM-5 prefixo 59225 do Esquadrão de Treinamento da Marinha dos EUA nº 49, decolou às 19h27 da Estação Aérea Naval Banana River (agora Base da Força Espacial Patrick), fez um chamada de rádio de rotina às 19h30 e nunca foi ouvido de novo.

Um Martin PBM-5 Mariner semelhante ao de nº 59225
Às 21h15, o navio-tanque SS Gaines Mills relatou ter observado chamas de uma aparente explosão saltando de 100 pés (30 m) de altura e queimando por 10 minutos, na posição 28,59°N 80,25°W. A capitã Shonna Stanley relatou uma busca sem sucesso por sobreviventes em uma poça de petróleo e gasolina de aviação. O porta-aviões de escolta USS Solomons também relatou a perda de contato radar com uma aeronave na mesma posição e horário.

Investigação


Um relatório de 500 páginas do conselho de investigação da Marinha publicado alguns meses depois fez várias observações:
  • O líder do voo, tenente Charles C. Taylor, acreditou erroneamente que as pequenas ilhas pelas quais ele passou eram Florida Keys, que seu voo sobrevoaria o Golfo do México e que seguir para nordeste os levaria à Flórida. Foi determinado que Taylor havia passado pelas Bahamas conforme programado e, de fato, liderou seu vôo para o nordeste sobre o Atlântico. O relatório observou que alguns oficiais subordinados provavelmente conheciam a sua posição aproximada, conforme indicado pelas transmissões de rádio afirmando que voar para oeste resultaria na chegada ao continente.
  • Conforme observado no relatório, Taylor recusou-se a mudar a frequência de treinamento de rádio para a frequência de rádio de busca e salvamento (A frequência de treinamento era difícil de usar devido à interferência das estações de rádio cubanas e também de uma onda portadora de rádio).
  • Taylor não teve culpa porque as bússolas pararam de funcionar.
  • A perda do PBM-5 prefixo 59225 foi atribuída a uma explosão.
Este relatório foi posteriormente alterado como "causa desconhecida" pela Marinha depois que a mãe de Taylor afirmou que a Marinha estava culpando injustamente seu filho pela perda de cinco aeronaves e 14 homens, quando a Marinha não tinha nem os corpos nem os aviões como prova.

Se o voo 19 realmente estivesse onde Taylor acreditava que estivesse, o voo teria chegado à costa da Flórida em 20 minutos, dependendo de quão longe eles estavam. No entanto, uma reconstrução posterior do incidente mostrou que as ilhas visíveis para Taylor eram provavelmente as Bahamas, bem a nordeste das Keys, e que o voo 19 estava exatamente onde deveria estar. 

O conselho de investigação descobriu que, devido à sua crença (dogmática) de que estava em rota de base em direção à Flórida, Taylor na verdade guiou o voo mais para nordeste e para o mar. 

Além disso, era de conhecimento geral na NAS Fort Lauderdale que, se um piloto se perdesse na área, deveria voar na direção 270° (direita oeste). Da mesma forma, uma regra prática era que qualquer piloto que se perdesse indo para o sul simplesmente viraria seu avião com o sol a bombordo [esquerda] e então seguiria a costa da Flórida em direção ao norte. 

A NAS Fort Lauderdale
No momento em que o voo realmente virou para oeste, eles provavelmente estavam tão longe no mar que já haviam ultrapassado a capacidade de combustível da aeronave. Este fator, combinado com o mau tempo e as características de afundamento do Avenger, significava que havia pouca esperança de resgate, mesmo que tivessem conseguido manter-se à tona.

É possível que Taylor tenha ultrapassado Gorda Cay e, em vez disso, alcançado outra massa de terra no sul das Ilhas Ábaco. Ele então prosseguiu para noroeste conforme planejado. Ele esperava encontrar a Ilha Grand Bahama à sua frente, como esperado. Em vez disso, ele finalmente viu uma massa de terra à sua direita, a parte norte da Ilha Abaco. 

Acreditando que a massa de terra à sua direita era a Ilha Grand Bahama e que sua bússola estava com defeito, ele rumou para o que pensava ser sudoeste para voltar direto para Fort Lauderdale. No entanto, na realidade, isto mudou o seu curso mais para noroeste, em direção ao mar aberto.

Para aumentar ainda mais a sua confusão, ele encontrou uma série de ilhas ao norte da Ilha Abaco, que se parecem muito com as Ilhas Key West. A torre de controle então sugeriu que a equipe de Taylor deveria voar para o oeste, o que os levaria eventualmente à massa terrestre da Flórida. Taylor dirigiu-se para o que pensava ser oeste, mas na realidade era noroeste, quase paralelo à Flórida.

Depois de tentar isso por um tempo e sem terra à vista, Taylor decidiu que era impossível para eles voar tão longe para o oeste e não chegar à Flórida. Ele acreditava que poderia estar perto das ilhas Key West. 

Mapa do voo de treinamento "Problema de navegação nº 1"
O que se seguiu foi uma série de conversas sérias entre Taylor, sua outra tripulação e a torre de controle. Taylor não tinha certeza se estava perto das Bahamas ou de Key West, e não tinha certeza de qual direção estava olhando devido a um defeito na bússola. 

A torre de controle informou a Taylor que ele não poderia estar em Key West porque o vento naquele dia não soprava naquela direção. Alguns membros da tripulação acreditavam que sua bússola estava funcionando. 

Taylor então definiu um curso para nordeste de acordo com sua bússola, que deveria levá-los à Flórida se estivessem em Key West. Quando isso falhou, Taylor definiu um curso para oeste de acordo com sua bússola, que deveria tê-los levado à Flórida se estivessem nas Bahamas. 

Se Taylor tivesse permanecido neste curso, ele teria chegado à terra antes de ficar sem combustível. No entanto, em algum momento, Taylor decidiu que já havia tentado ir para o oeste o suficiente. Ele então mais uma vez estabeleceu um curso para nordeste, pensando que, afinal, eles estavam perto de Key West. Finalmente, seu voo ficou sem combustível e pode ter caído no oceano em algum lugar ao norte da Ilha Abaco e a leste da Flórida.

Destroços do Avenger confundidos com o voo 19 e outras pesquisas


Em 1986, os destroços de um Avenger foram encontrados na costa da Flórida durante a busca pelos destroços do Ônibus Espacial Challenger. O arqueólogo da aviação Jon Myhre levantou estes destroços do fundo do oceano em 1990. Ele erroneamente acreditou que era um dos aviões desaparecidos.

Uma equipe de busca, incluindo Jon F. Myhre, examina os destroços encontrados nos Everglades, na Flórida, em 1989. Na época, Myhre e outros descartaram a possibilidade de este ser o avião líder do voo 19 (Foto cortesia do Museu da Estação Aérea Naval de Fort Lauderdale)
Em 1991, uma expedição de caça ao tesouro liderada por Graham Hawkes anunciou que os destroços de cinco Avengers haviam sido descobertos na costa da Flórida, mas seus números de cauda revelaram que não eram o voo 19.

Em 2004, um documentário da BBC mostrou Hawkes retornando com um novo submersível 12 anos depois e identificando um dos aviões por seu número de matrícula (um 23990 claramente legível) como um voo perdido no mar em 9 de outubro de 1943, mais de dois anos antes do voo 19 (onde toda a tripulação sobreviveu), mas ele não foi capaz de identificar definitivamente os outros aviões; o documentário concluiu que "Apesar das probabilidades, eles são apenas uma coleção aleatória de acidentes que ocorreram no mesmo lugar, a 19 km de casa".

Em março de 2012, Hawkes teria dito que era conveniente tanto para ele (e indiretamente para seus investidores) quanto para o Pentágono fazer a história desaparecer porque era uma distração cara e demorada, e que, embora admitisse que não havia encontrado nenhum resultado conclusivo evidência, um estatístico que ele consultou disse que era o voo 19.

Os registros mostraram que os acidentes de treinamento entre 1942 e 1945 foram responsáveis ​​pela perda de 95 membros da aviação da NAS Fort Lauderdale. Em 1992, outra expedição localizou destroços espalhados no fundo do oceano, mas nada pôde ser identificado. Na década de 2000, os pesquisadores expandiram sua área de busca mais a leste, no Oceano Atlântico, mas os restos do voo 19 ainda não foram confirmados.


Uma reportagem de jornal de 2015 afirmou que um avião de guerra destruído da Segunda Guerra Mundial com marcas da Marinha e dois corpos ainda dentro foi recuperado pela Marinha em meados da década de 1960, após ser descoberto por um caçador na floresta perto de Sebastian, na Flórida. 

A Marinha inicialmente disse que era do voo 19, mas depois retratou sua declaração. Apesar dos pedidos de detalhes da Lei de Liberdade de Informação em 2013, os nomes ainda não são conhecidos porque a Marinha não tem informações suficientes para identificar os corpos.

Um avião destruído encontrado em Everglades, no condado de Broward, também foi, incorretamente, postulado como sendo do voo 19. Na verdade, este TBN-3E caiu em 16 de março de 1947. O acidente teria ocorrido porque seu piloto, o alferes Ralph N. Wachob, desenvolveu vertigem. Wachob morreu no acidente.

Na década de 2020, nenhum vestígio dos cinco TBM Avenger ou do PBM Mariner e dos 27 aviadores desaparecidos foi encontrado. A conclusão mais provável é que os TBM ficaram sem combustível e caíram no mar, e o PBM teve uma explosão no ar.

Na ficção



O voo 19 é apresentado no filme de ficção científica de 1977, 'Contatos Imediatos de Terceiro Grau'. Na abertura do filme, as aeronaves são descobertas no deserto de Sonora, em bom estado e com tanques de combustível cheios, um dos vários eventos misteriosos que implicam atividade extraterrestre. Na cena final do filme, a tripulação retorna à Terra vinda da nave-mãe alienígena, aparentemente com a mesma idade de quando desapareceram. O voo 19 apareceu no filme 'Scooby-Doo! Piratas à Vista', de 2006.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia

Avião da Latam é esvaziado após incêndio em veículo de bagagens em Guarulhos

Um princípio de incêndio fez com que passageiros fossem retirados de um avião no Aeroporto Internacional de Guarulhos, na noite desta quinta-feira (4).


O caso ocorreu na aeronave Airbus A320-214, prefixo PR-MHR, da Latam Airlines, que iria realizar o voo LA3418 que tinha como destino Porto Alegre. A fumaça começou em um equipamento responsável pelo carregamento das cargas do avião, o que acionou os protocolos de segurança.

Os tripulantes foram removidos da aeronave tanto pela ponte de embarque (finger) quanto pela escorregadeira de emergência (escape slide), com apoio dos funcionários do aeroporto.

O Aeroporto Internacional de Guarulhos informou que o abastecimento de aeronaves foi suspenso por 10 minutos por causa da ocorrência. 


Segundo um passageiro que estava na aeronave, o voo estava lotado.

"Estavam acomodando as pessoas mesmo após o embarque encerrado. Quando estávamos quase todos sentados, houve um aviso para evacuar a aeronave imediatamente. Aí, todos se levantaram, alguns sem entender muito bem e tentando pegar a mala", afirmou Lucas Lima.
"Veio outro aviso e os comissários gritavam para deixar os pertences e sair pela frente imediatamente. De dentro, não havia fumaça nem cheiro, e não conseguíamos entender por que tinha que evacuar", relatou.

Lucas contou ainda que todos os passageiros foram realocados e ganharam um voucher de 150 reais para o jantar.

Passageiros durante evacuação de aeronave no Aeroporto de Gaurulhos
A Latam informou que 159 passageiros desembarcaram em Porto Alegre às 2h54 desta sexta-feira (5). Outros 10 clientes restantes viajarão em outros voos da Latam ou por via terrestre.

Leia a nota: "A GRU Airport – Concessionária que administra o Aeroporto Internacional de São Paulo, em Guarulhos - informa que, assim que se iniciou o incêndio em um equipamento da empresa terceirizada contratada pela companhia aérea Latam, todos os protocolos de segurança foram imediatamente acionados. Não houve feridos nem qualquer impacto na operação do Aeroporto.

Logo que o incidente foi identificado, a brigada de incêndio e os bombeiros aeronáuticos foram acionados e auxiliaram na extinção do fogo. Durante 10 minutos, todo o abastecimento de aeronaves foi suspenso, seguindo rigorosamente as normativas de segurança.


A GRU Airport reforça seu compromisso com a segurança de passageiros, tripulantes e aeronaves e continuará prestando todo o apoio necessário à empresa aérea, inclusive na investigação dos fatos".

Em nota, a Latam informou que não houve feridos e que a situação foi rapidamente controlada. Leia abaixo na íntegra: "A LATAM Airlines Brasil informa que, durante o embarque dos passageiros do voo LA3418 (São Paulo/Guarulhos-Porto Alegre), houve um princípio de incêndio em um equipamento de solo de uma empresa terceirizada, responsável pelo carregamento de cargas do voo.

A fumaça gerada pelo equipamento acionou os protocolos de segurança. Os passageiros foram retirados da aeronave pela ponte de embarque (finger) e pela escorregadeira (escape slide), todos com auxílio dos funcionários treinados para esse tipo de situação.

Não houve feridos e a situação foi rapidamente controlada.

A LATAM está oferecendo toda a assistência necessária aos clientes impactados, que serão reacomodados em outros voos.

A companhia reforça, ainda, que a segurança está no centra de todas as suas decisões e operações."


Via CNN, g1 e Aero Magazine

Leste x Oeste: Por que demora mais para voar em algumas direções?

Boeing 767-322 (ER), N656UA, da United Airlines. As travessias transatlânticas são um dos melhores exemplos para destacar a diferença entre voar para o leste e voar para o oeste (Foto: Vincenzo Pace)
Ao reservar uma viagem, você já olhou os detalhes do seu voo e percebeu a diferença nos horários dos voos dependendo da direção da viagem? Você já se perguntou por que esse é o caso? Na verdade, é mais do que apenas distância que afeta o tempo de voo. Vejamos como a direção da viagem altera a duração do voo e por que isso ocorre.

É mais rápido voar para o leste (geralmente)


Voar de Londres a Nova York normalmente leva aeronaves um pouco mais de oito horas. Enquanto isso, o voo de Nova York a Londres levará cerca de sete horas. Um exemplo não transatlântico pode ser um voo entre Amsterdã e Cingapura. Um voo para o leste levará quase 13 horas, enquanto o vôo para o oeste em direção à Europa levará quase 15 horas.

Uma viagem de latitude média, como de Dubai a São Paulo , terá resultados semelhantes - pouco mais de 14 horas voando para o oeste e um pouco mais de 15 horas voando para o leste.

Essa diferença na duração do voo também é perceptível no hemisfério sul. Um voo do leste de Joanesburgo para Sydney levará pouco menos de 12 horas, enquanto o voo de Sydney para Joanesburgo levará cerca de 14 horas. Normalmente, quanto mais longa for a viagem, maior será a diferença entre as direções de viagem.

Então, qual é a razão para essa discrepância geral?

O clima, o tráfego aéreo, as restrições geopolíticas de voo e muito mais têm
impacto na duração de um voo (Imagem: RadarBox.com)

Cavalgando (ou lutando) em correntes de jato


A principal razão para a diferença nos tempos de viagem com a direção do voo é devido ao fluxo de jato. Este é um vento de alta altitude que sopra de oeste para leste em todo o planeta. Os aviões entrarão na corrente de jato a cerca de 30.000 pés e então viajarão com (ou contra) esses ventos.

Essas correntes são formadas pelo aquecimento atmosférico da radiação solar e da força de Coriolis da Terra (definida como um objeto em rotação com uma força perpendicular ao eixo de rotação).

As correntes de jato proeminentes incluem a corrente polar e as correntes subtropicais, localizadas a 60° e 30° ao norte e ao sul do equador. A corrente polar é mais substancial, causando ventos muito mais rápidos do que as correntes subtropicais. Na verdade, as companhias aéreas em rotas transatlânticas e transpacíficas normalmente usam a corrente polar ao planejar rotas de voo.

Boeing 747-436, G-BNLN, da British Airways. 747 da British Airways bateu recorde de
velocidade transatlântica em 2020 (Foto: Vincenzo Pace)

Jatos acelerados por tempestades


Foi em fevereiro de 2020 que um Boeing 747 da British Airways estabeleceu um recorde de velocidade transatlântica voando para o leste de Nova York a Londres em menos de cinco horas. Nesta ocasião em particular, um intenso sistema climático conhecido como Storm Ciara estava se encaminhando para o Reino Unido.

Esta tempestade teve um efeito sobre os ventos em altitudes mais elevadas, sobrecarregando a corrente de jato e enviando aeronaves em direção às Ilhas Britânicas a velocidades de mais de 800 milhas por hora (quase 1.300 quilômetros por hora). Graças a este jato particularmente forte, o voo BA112 reduziu em 80 minutos seu horário de chegada programado.