domingo, 28 de setembro de 2025

Entenda como funcionam as milhas aéreas e como usá-las melhor em viagens

Brasileiros acumularam 225,4 bilhões de pontos no primeiro trimestre de 2025, alta de 16,6%.

Especialistas alertam para 'inflação' nesse sistema e dão dicas e como acumular mais créditos.

 Aeroporto de Congonhas, em São Paulo (Foto: Bruno Santos - 12.mar.24/Folhapress)
Faltam apenas três meses para o verão e as tão esperadas férias associadas à estação. Uma forma de economizar nas passagens é usar programas de milhas aéreas, que movimentam bilhões de pontos no Brasil e vêm batendo recordes no país.

As milhas funcionam como uma espécie de moeda de troca. A cada voo realizado ou compra em empresas parceiras, o consumidor acumula créditos que podem ser convertidos em passagens ou outros serviços.

Segundo a Abemf (Associação Brasileira das Empresas do Mercado de Fidelização), no primeiro trimestre de 2025 houve alta de 16,6% na quantidade de pontos e milhas emitidos nos programas de fidelidade. Ao todo, os brasileiros acumularam 225,4 bilhões de pontos e milhas no período.

Foram resgatados (ou seja, efetivamente trocados) 219,8 bilhões, um crescimento de 14% em relação ao mesmo período do ano passado. Desse total, 73,6% foram destinados a passagens aéreas.

Segundo a associação, o faturamento das empresas do setor somou, em 2024, R$ 21,9 bilhões. O número representou um recorde nos indicadores da Abemf e um crescimento de 17,6% em relação a 2023.

O influenciador Lucas Estevam, que já viajou para 92 países, hoje ensina seus seguidores a aproveitarem os programas das companhias e tem uma empresa especializada na gestão de milhas

Ele conta que entrou no seu primeiro programa de milhas aos 18 anos, em 2008. Sua mãe acumulava pontos, mas os usava em trocas pouco vantajosas, como utensílios domésticos. "Eu falava: mãe, você gastou 100 mil milhas numa panela, isso dava uma passagem para a Europa", diz. Hoje, Lucas administra o programa de fidelidade de toda a família.

Tire suas dúvidas sobre as milhas aéreas

QUAL É A DIFERENÇA ENTRE MILHAS E PONTOS?

Os pontos costumam ser a moeda inicial acumulada em programas de fidelidade e as milhas estão ligadas diretamente aos programas das companhias aéreas.

"Pontuar é uma coisa, acumular milhas é outra. Primeiro você pontua em algum programa de pontos, como Esfera ou Livelo. Depois, transfere essa pontuação para uma companhia aérea. Nessa transferência, muitas vezes há bonificação. O melhor dos mundos é acumular pontos em compras que você vai fazer para depois transferir", diz Harion Camargo, planejador financeiro CFP pela Planejar.

A professora da FGV e especialista em finanças, Myrian Lund, diz que, geralmente, os pontos não vencem. O consumidor deve tomar cuidado, no entanto, pois quando são trocados por milhas passam a ter uma validade específica.

QUERO COMEÇAR A ACUMULAR MILHAS. POR ONDE COMEÇO?

Lucas Estevam afirma que o primeiro passo é se cadastrar nos principais programas de fidelidade do país. A inscrição pode ser feita apenas com o CPF, mesmo por quem não tem conta em bancos parceiros ou não voa frequentemente. Programas internacionais, como o AAdvantage da American Airlines, também são uma opção e a inscrição para alguns deles exige apenas que o cliente informe seu e-mail e telefone.

Em seguida, é necessário traçar uma estratégia de acúmulo no banco e na companhia aérea que o consumidor mais utiliza, pois parcerias exclusivas podem otimizar o ganho de milhas. A cada seis meses, também é interessante que o consumidor avalie como as milhas foram utilizadas e o que poderia ter sido melhor.

O planejamento pode levar em conta os destinos mais desejados, já que diversos programas permitem emitir passagens de companhias parceiras. Assim, decisões podem ser tomadas com base nas empresas estrangeiras que voam para os locais mais visitados.

ESTÁ MAIS DIFÍCIL ACUMULAR MILHAS?

Especialistas dizem que, embora hoje existam mais formas de acumular milhas, a quantidade necessária para emitir passagens aumentou, o que tornou as viagens mais caras em pontos.

Segundo Estevam, essa inflação está ligada ao aumento do preço das passagens aéreas. "Quando eu era criança, um voo do Rio para São Paulo custava entre 5.000 e 8.000 milhas. Hoje em dia, pago entre 15 mil e 20 mil. Isso aconteceu porque o preço das passagens também subiu", afirma Lucas.

QUAIS SÃO AS MELHORES ESTRATÉGIAS PARA ACUMULAR MILHAS?

Depois de se cadastrar nos programas de fidelidade, Harion Camargo e Lucas Estevam recomendam concentrar os gastos em poucos cartões para acumular mais pontos e aproveitar ofertas melhores. Isso permite acessar ofertas mais vantajosas e converter gastos em benefícios mais significativos.

Estevam diz que a maior parte das milhas hoje vem de compras bonificadas e não apenas de voos ou gastos diretos no cartão. Um exemplo prático é pegar um voucher de Uber pelo programa de fidelidade de alguma companhia aérea em vez de pagar direto no aplicativo.

Os especialistas também apontam que o retorno com milhas pode variar muito, assim, enquanto uma compra no cartão pode gerar dois pontos por dólar, em compras online com parceiros específicos, é possível acumular até cinco pontos a cada real.

Uma dica é acompanhar as promoções assinando newsletters, baixando aplicativos de companhias aéreas e programas de fidelidade, além de aplicativos confiáveis de controle de pontos e milhas.

QUE ERROS EVITAR E COMO NÃO PERDER MILHAS?

O primeiro passo, segundo Camargo, é avaliar se o acúmulo de milhas realmente faz sentido dentro do orçamento. "Se a pessoa for acumulando e não usar, e o programa de milhas vencer, ela vai perder aquele dinheiro. Na prática, a milha é dinheiro", diz.

Um dos maiores erros é gastar mais do que o necessário ou se endividar no cartão de crédito apenas para acumular milhas. A consultora financeira Myrian Lund recomenda definir um limite de gastos no cartão e não ultrapassá-lo. Ter muitos cartões pode dificultar o controle das despesas.

Lucas Estevam destaca que outro equívoco comum é não acompanhar o saldo e ignorar os comunicados dos programas de fidelidade, pois as milhas podem expirar. Ele explica que as empresas são obrigadas a avisar quando os pontos estão próximos de vencer e sugere que o consumidor coloque um alerta no celular com 30 dias de antecedência.

Também não é recomendado trocar milhas por produtos, como panelas ou eletrodomésticos, já que o custo-benefício de utilizá-las em passagens e experiências costuma mais vantajoso.

A compra direta de milhas junto às companhias aéreas para "completar" uma emissão também deve ser evitada. Segundo Estevam, 10 mil milhas que custariam entre R$ 100 e R$ 150 em um balcão de milhas podem sair por R$ 700 se adquiridas diretamente da empresa de viagens.

Myrian ressalta que, no planejamento financeiro pessoal, as milhas devem ser vistas como parte da reserva dos sonhos (relacionada a viagens e lazer), mas não podem substituir reservas de emergência ou aposentadoria.

VALE A PENA COMPRAR MILHAS?

Quando falta apenas uma pequena quantidade de milhas para resgatar uma passagem com bom custo-benefício, pode valer a pena. Especialistas recomendam buscar opções mais baratas, como balcões de milhas ou milheiros —profissionais que se especializam em acumular milhas e depois as vendem para quem precisa.

A compra e venda de milhas para terceiros, no entanto, é proibida pelo código de autorregulação da Abemf (Associação Brasileira das Empresas do Mercado de Fidelização). Segundo o regulamento do setor, o consumidor pode ser suspenso ou excluído do programa de fidelidade, caso a prática seja comprovada. Também pode haver o cancelamento do saldo de pontos ou de milhas.

O STJ (Superior Tribunal de Justiça) já decidiu, em 2024, que a cláusula impedindo a venda é lícita. A questão agora é alvo de um projeto na Câmara dos Deputados, que pretende regulamentar o setor e incluir essa proibição na legislação.

O QUE POSSO RESGATAR COM MILHAS?

Hospedagens, aluguel de carros e compras em seções de "shopping" das plataformas, onde é possível trocar pontos por produtos.

Outra opção é usá-las para experiências, como ingressos para parques temáticos, ou convertê-las em cashback, recurso disponível em alguns cartões para quem prefere transformar pontos em dinheiro de volta.

QUANTAS MILHAS PRECISO PARA VIAJAR PELO BRASIL E PARA FORA?

Segundo Lucas Estevam, é possível encontrar boas oportunidades de resgate com milhas. Programas como o AAdvantage, da American Airlines, permitem emitir trechos domésticos a partir de 7.500 milhas. Já para destinos internacionais próximos, como países da América Latina, os resgates começam em 10 mil milhas por trecho.

Em viagens mais longas, como para a Ásia, o uso de milhas pode tornar o custo mais acessível. Há opções de ida e volta em classe executiva para países como Japão e Tailândia por cerca de R$ 9.000 a R$ 10 mil, enquanto na econômica os mesmos trechos podem sair por aproximadamente R$ 3.000.

QUAIS SÃO OS PRINCIPAIS PROGRAMAS E SUAS DIFERENÇAS?

Nos três principais programas de fidelidade do país, o cadastro é gratuito com a oferta de clubes de assinatura pagos, que aceleram o ganho de pontos e trazem bônus.

Smiles (Gol)
  • Formas de acumular: Voando com a Gol e mais de 50 companhias aéreas parceiras, reservando hotéis, em serviços como aluguel de carro, seguro, passeios, Uber e no Shopping Smiles (Magazine Luiza, Casas Bahia, Shell etc.), usando o cartão de crédito Gol Smiles (até 5,5 milhas por dólar), assinando o Clube Smiles, que oferece de mil a 20 mil milhas por mês e benefícios extras.
  • Formas de resgate: Passagens aéreas, hotéis, aluguel de carro, produtos, serviços e descontos. Também é possível usar a opção Milhas & Money (milhas + dinheiro) para comprar passagens.
  • Validade: De três a 20 anos, dependendo da categoria e origem das milhas. No Clube, duram dez anos e, nos planos maiores, parte delas não expira.
  • Clube e benefícios: Planos a partir de R$ 39,90 por mês. Incluem milhas mensais, descontos exclusivos, congelamento de preços, bônus em promoções, acesso a lounges e vantagens adicionais no cartão Gol Smiles.
  • Quanto preciso gastar para acumular uma milha? Não há valor fixo. Varia conforme a tarifa, a categoria e o parceiro.
Latam Pass
  • Formas de acumular: Voando Latam e parceiras, usando o cartão Latam Pass Itaú, compras no Shopping Latam Pass (200 mil produtos), restaurantes parceiros (Latam Pass Gastronomia), postos Petrobras (Premmia) e transferindo pontos de bancos e cartões.
  • Formas de resgate: Passagens aéreas (sem restrição de inventário), upgrades, bagagem extra, assentos, além de produtos e serviços no Shopping Latam Pass.
  • Validade: Todas valem 36 meses; depois disso, não expiram se o cliente continuar acumulando em voos Latam. Para categorias Elite, não expiram enquanto o status for mantido.
  • Clube e benefícios: São cinco planos (R$ 40,90 a R$ 356,80 por mês), com possibilidade de boosters extras. Oferecem bônus de milhas, promoções exclusivas e condições especiais em acúmulo e resgate.
  • Quanto preciso gastar para acumular uma milha? Não há valor fixo. Depende da tarifa, do cartão Latam Pass Itaú, parceiros e promoções.
Azul Fidelidade
  • Formas de acumular: Voando Azul (um a quatro pontos por real gasto, conforme categoria), no Clube Azul, com o cartão Azul Itaú, transferindo pontos de bancos e comprando em parceiros (varejo, hospedagem, turismo, mobilidade).
  • Formas de resgate: Passagens nacionais e internacionais (Azul e mais de 3.000 destinos parceiros pelo Azul pelo Mundo), além de produtos, serviços, experiências e vales-presente no Shopping Azul.
  • Validade: Pode chegar a até cinco anos; em alguns planos do Clube Azul e cartões Azul Itaú, os pontos não expiram.
  • Clube e benefícios: Planos a partir de R$ 42 por mês (Clube 1.000), com pontos mensais, bônus em transferências e benefícios como maior validade ou não expiração dos pontos.
  • Quanto preciso gastar para acumular uma milha? Nos voos, varia pelo status: Básico (um ponto/real), Topázio (dois pontos/real), Safira (três pontos/real) e Diamante (quatro pontos/real). Em cartões e parceiros, depende do acordo de cada instituição e promoções.
COMO ESCOLHER O PROGRAMA DE ACORDO COM MEU PERFIL?

Segundo Paulo Curro, diretor-executivo da Abemf, a escolha do programa deve considerar o perfil do consumidor e seus objetivos de resgate. Quem viaja com frequência tende a se beneficiar mais dos programas das companhias aéreas e de cartões cobranded, enquanto os programas de varejo são indicados para quem busca descontos e economia nas compras do dia a dia.

Voo VASP 375: Lito Sousa e César Mello - Inteligência Ltda. Podcast


LITO SOUSA é ex-mecânico de aviões, especialista em aviação e YouTuber e CÉSAR MELLO é ator. Eles vão trocar uma ideia sobre o filme “O Sequestro do Voo 375”, quando um brasileiro doidão teve a ideia do 11 de Setembro muito antes do 11 de setembro. O Vilela diz que não tem medo de avião, mas tem medo de voar.

Via Canal Inteligência Ltda.

Aconteceu em 28 de setembro de 2018: A queda do voo 73 da Air Niugini nas águas da Micronésia


No dia 28 de setembro de 2018, um Boeing 737 em uma viagem de salto de ilha pela Micronésia inesperadamente bateu nas águas azuis brilhantes da Lagoa Chuuk durante a aproximação final, parando 140 metros antes da pista. A amarração não planejada pegou os ocupantes de surpresa, e um passageiro que não usava o cinto de segurança bateu com a cabeça e morreu, mas os 46 passageiros restantes e a tripulação escaparam milagrosamente com vida. 

Atordoados pela queda repentina e felizes por estarem vivos, só mais tarde eles perguntariam como foi que um avião moderno equipado com vários sistemas de segurança de última geração poderia simplesmente perder a pista e voar para o mar. 

Os investigadores de Papua Nova Guiné, o estado de registro do avião, se pegaram fazendo a mesma pergunta. O que eles descobriram foi chocante: enquanto um mecânico ficava na cabine com a câmera do smartphone em movimento, os pilotos voaram para dentro de uma nuvem, iniciaram uma descida excessivamente íngreme e ignoraram treze alarmes separados avisando-os de que estavam prestes a cair. 

As descobertas ressaltam a importância do treinamento completo de pilotos em um mundo onde as tecnologias avançadas de segurança da aviação estão cada vez mais fornecendo uma ilusão de invulnerabilidade.


A Air Niugini é a companhia aérea de bandeira estatal da ilha do Pacífico Ocidental Papua-Nova Guiné (“Niugini” é a grafia padrão de “Nova Guiné” em Tok Pisin, um crioulo com sede no inglês que serve como a língua franca mais usada no país).

A companhia aérea foi fundada em 1973, dois anos antes da independência de Papua-Nova Guiné, e continua operando desde então, oferecendo voos para destinos não atendidos dentro da Nova Guiné, bem como para vários países ao redor do Pacífico por meio de seu hub em Port Moresby, a capital. 

Embora Papua-Nova Guiné seja um dos países mais pobres e menos desenvolvidos do planeta, a Air Niugini tem um bom histórico de segurança; em 2018, ele operou por 45 anos sem uma única fatalidade, graças em grande parte à aceitação altruísta da companhia aérea da ajuda de especialistas australianos.


Entre os aviões da frota da Air Niugini em 2018 estava o Boeing 737-8BK (WL), prefixo P2-PXE (foto acima), de próxima geração. O proprietário do avião era na verdade a Loftleiðir Icelandic Airlines, mas a transportadora islandesa estava alugando o avião para a Air Niugini desde que o adquiriu no verão de 2013. 

Em 28 de setembro de 2018, este avião estava programado para operar um voo da ilha de Pohnpei nos Estados Federados da Micronésia, a Port Moresby com escala nas Ilhas Chuuk. Os Estados Federados da Micronésia são um país da Oceania, localizado principalmente ao norte e nordeste da Nova Guiné, consistindo em cerca de 600 pequenas ilhas e atóis de coral, que somam uma área de terra com pouco mais da metade do tamanho da cidade de Nova York, mas espalhados a uma distância de 2.700 quilômetros. 

A população do país é de apenas cerca de 100, 000 e não tem nenhuma companhia aérea regular doméstica. No entanto, os aviões são o único meio de transporte conveniente entre as ilhas e de e para os países vizinhos, então a Air Niugini e a transportadora norte-americana United Airlines entraram em cena para oferecer voos domésticos conectando as ilhas de Pohnpei, Kosrae e Chuuk.


Sob o comando de um capitão da Papua Nova Guiné de 52 anos e de seu primeiro oficial australiano de 35 anos, o P2-PXE chegou a Pohnpei, onde fica a capital e centro administrativo da Micronésia, em algum momento depois das 22h da noite de setembro 27º. 

Por volta das 9h da manhã seguinte, os pilotos estavam de volta ao avião, supervisionando o embarque de 35 passageiros para o voo 73 da Air Niugini para Chuuk e Port Moresby. Como esse voo era um serviço público e não uma tentativa de gerar receita, não era grande coisa que o avião estivesse apenas um quinto cheio. 

No entanto, apesar do baixo número de passageiros, o avião transportava uma tripulação invulgarmente grande de doze, incluindo os dois pilotos, um chefe de carga, um engenheiro de solo, quatro comissários de bordo regulares, um comissário de bordo estagiário e instrutor, uma comissária de bordo monitorando o treinamento processo, e um observador monitorando a aeromoça do cheque. 

O engenheiro instalou-se no assento auxiliar da cabine, mas o chefe da carga e um dos funcionários do check-in sentaram-se na primeira classe (que continha apenas um passageiro pagante) porque não havia assentos suficientes para a tripulação no avião para lidar com tantos membros da tripulação .


O voo de aproximadamente uma hora prosseguiu normalmente, enquanto o Boeing 737 subia até sua altitude de cruzeiro de 40.000 pés, permanecia lá por alguns minutos e então começava a descer em direção a sua escala em Chuuk. O atol de Chuuk consiste em 57 ilhas montanhosas que se erguem das águas da Lagoa de Chuuk, uma área de águas rasas delimitada por um quebra-mar de coral de 225 quilômetros de comprimento. 

O principal centro de transporte do atol é o Aeroporto Internacional de Chuuk, uma pequena pista de pouso única em Weno, um vilarejo na ilha de mesmo nome, que com 13.700 habitantes é a maior cidade dos Estados Federados da Micronésia. 

Devido à sua localização isolada, a área recebe relativamente poucos turistas, mas dentro da comunidade internacional de mergulho é bem conhecida por sua abundância de naufrágios japoneses da Segunda Guerra Mundial.


A bordo do voo 73, os pilotos decidiram se aproximar da Pista 4 do Aeroporto Internacional de Chuuk pelo sudoeste usando a abordagem RNAV publicada. Uma abordagem RNAV, uma inovação relativamente moderna, permite que um avião faça uma aproximação usando GPS sem referência a auxílios à navegação baseados em terra, como balizas não direcionais e sistemas de pouso por instrumentos. 

Voar em uma abordagem RNAV é tão simples quanto chamar o conjunto apropriado de waypoints GPS e suas altitudes de cruzamento no computador de voo; a abordagem pode então ser executada automaticamente pelo piloto automático ou manualmente seguindo as instruções geradas por computador com base no plano de GPS. 

Os pilotos aparentemente ficaram tão confiantes na técnica que nunca conduziram um briefing de abordagem formal, que cobriria os parâmetros exigidos em detalhes consideráveis. Durante o cruzeiro, o primeiro oficial usou a “Ferramenta de desempenho operacional” da Boeing, um aplicativo que ele instalou em seu iPad, para calcular a configuração de pouso necessária. 

O aplicativo não havia sido aprovado pela companhia aérea para uso em operações de linha, mas o primeiro oficial aparentemente se acostumou com ele mesmo assim. Ele avisou ao capitão que eles precisariam pousar com os flaps estendidos para 40 graus, o máximo permitido, a fim de desacelerar para o pouso na pista muito curta em Chuuk, e o capitão concordou sem hesitar.

Acima: uma imagem tirada de vídeo da cabine
Ao contrário do resto da frota da Air Niugini, P2-PXE também veio com um Sistema de Navegação de Aproximação Integrado, que poderia simular os componentes de um sistema de pouso por instrumentos (ILS), a fim de fornecer à tripulação mais informações sobre sua posição durante uma abordagem que faltou um ILS real. 

Em uma abordagem ILS regular, os faróis baseados no solo produzem um localizador e um glide slope, um par de sinais que podem ser captados pelos instrumentos do avião para produzir um caminho de descida preciso que leva diretamente ao limiar da pista. 

Mas com o IANS instalado, os pilotos voando em uma aproximação de RNAV em um aeroporto sem ILS (como Chuuk) poderiam receber indicações de instrumentos mostrando sua localização em relação a um localizador imaginário e declive, permitindo-lhes manobrar mais facilmente o avião na trajetória de pouso precisa. 

Enquanto o voo 73 descia em direção a Chuuk no piloto automático, o avião girou para seguir os waypoints do GPS para se alinhar com a pista, interceptando no processo o localizador imaginário exibido nos instrumentos dos pilotos. Enquanto eles passavam por 4.100 pés, o capitão disse: "Ok, estamos no RNAV em 041 e irei para 1.000." No assento de salto, o engenheiro puxou seu smartphone e começou a filmar a aterrissagem, capturando uma visão cristalina do painel de instrumentos quando o avião começou sua aproximação final.


No início, tudo parecia estar indo de acordo com o planejado. Seguindo os dados de navegação vertical programados, o piloto automático colocou o avião em uma trajetória de descida de três graus em direção à pista, no processo de alinhamento com a inclinação de planeio imaginária gerada pelo IANS. 

Embora o radar meteorológico mostrasse uma pequena mas intensa célula de tempestade movendo-se entre eles e o aeroporto, os pilotos pareciam despreocupados.

“Deve ser uma tempestade, mas logo vai acabar”, comentou o capitão. 

“Ah, provavelmente vamos cair nos PAPIs”, disse o Primeiro Oficial. 

O PAPI, ou Indicador de Caminho de Aproximação de Precisão, era um conjunto de quatro luzes no lado esquerdo da pista que mostraria branco se estivesse muito alto, vermelho se estivesse muito baixo e ambos se estivessem em curso.

“Tudo bem, flaps 30, flaps 40,” o Primeiro Oficial continuou, fazendo as alterações finais de configuração para o pouso. 

“Verificações de pouso”, disse o capitão. 

“UM MIL”, disse uma voz automática, chamando sua altitude.

“Ok, estável,” disse o Primeiro Oficial. 

Eles estavam em curso e configurados para pousar. 

“Continue”, declarou o capitão. 

"E visual, base de nuvem 900”, disse o primeiro oficial, avistando a pista enquanto eles rompiam uma camada baixa e nublada a 300 metros. 

Nesse ponto, a extensão dos flaps para 40 graus aumentou a quantidade de sustentação gerada pelas asas e fez com que o avião subisse ligeiramente acima da inclinação de planagem imaginária de 3 graus. 

Com o aeroporto à vista, o Comandante decidiu assumir o controle manual para voltar ao curso. “Vou voltar ao perfil”, anunciou ele, desconectando o piloto automático a uma altura de 677 pés acima do solo. Para voltar ao declive, ele abaixou-se e aumentou a razão de descida.


Em torno da borda do poço de chuva, os pilotos ainda eram capazes de ver as luzes de borda da pista e as luzes PAPI, mas seu campo de visão estava se estreitando. 

“Ok, pousando”, disse o capitão. 

“Visual, um vermelho, três brancos,” o Primeiro Oficial anunciou. 

O PAPI estava mostrando três luzes brancas, indicando que elas estavam um pouco altas. 

De repente, o avião entrou no poço de chuva e todas as referências visuais desapareceram. Chuva intensa e vento varreram o avião, mas os pilotos mal reagiram. 

“MÍNIMOS”, disse a voz automatizada do Sistema de Alerta de Proximidade do Solo Aprimorado (EGPWS), informando à tripulação que eles haviam atingido a altitude mínima de descida para a aproximação. 

Nesse ponto, eles foram obrigados a abandonar a abordagem caso não conseguissem ver a pista, mas os pilotos continuaram descendo. Eles acabaram de entrar na pista há um momento - certamente ela voltaria à vista em breve, eles devem ter pensado. Mas isso não aconteceu. 

Descendo a mais de 1.000 pés por minuto de uma altura de menos de 500 pés acima da água, o voo 73 passou de volta pela encosta de planagem imaginária e começou a cair abaixo dela. 

“SINK RATE! SINK RATE! SINK RATE! ” berrou o EGPWS. 

Mas os pilotos o ignoraram.

“Eu só quero entrar no perfil”, disse o Capitão. 

“GLIDESLOPE”, pronunciou o EGPWS. “GLIDESLOPE! GLIDESLOPE! ” 

O avião tentava freneticamente avisar os pilotos que eles estavam descendo abaixo do caminho de descida de 3 graus. Seus instrumentos mostraram claramente que eles estavam muito baixos. As palavras “PULL UP” apareceram em vermelho em suas exibições de voo principais. Mas os pilotos pareciam alheios ao perigo.

Enquanto o avião avançava em direção às águas da Lagoa Chuuk, o EGPWS continuava a berrar: “SINK RATE! SINK RATE! ” 

“Tudo bem, só irei um pouco mais”, disse o Capitão, esperando estourar o outro lado da tempestade a qualquer momento. 

“GLIDESLOPE! GLIDESLOPE!” 

“Está vendo a pista?” o Primeiro Oficial perguntou de repente. O capitão não respondeu.

“Cem”, disseram os EGPWS, novamente chamando sua altitude em pés. “GLIDESLOPE!” 

“Monitore a velocidade no ar, ok, entendi”, disse o capitão.

“GLIDESLOPE! SINK RATE! SINK RATE! ” 

De repente, o primeiro oficial percebeu que eles estavam em perigo mortal. 

"Muito baixo!" ele gritou. “Estamos muito baixos! Estamos muito baixos! Estamos muito baixos! ” 

Mas já era tarde demais. Dois segundos depois, o voo 73 da Air Niugini se chocou contra a Lagoa Chuuk com um respingo poderoso.


A princípio, alguns dos passageiros pensaram que haviam apenas pousado com força, mas essas ilusões foram rapidamente destruídas quando a parte inferior da fuselagem se abriu perto da linha 22 e a água derramou na parte de trás da cabine da classe econômica. 

Ainda avançando com seu próprio impulso, o avião avançou na água por várias centenas de metros, girou mais de 90 graus para a direita e parou a cerca de 140 metros da cabeceira da pista. 

Quase imediatamente, a água na parte de trás da cabine subiu até a altura dos joelhos e, com um coro de cliques, os passageiros desabotoaram os cintos de segurança e correram para as saídas. 


Devido ao baixo volume de passageiros, ninguém estava sentado nas filas de saída de emergência e a fila rapidamente bloqueou o acesso às portas, forçando os comissários de bordo a empurrar a multidão para chegar às saídas sobre as asas. 

Mais atrás, vários passageiros perto da ruptura na fuselagem sofreram ferimentos graves e precisam urgentemente de ajuda. A situação poderia ter ficado feia rapidamente se não fosse pelas ações de testemunhas de raciocínio rápido.

O aeroporto de Chuuk não tinha serviços de resgate aquático, mas um grupo de mergulhadores da Marinha dos EUA testemunhou o acidente, assim como vários residentes locais, que correram para o local em seus próprios navios motorizados. 


Os mergulhadores da Marinha chegaram de barco assim que as primeiras saídas sobre as asas foram abertas, desembarcando na asa parcialmente submersa para ajudar. 

No lado esquerdo do avião, 28 passageiros e dois comissários de bordo desceram da asa e entraram em barcos particulares, enquanto os mergulhadores da Marinha levaram seis passageiros, quatro comissários de bordo e o loadmaster do lado direito. Outros cinco tripulantes foram puxados por velejadores da porta L1 atrás da cabine. 


Em alguns minutos, todos pareciam ter saído do avião; os mergulhadores da Marinha dos Estados Unidos entraram na cabine e não encontraram retardatários aparentes, mas consideraram muito perigoso entrar na cabine traseira agora submersa da classe econômica, que rapidamente se tornou uma armadilha mortal quando o avião escorregou mais fundo na água e o combustível de jato vazou do tanques de asa.

Como o aeroporto de Chuuk não tinha uma área de encontro designada, o transporte das vítimas para o hospital local foi extremamente caótico e ninguém conseguiu fazer uma contagem até muitas horas após o acidente. 

Apesar disso, as autoridades relataram inicialmente que todos os 47 passageiros e tripulantes haviam sobrevivido, um número que foi citado pela mídia de todo o mundo. Mas quando uma contagem foi finalmente realizada naquela noite, os funcionários chegaram a uma conclusão perturbadora: um passageiro, um homem indonésio sentado na fileira 23, estava desaparecido. 


As equipes de resgate inicialmente esperavam que ele pudesse ser encontrado vagando em algum lugar próximo, mas em uma ilha tão pequena não havia muitos lugares onde ele pudesse ter ido, e logo ficou claro que ele não havia chegado a um lugar seguro. Mergulhadores começaram a procurar seu corpo na área próxima ao avião afundado, mas depois de três dias, nenhum vestígio dele foi encontrado.

Por fim, as autoridades locais chamaram uma equipe de mergulhadores japoneses especializados para fazer uma busca no interior do avião, que estava sob cerca de 25 metros de profundidade.

Ao entrar na fuselagem, os mergulhadores japoneses fizeram uma descoberta sombria: o corpo do homem desaparecido estava caído entre as fileiras 22 e 23, bem ao lado da fratura na fuselagem, tendo feito isso a apenas alguns metros de seu assento. Na verdade, ele estivera a bordo do avião o tempo todo. 

Acima: dentro do avião depois que ele afundou
As suspeitas iniciais eram de que o homem havia se afogado ao tentar escapar do avião, mas uma autópsia não revelou sinais de afogamento. Na verdade, ele sofreu lesões faciais e cranianas traumáticas no impacto que o levaram à morte cerca de três minutos após o acidente. 

Embora seus companheiros de viagem o tivessem visto se levantar de sua cadeira, ele aparentemente desmaiou e morreu pouco depois, e enquanto os passageiros corriam para escapar da cauda que afundava, ninguém percebeu. 

Com base na ausência de hematoma do cinto de segurança, presente nos seis passageiros que sofreram ferimentos graves, os patologistas concluíram que ele não estava usando o cinto de segurança no momento do impacto, pelo que foi atirado para o assento dianteiro com força suficiente para matá-lo.


Enquanto isso, os investigadores correram para as ilhas Chuuk para iniciar uma investigação sobre o acidente. Inicialmente, a investigação foi conduzida pela Divisão de Aviação Civil dos Estados Federados da Micronésia, com o auxílio da Comissão de Investigação de Acidentes de Papua Nova Guiné, cujos investigadores chegaram ao local no dia seguinte ao acidente. 

No entanto, em fevereiro de 2019, ficou claro que a Micronésia carecia de instalações e conhecimentos para conduzir uma investigação de um grande acidente aéreo, então o país delegou essa responsabilidade a Papua-Nova Guiné.


Pouco tempo depois do acidente, os investigadores descobriram que o engenheiro - a bordo para fazer a manutenção do avião enquanto ele estava em vários aeroportos mal equipados da Micronésia - havia filmado toda a abordagem de 3.000 pés até o impacto enquanto estava sentado no assento traseiro da cabine. 

Além das evidências do gravador de voz da cabine e do gravador de dados de voo, o vídeo ajudou a fornecer aos investigadores uma imagem incomumente completa dos momentos finais do voo 73. A sequência básica de eventos se assemelhava a de vários acidentes anteriores, embora principalmente da década de 1960 e 1970. 

Depois de subir um pouco acima do plano de planagem de 3 graus, o capitão assumiu o controle manual, aumentou a razão de descida e simplesmente falhou em corrigi-lo ao atingir a trajetória adequada. O avião posteriormente desceu ao mar antes da pista. 


O problema é que não estávamos na década de 1960, quando a única coisa que impedia um avião de voar para a água era a vigilância do piloto. Era 2018, e o avião estava equipado com todos os tipos de equipamentos de última geração, desde o Sistema Avançado de Alerta de Proximidade do Solo até a Navegação de Área (RNAV) e o Sistema de Navegação de Aproximação Integrada. 

A uma altura de 1.000 pés, o avião estava em curso e pronto para pousar com todos os sistemas funcionando perfeitamente. Não havia razão para o voo ter terminado da maneira que terminou.


Pela gravação de voz do cockpit, ficou claro que os pilotos ignoraram 13 alertas “SINK RATE” e “GLIDESLOPE” nos momentos que antecederam o acidente. Como os pilotos sobreviveram ao acidente, os investigadores puderam perguntar por que eles fizeram isso. A resposta foi tragicamente simples: os pilotos pensaram que eram avisos incômodos. 

Retroceder o CVR e o FDR de volta à abordagem do dia anterior em Pohnpei confirmou que avisos semelhantes foram gerados nessa abordagem, embora tenha pousado com sucesso. 

Desde o início, os pilotos voaram a abordagem de Pohnpei abaixo do plano de planagem de 3 graus padrão, disparando nada menos que 24 alertas "GLIDESLOPE", mas eles simplesmente falaram por cima deles, engajando-se em uma conversa irrelevante mesmo enquanto o avião tentava desesperadamente para chamar sua atenção. Essa conversa não apenas continuou por meio de vários avisos, mas também violou a regra estéril da cabine, que proíbe discussões não pertinentes abaixo de 10.000 pés. 

Os investigadores não investigaram explicitamente por que os pilotos voaram nesta abordagem anormalmente baixa, mas pode ter sido uma técnica improvisada que os pilotos da Air Niugini desenvolveram para pousar mais perto do início da pista, aumentando a distância de pouso disponível - um importante consideração nos aeroportos apertados da Micronésia, que careciam de áreas desobstruídas.


Por causa dessas descobertas, o fato de que o P2-PXE estava equipado com IANS de repente se tornou bastante importante. O IANS cria um glide slope imaginário onde nenhum glide slope real existe, o que permite que alertas “GLIDESLOPE” sejam gerados pelo EGPWS durante as aproximações de RNAV em Pohnpei e Chuuk. 

Mas P2-PXE era o único avião em toda a frota da Air Niugini equipado com IANS, e os pilotos não eram explicitamente treinados para usá-lo, então o fato de que este avião em particular produzia alertas “GLIDESLOPE” em aproximações de RNAV enquanto outros aviões não poderia ter levado os pilotos a acreditar que os avisos eram um bug em vez de um recurso. 

De fato, em 2016 a Air Niugini havia ordenado a retirada do sistema do P2-PXE para padronizar sua frota, mas o retrofit nunca foi realizado e ninguém na companhia aérea sabia que ele ainda estava instalado.


No entanto, havia uma série de outras pistas que deveriam ter informado aos pilotos que algo estava errado, como os alertas “SINK RATE”, as indicações “PULL UP” em seus visores e o simples fato de estarem em baixa altitude. 

Seu aparente esquecimento a esses sinais de alerta sugeria que os pilotos estavam sofrendo de um caso de visão de túnel. Pouco antes de as coisas darem errado, o avião foi estabilizado na aproximação, a pista estava à vista e os pilotos já haviam mudado mentalmente para a expectativa de um pouso iminente. 

Então, quando o avião repentinamente voou em uma tempestade e a pista desapareceu de vista, os pilotos ficaram presos em seus modos de pensamento previamente estabelecidos, mas agora desatualizados. O capitão já havia mudado para o voo visual, mas quando perdeu de vista a pista, não olhou para trás para seus instrumentos, fazendo com que ele perca a consciência situacional. 

A mesma coisa aconteceu com o Primeiro Oficial, que vinha monitorando sua posição ao observar as luzes do PAPI. A última vez que ele viu o PAPI, ele estava mostrando três luzes brancas - indicando um pouco alto demais - e quando a tripulação o perdeu de vista, a última indicação conhecida ficou em suas mentes mesmo depois de se tornar obsoleto. 

O efeito cumulativo desses fatores foi que os pilotos ficaram fixados em recuperar a referência visual e terminar o pouso, às custas de tudo o mais, incluindo varreduras de instrumentos e tomada de decisões. Tendo perdido a consciência geral da situação, eles falharam em parar a descida até que o avião atingiu a água.


Obviamente, a coisa correta a ser feita pelos pilotos ao perderem de vista a pista seria abandonar a aproximação. É proibido descer abaixo dos mínimos quando a pista não está visível. Continuar descendo sob tais condições é imprudente e irresponsável. 

Além disso, eles deveriam ter antecipado a possibilidade de perder o contato visual quando viram a célula de tempestade no radar, mas o Capitão inexplicavelmente descartou seu significado. 

Embora várias razões para sua decisão de continuar a abordagem sob essas condições pudessem ser propostas, no final do dia este continua sendo o erro mais antigo do livro, a única decisão que matou a maioria dos aviadores e o fato de que um par de aviadores treinou os pilotos fariam isso em 2018, o que sugere que sua educação talvez não tenha enfatizado suficientemente esse ponto.

Como resultado do acidente, a Air Niugini parou de voar no Boeing 737 para Chuuk e Pohnpei, e requisitos de treinamento mais rígidos foram introduzidos para os pilotos que voam para esses aeroportos. 


A companhia aérea também introduziu cenários de "perda repentina de referência visual na abordagem final" no treinamento do simulador, melhorou seu treinamento de resposta EGPWS e mudou-se para garantir que um passageiro sem deficiência esteja sempre sentado em cada fila de saída de emergência, junto com vários outros pontos. 

Os investigadores também recomendaram que a Honeywell, o fabricante do EGPWS, alterasse o regime de alerta para que os pilotos em situações semelhantes recebessem avisos sonoros de "puxar", ou pelo menos uma indicação visual piscante "puxar" que tem mais probabilidade de ganhar os pilotos. atenção que a versão estática que existe atualmente. 

No entanto, a Honeywell respondeu que em um caso como o voo 73 da Air Niugini, um aviso sonoro de "puxar para cima" violaria as diretrizes federais para sistemas de alerta de proximidade do solo, que são projetados para garantir que um aviso de "puxar para cima" seja gerado apenas se a situação for extremamente terrível (garantindo assim que os pilotos não sejam condicionados a ignorar isto). 

O US National Transportation Safety Board, que auxiliou na investigação, também apontou que, em um caso em que os pilotos ignoraram 13 avisos antes de voar para o solo, adicionar mais avisos provavelmente não seria a solução.


No final das contas, os que estavam a bordo do voo 73 da Air Niugini tiveram a sorte de o resultado não ter sido pior. Apesar da falta de preparação para um pouso na água, o avião permaneceu intacto e 46 dos 47 passageiros e tripulantes se afastaram dos destroços. 

Mas o acidente também foi um conto de advertência sobre as limitações da tecnologia. Nenhuma quantidade de aplicativos para iPad, abordagens de RNAV e avisos sofisticados evitou esse acidente clássico de voo controlado no terreno, e a falta de contexto para o Sistema de Navegação de Abordagem Integrada provavelmente ajudou a causar o acidente em primeiro lugar. 

Portanto, embora a tecnologia possa e reduza os acidentes, muito ainda depende da maneira como é usada, e os pilotos e as companhias aéreas não devem considerar isso garantido. Nas circunstâncias certas, com a combinação certa de condicionamento, arrogância e desatenção, os pilotos modernos ainda podem voar com seus aviões no solo, e ainda é responsabilidade dos pilotos e daqueles que os treinam garantir que um acidente desnecessário como o Air Niugini o voo 73 não acontece novamente.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral Cloudberg, Wikipedia e ASN - Imagens: Marinha dos Estados Unidos, Air Niugini, Randall Munro, Google, Wikimedia Aotearoa, FAA, Comissão de Investigação de Acidentes de Papua Nova Guiné, James Yaingeluo, Guam Daily Post, Loop PNG e Reuters. Vídeo cortesia da Comissão de Investigação de Acidentes de Papua Nova Guiné e da Marinha dos Estados Unidos.

Aconteceu em 28 de setembro de 2012: Voo Sita Air 601 Grave acidente após a decolagem no Nepal


Em 28 de setembro de 2012, o voo Sita Air 601 (ST601) foi um voo doméstico de passageiros do Nepal, operado pela Sita Air, do Aeroporto Internacional Tribhuvan, na capital do Nepal, Catmandu, ao Aeroporto Tenzing-Hillary em Lukla, que levava a bordo 16 passageiros e três tripulantes.

A maioria dos passageiros eram estrangeiros, viajando para Lukla para uma caminhada no Himalaia. A Embaixada Britânica no Nepal confirmou que pelo menos 7 britânicos estavam no vôo. A vítima britânica mais jovem tinha 27 anos, enquanto a mais velha tinha 60. Pelo menos 5 cidadãos chineses e 7 nepaleses estavam a bordo do voo.


O voo 601, operado pelo Dornier 228-202, prefixo 9N-AHA, da Sita Air (foto acima) decolou do Aeroporto Internacional de Tribhuvan às 06h17, horário local. Foi o primeiro voo a partir do Aeroporto Internacional de Tribhuvan naquele dia. Enquanto a uma altitude de 50 pés (15 m), o piloto relatou problemas técnicos com a aeronave e solicitou que voasse de volta para o aeroporto.

A tripulação relatou a Kathmandu que a aeronave pode ter atingido um abutre. Isso foi notado pelo controlador de tráfego aéreo de Katmandu, quando a aeronave começou a balançar e fazer manobras incomuns. 

Três minutos após a decolagem, no caminho de volta ao aeroporto, a aeronave desceu perto do rio Manohara. Em seguida, mergulhou de nariz, errou por pouco uma favela e se espatifou nas margens do rio Manohara, pegando fogo. A parte frontal da fuselagem foi totalmente destruída.


Imediatamente após o acidente, o corpo de bombeiros do Aeroporto de Tribhuvan foi rapidamente implantado. Dezenas de militares e equipes de resgate correram para o local do acidente, embora alguns relatórios afirmem que o corpo de bombeiros demorou mais de meia hora. 


Testemunhas afirmaram que várias pessoas sobreviveram ao acidente e gritavam por ajuda dentro dos destroços em chamas. Os moradores locais queriam ajudar, mas temiam que, se direcionassem água para o motor, ele explodisse.


Quando os serviços de emergência chegaram ao local do acidente, muitas partes do avião foram completamente destruídas. Todas as 19 pessoas a bordo morreram no acidente.


A Autoridade de Aviação Civil do Nepal recebeu ordens para investigar o acidente com a ajuda do Departamento Britânico de Investigação de Acidentes Aéreos. Os investigadores começaram a coletar evidências relacionadas ao acidente. O gravador de dados de voo e o gravador de voz da cabine foram recuperados.

Durante a corrida de decolagem, o clima em Tribhuvan estava em boas condições com boa visibilidade. Com base em entrevistas feitas por testemunhas oculares, a aeronave estava pegando fogo enquanto se espatifava no solo.


Um parente do copiloto do voo 601 disse ter avisado que os voos da companhia aérea costumavam ficar sobrecarregados e que uma favela próxima atraiu pássaros para a pista. No entanto, Sagar Acharya, chefe de segurança de voo da companhia aérea, negou que a aeronave carregue muito peso. 

A maioria dos relatórios afirma que a aeronave sofreu um colisão com um pássaro logo após decolar de Tribhuvan. Relatórios conflitantes afirmam que ela atingiu uma águia negra, enquanto outros afirmam que ela atingiu um abutre. 


Este relatório de colisão com pássaros foi confirmado pelo controlador de tráfego aéreo de plantão, uma vez que o controlador de tráfego aéreo afirmou que o piloto contatou a Torre do Tribhuvan para uma intenção de pouso de emergência devido a "falhas técnicas", possivelmente devido a um colisão com pássaros. 

Com base nas declarações ATC, o motor certo do voo 601 pode ter sido atingido por um pássaro e pegou fogo. Os investigadores mais tarde se concentraram na teoria do ataque de pássaros.


Mais tarde, os investigadores afirmaram que o impacto da colisão com o pássaro pode ter deixado o piloto nervoso. A aeronave mais tarde pegou fogo e, na tentativa de apagar o fogo, o piloto tentou um pouso de emergência no rio Manohara, mas de alguma forma mergulhou de nariz e bateu no campo de futebol.

Com base no relatório preliminar publicado em 30 de setembro de 2012, o pássaro colidiu com o motor direito a cerca de 50 pés acima do solo, fazendo com que alguma parte se separasse do motor. A peça posteriormente impactou a cauda vertical e desativou o leme, cortando os controles do avião. O avião então começou a virar bruscamente. Em seguida, ele saiu do controle e, posteriormente, caiu.


Os investigadores inspecionaram a filmagem CCTV do acidente e notaram que um flash ocorreu no motor direito do voo 601, aproximadamente 5 segundos antes da rotação. Uma testemunha ocular, um piloto profissional, relatou ter notado que a aeronave havia uma tentativa malsucedida de içá-la. O nariz ergueu-se, porém, com a cauda do avião quase atingindo o solo. 

O NAAIC então descobriu que a tripulação chamou "V1" prematuramente, portanto, a aeronave não poderia voar. O NAAIC relatou então que a aeronave não era capaz de manter 77 KIAS em voo nivelado, sugerindo que um motor havia falhado e o outro sofreu uma perda de potência de pelo menos 13%.


Uma análise posterior foi feita pelo NAAIC: “É possível que o pássaro perturbou momentaneamente o fluxo de ar para o motor antes de ser atingido pela hélice, causando uma onda e a suspeita chama vista na filmagem do CCTV, mas o fabricante do motor considerou isso improvável. O fabricante considerou que se o ave tivesse estado suficientemente perto da entrada de ar para perturbar o fluxo de ar, ela teria sido sugada. Se a chama vista no CCTV e o 'estouro' que acompanhava ouvido no CVR fossem evidências de um pico de motor, então outra causa possível é um problema de fluxo de combustível. No entanto, o fabricante também comentou que esse tipo de motor era muito resistente a sobretensões."


Uma investigação posterior descobriu que as hélices do voo 601 não estavam na posição emplumada e estavam operando normalmente. A investigação revelou que o motor não havia perdido toda a potência, mas estava operando com baixa potência. 

As alavancas de impulso na cabine também revelaram que não havia motores que foram desligados pela tripulação durante o incidente. Nenhum resto de pássaro foi encontrado dentro dos motores. No entanto, havia evidências de que a pipa preta havia sido atingida pelas hélices.


De acordo com a planilha de carga do voo 601, o voo decolou com uma massa de decolagem de 5.834 kg e uma massa de pouso estimada de 5.698 kg. A ficha de carga indicava que nenhuma bagagem havia sido carregada, porém os vídeos de vigilância mostraram que a bagagem de cerca de 80 kg foi carregada e não foi retirada antes da aeronave decolar. 

Assim, o peso de decolagem foi corrigido para 5.914 kg usando os pesos padrão do Nepal para passageiros, portanto, a aeronave ficou sobrecarregada. No entanto, a sobrecarga por si só não pode explicar o problema de desempenho, já que uma análise mais aprofundada revelou que uma aeronave muito sobrecarregada teria um desempenho melhor do que o 9N-AHA durante o voo do acidente.


A análise de som do gravador de voz da cabine e as gravações de dados de voo revelaram que o arrasto produzido pela hélice excedeu o empuxo produzido. A investigação declarou mais tarde: "O arrasto de um motor em marcha lenta em voo é maior do que a resistência em um motor inoperante (OEI) e, no caso do 9N-AHA, onde o fluxo de combustível em marcha lenta foi incorretamente ajustado muito baixo, a resistência seria foram ainda maiores em marcha lenta (mais de 350 lb de arrasto - seção de referência 1.16.2). 

Portanto, é possível que em cerca de 6.200 kg com um motor a 100% da potência e um motor em marcha lenta, teria sido insuficiente empuxo para manter 77 kt, e o arrasto adicional em um lado teria afetado a controlabilidade mais do que no caso OEI."

Os investigadores afirmaram que a perda de potência ocorreu em 70 KIAS, enquanto V1 estava em 83 KIAS. Quando uma perda de potência ocorreu abaixo de V1, a tripulação deveria ter rejeitado a decolagem. A tripulação parecia não estar ciente da perda de energia. 


A aeronave continuou a acelerar, embora a uma taxa mais baixa do que durante as decolagens anteriores, tornou-se no ar a 86 KIAS acima de V2 e continuou a acelerar por cerca de 2 segundos, ponto em que a velocidade começou a diminuir continuamente. NAAIC afirmou que a tripulação possivelmente não reconheceu a perda de potência porque ela ocorreu de forma gradual e progressiva ao invés de instantaneamente.

Se ocorrer um mau funcionamento da aeronave na decolagem ou acima de V1, o aeroporto permite que as tripulações de voo continuem a decolagem ou pousem de volta na pista, caso seja longo o suficiente para parar a aeronave com segurança. Uma longa pista estava disponível durante o acidente, o que deveria ter sido suficiente para parar a aeronave. 

No entanto, a tripulação optou por não escolher esta opção e continuou o voo. A investigação afirmou que a tripulação provavelmente optou por não pousar de volta no aeroporto devido à política da empresa de continuar o voo devido a um mau funcionamento do motor igual ou superior a V1.


O NAAIC então concluiu sua investigação da seguinte maneira: "Nenhuma falha foi encontrada em nenhum dos motores, não havia evidência de ingestão de um pássaro no motor. Ambos os motores estavam produzindo baixa potência no impacto, ambas as hélices estavam em sua faixa normal de operação. No entanto, uma redução de potência insidiosa ocorreu a partir de 70 KIAS que passou despercebido pela tripulação. Após a atitude de decolagem fora do campo ter sido definida muito alta para a aeronave manter V2, a velocidade da aeronave caiu abaixo de V2, exigindo mais empuxo do que disponível para acelerar novamente. A investigação não foi capaz de determinar a causa de a redução de empuxo."

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro

Vídeo: Mayday Desastres Aéreos - Voo Pakistan 268ㅤㅤEm Busca de Respostas


Aconteceu em 28 de setembro de 1992: Voo PIA 268ㅤㅤ167 mortos em colisão contra montanha no Nepal

Na segunda-feira, 28 de setembro de 1992, o Airbus A300B4-203, prefixo AP-BCP, da PIA (Pakistan International Airlines) (foto abaixo), partiu às 11h13 (hora local) para realizar o voo 268, de Karachi, no Paquistão, com destino a Kathmandu, no Nepal. 

A bordo da aeronave estavam 19 tripulantes e 148 passageiros. O capitão era Iftikhar Janjua, de 49 anos, que havia realizado 13.192 horas de voo, incluindo 6.260 horas no Airbus A300. O primeiro oficial era Hassan Akhtar, de 38 anos, que tinha 5.849 horas de voo, sendo 1.469 delas no Airbus A300.

Da direita para a esquerda: Primeiro Oficial Farooq Ahmad, Capitão M. Nazeer 'Lala' e Primeiro Oficial Hassan Akhtar
Havia dois engenheiros de voo a bordo (em vez de um), um operando e outro observando. O engenheiro de voo operacional era um homem de 40 anos (não identificado) que tinha 5.289 horas de voo, sendo 2.516 delas no Airbus A300. O engenheiro de voo observador era Muhammad Ashraf, de 42 anos, que havia feito 8.220 horas de voo, incluindo 4.503 horas no Airbus A300.

A rota do voo 268
A parte do voo em rota transcorreu sem intercorrências e a aeronave foi liberada para uma abordagem de 'Sierra' para a pista 02 de Kathmandu. 

O voo foi instruído a manter 11.500 pés e reportar a 16 DME (16 milhas do farol VOR/DME, que está localizado 0 , 6 nm antes da pista). 

A abordagem de Kathmandu é muito difícil, uma vez que o aeroporto está localizado em um vale de formato oval cercado por montanhas de até 9.665 pés. A elevação da pista é de 4.313 pés. 

As próximas correções de abordagem para o voo PK268 foram em 13 DME (a 10.500 pés), 10 DME (a 9.500 pés) e 8 DME (a 8.200 pés). Alguns segundos após reportar 10 DME (abordagem que permite que as aeronaves passem sobre a cordilheira Mahabharat, diretamente ao sul de Katmandu, cuja crista está localizada ao norte do ponto de referência da 'Sierra', em uma altitude segura).

Pouco depois de reportar às 10 DME, às 14h30, a aeronave desceu para aproximadamente 7.300 pés (2.200 m) na lateral da montanha de 8.250 pés (2.524 m) em Bhattedanda, chocando-se contra ela e desintegrando-se no impacto, matando instantaneamente todos a bordo. A barbatana caudal separou-se e caiu na floresta na base da encosta da montanha.

Todas as 167 pessoas a bordo morreram. É o acidente de aviação mais mortal que já ocorreu em solo nepalês. Este acidente ocorreu 59 dias após o voo 311 da Thai Airways ter caído ao norte de Kathmandu.

Após o acidente, os militares nepaleses ajudaram os investigadores a encontrar a caixa preta da aeronave . A investigação foi conduzida por Andrew Robinson do Air Accident Investigation Branch (AAIB). A caixa preta foi inicialmente enviada a Paris para decodificação.

No momento do impacto, testemunhas oculares próximas ao local do acidente confirmaram que havia pouco ou nenhum vento, chuva e nenhuma tempestade na área. Os investigadores não encontraram nenhum problema técnico documentado para o A300 e, após considerá-lo como uma causa, posteriormente descartaram o terrorismo.

Embora nenhuma conversa pertinente da cabine de comando tenha sido recuperada do gravador de voz da cabine do voo 268 pelos investigadores do Transportation Safety Board of Canada (TSB), que auxiliou na investigação, os dados recuperados do gravador de dados de voo pelo TSB mostraram que a aeronave iniciou cada etapa de sua descida um passo muito cedo.

Em 16 DME a aeronave estava a 1.000 pés completos abaixo de sua altitude autorizada; em 10 DME (o ponto de referência da Sierra) estava 1.300 pés abaixo de sua altitude liberada. A aeronave se aproximou da Cordilheira do Mahabharat em uma altitude insuficiente e colidiu com a encosta sul. Embora os pilotos do vôo 268 tenham relatado a altitude de sua aeronave com precisão paracontrole de tráfego aéreo , os controladores não fizeram nada para alertá-los de sua altitude inadequada até segundos antes do acidente.

Os investigadores determinaram que o acidente foi causado principalmente por erro do piloto. A visibilidade era fraca devido ao tempo nublado e o sistema de alerta de proximidade do solo não teria sido acionado a tempo por causa do terreno íngreme.


As placas de aproximação para Kathmandu emitidas para os pilotos da PIA também foram determinadas como obscuras, e os controladores de tráfego aéreo nepalês foram considerados tímidos e relutantes em intervir no que eles viam como questões de pilotagem, como separação de terreno. 

O relatório recomendou que a ICAO revisasse as cartas de navegação e encorajasse sua padronização, e que a abordagem do Aeroporto de Kathmandu fosse alterada para ser menos complexa. 

A PIA pagou e mantém o Parque Memorial Lele PIA em Lele, no sopé de uma montanha cerca de 10 km ao norte do local do acidente. 

O Wilkins Memorial Trust, uma organização de caridade do Reino Unido que fornece ajuda ao Nepal, foi criado em memória de uma família morta no acidente.

Por Jorge Tadeu (Site Desastres Aéreos) com ASN, Wikipédia e baaa-acro