sexta-feira, 11 de outubro de 2024

Piloto morre durante voo e equipe realiza pouso às pressas


Um piloto da companhia aérea turca Turkish Airlines morreu em pleno voo depois de sofrer um desmaio, o que levou o avião a fazer um pouso de emergência em Nova York nesta quarta-feira (9/10), informou a companhia aérea.

O voo partiu de Seattle para Istambul
A aeronave, que partiu na noite de terça-feira (8/10) de Seattle, na costa oeste dos Estados Unidos, tinha como destino a cidade turca de Istambul, disse no X o porta-voz da Turkish Airlines, Yahya Üstün.

"O capitão do nosso Airbus 350 que operava o voo TK204 desmaiou durante o voo. Após uma tentativa frustrada de primeiros socorros, nossa cabine [composta por outros dois pilotos] decidiu fazer um pouso de emergência, mas nosso capitão perdeu a vida antes do pouso", explicou o porta-voz.

O piloto  Ilcehin Pehlivan, de 59 anos (foto ao lado)  trabalhava para a Turkish Airlines desde 2007 e foi submetido a exames médicos periódicos no início de março, informou a empresa turca.

“Como família da Turkish Airlines, desejamos a misericórdia de Deus ao nosso capitão e paciência à sua família enlutada, a todos os seus colegas e entes queridos”, disse o porta-voz.

Via AFP

Avião que faz testes no aeroporto Salgado Filho, em Porto Alegre (RS), colide na avenida

O avião do Grupo Especial de Inspeção em Voo (Geiv) da Aeronáutica, que está em Porto Alegre, sofreu um incidente na tarde de terça-feira (8). A aeronave colidiu em uma avenida nas proximidades do aeroporto Salgado Filho.

Desde o dia 7 de outubro, a aeronave do GEIV (Grupo Especial de Inspeção em Voo), da Força Aérea Brasileira, realiza voos para aferições dos equipamentos que auxiliam os aviões nos procedimentos de aproximação, pouso e decolagem na aeroporto Salgado Filho.

Esta atividade faz parte do processo de homologação das obras de reabilitação da pista de pouso e decolagem, danificada pela enchente de maio de 2024.

O Grupo Especial de Inspeção em Voo (GEIV) é a unidade da FAB especializada no
aferimento de sistemas de navegação aérea (Foto: Divulgação/FAB/CP)
O GEIV faria a verificação dos PAPIs (Precision Approach Path Indicator, em português Indicador de Percurso de Aproximação de Precisão) das cabeceiras recuadas, 11 e 29, e do Localizer/DME da cabeceira 11. Após essa atividade, os registros dos equipamentos são analisados para que o documento de homologação seja emitido.

O Papi é um equipamento que auxilia o piloto, pois fornece orientação visual da inclinação de descida para aproximações sem precisão. Já o Localizer é um sistema de orientação horizontal no sistema de pouso por instrumentos. Em Porto Alegre, ele está junto ao DME, que fornece informações de distância.

O GEIV é a unidade da FAB especializada no aferimento de sistemas de navegação aérea. Além disso, é atribuição do grupo homologar novos procedimentos de tráfego aéreo, quando publicados pela divisão de Cartografia Aeronáutica da Força Aérea Brasileira.

Com informações do GZH e Correio do Povo

Avião sofre incidente no Aeroporto de Chapecó (SC) e assusta passageiros

Falha no pouso faz aeronave parar de forma brusca; procedimento de emergência é acionado, gerando tensão a bordo.

(Foto: Ouvintes Rádio Oeste Capital)
Um incidente envolvendo a aeronave Embraer 190-400STD, prefixo PS-AEQ, da Azul deixou passageiros assustados na madrugada desta quinta-feira (10) no Aeroporto de Chapecó. O voo, que saiu de Campinas (SP) com atraso, enfrentou um pouso abrupto, seguido de um acionamento de emergência, o que gerou grande tensão entre os passageiros.

O voo AD4387, que deveria ter decolado às 11h20 da noite anterior, só deixou Campinas por volta de 0h15. Segundo relatos de um passageiro, que estava a bordo, o avião já apresentava sinais de problemas técnicos antes mesmo da decolagem, o que aumentou a ansiedade durante o trajeto.

No pouso em Chapecó, após passarem por algumas turbulências por conta do mau tempo, os passageiros relataram que o piloto freou a aeronave bruscamente ao tocar a pista. “O avião ficou um pouco acelerado, a turbina fazia barulhos estranhos e, de repente, parou. O alarme de segurança soou e ficamos parados por vários minutos, sem saber o que estava acontecendo”, relatou o passageiro.

Ainda segundo testemunhas, o piloto informou que houve um acionamento de emergência, possivelmente causado por um sensor defeituoso. Após alguns minutos de incerteza, os passageiros foram informados de que a aeronave seria rebocada até o hangar de manutenção, onde todos desembarcaram em segurança. O procedimento levou cerca de 30 minutos.


A empresa aérea ainda não se pronunciou sobre o ocorrido, e as causas do incidente permanecem sob investigação. Passageiros compartilharam vídeos gravados dentro e fora da aeronave, mostrando a tensão do momento. “Foi uma experiência assustadora. Não sabíamos se havia fogo ou algum outro problema grave”, desabafou o passageiro.

Via ClicRDC e 
flightradar24

Vídeo: Piloto foge após pouso forçado de avião de pequeno porte na BR-174

Testemunhas relataram à polícia que viram um veículo modelo pick-up fazendo o resgate dos ocupantes da aeronave.


O avião de pequeno porte experimental Paradise I, prefixo com prefixo PU-JCD, fez um pouso forçado na tarde desta quarta-feira (9) às margens do km 978, antigo km 93 da BR-174, em Presidente Figueiredo, na região metropolitana de Manaus. A rodovia liga o Amazonas a Roraima. Segundo testemunhas, o piloto fugiu do local após o incidente.

Equipes da Polícia Civil, Militar, Polícia Rodoviária Federal (PRF) e Corpo de Bombeiros foram ao local da aeronave. A PRF informou que, inicialmente, não foram encontrados indícios de atividades ilegais na aeronave.


De acordo com a polícia, quando os agentes chegaram, não havia mais nenhum ocupante e nada foi encontrado. A polícia suspeita que a aeronave tenha vindo do estado vizinho de Roraima, pois foi encontrada uma garrafa de água mineral de uma marca comercializada naquele estado dentro do avião.

Além disso, testemunhas relataram à polícia que viram um veículo modelo pick-up fazendo o resgate dos ocupantes.


O delegado Valdinei Silva, titular da 37ª Delegacia Interativa de Polícia (DIP) de Presidente Figueiredo, informou que enviará relatórios à ANAC e solicitar a retirada da aeronave do local.

Via g1 com informações de Francisco Carioca, da Rede Amazônica e Roraima 1

quinta-feira, 10 de outubro de 2024

Quão seguro é voar hoje? Pesquisando a segurança das viagens aéreas modernas


As viagens aéreas revolucionaram a forma como nos conectamos em todo o mundo, tornando destinos distantes facilmente acessíveis e diminuindo efetivamente o globo. Apesar das maravilhas da tecnologia da aviação, as preocupações com a segurança sempre permaneceram na mente dos viajantes.

Na nossa era contemporânea de 2023, a segurança dos voos passou por melhorias significativas, impulsionadas por avanços meticulosos na tecnologia, regulamentações rigorosas e um maior compromisso com o bem-estar dos passageiros.

Neste artigo, vamos nos aprofundar na segurança moderna das viagens aéreas, respondendo à nossa pergunta principal 'quão seguro é voar hoje?' e explorar os principais fatores que contribuem para uma viagem segura e confiável pelos céus. Além disso, examinaremos os dois tipos predominantes de transporte contemporâneo, aviões e automóveis, e realizaremos uma análise comparativa entre os dois.

Quão seguro é voar hoje?


A indústria da aviação percorreu um longo caminho desde os seus primórdios, quando as regulamentações de segurança não eram aplicadas com tanto rigor como são hoje. De acordo com a Organização da Aviação Civil Internacional (ICAO), a indústria da aviação global sofreu 1,93 acidentes por um milhão de voos em 2021, demonstrando uma melhoria notável nas medidas de segurança. Esses padrões rigorosos abrangem projeto de aeronaves, procedimentos de manutenção, treinamento de pilotos, gerenciamento de tráfego aéreo e operações aeroportuárias. As companhias aéreas de todo o mundo aderem a estas normas, garantindo um nível consistente de segurança, independentemente do destino.

Em 2022, ocorreram menos acidentes envolvendo voos comerciais regulares utilizando aeronaves com massa máxima superior a 5.700 kg (12.566,35 libras), em comparação com 2021, nos 55 estados das regiões europeias. Especificamente, ocorreram oito acidentes deste tipo em 2022. É importante ressaltar que nenhum destes acidentes resultou em vítimas mortais. Com isso, a taxa de acidentes regional para esse tipo de operação foi de 1,02 acidentes por milhão de partidas. Isto representa uma diminuição substancial de 57% em relação à taxa de acidentes registada em 2021, que foi de 2,35 acidentes por milhão de partidas.

Em termos mais simples, o número de acidentes diminuiu e a taxa a que estes acidentes ocorreram por milhão de partidas melhorou significativamente em 2022, indicando um ambiente de viagem cada vez mais seguro para voos comerciais regulares nas regiões europeias.

Nota: um acidente de aviação é definido como um evento envolvendo uma aeronave no qual há danos substanciais, ferimentos ou perda de vidas. Inclui incidentes em que a operação ou a integridade estrutural da aeronave é comprometida, resultando em consequências adversas.

Então, o que torna o voo seguro hoje?


Na era da aviação moderna, que fatores contribuem para o elevado nível de segurança nas viagens aéreas?

Explorar a interação entre tecnologia, regulamentações, conhecimentos especializados, treinamento e avanços tecnológicos revela uma intrincada rede de cinco elementos-chave que, coletivamente, tornam o voo o modo de transporte mais seguro .

Avanços tecnológicos

As viagens aéreas modernas devem grande parte da sua segurança às tecnologias de ponta que transformaram todos os aspectos da aviação. De acordo com a Administração Federal de Aviação ( FAA ), a introdução de sistemas aviônicos avançados reduziu significativamente a taxa de acidentes.

Estes sistemas incluem tecnologias de última geração de navegação, comunicação e prevenção de colisões - em particular, a implementação de Sistema de Posicionamento Global ou GPS e Sistemas aprimorados de Alerta de Proximidade do Solo (EGPWS), também conhecidos como Sistemas de Alerta de Conscientização do Terreno (TAWS)). Estes avanços melhoram a consciência situacional do piloto, reduzem o erro humano e permitem uma navegação mais segura, mesmo em condições meteorológicas adversas.

Nos últimos anos, o design de aeronaves incorporou materiais inovadores que melhoram a integridade estrutural e a eficiência de combustível. A Boeing informou que o uso de materiais compósitos no Boeing 787 Dreamliner reduz o peso da aeronave e aumenta sua durabilidade, contribuindo para maior segurança. Os motores de última geração proporcionam maior confiabilidade e desempenho, reforçando ainda mais a segurança em voo.

Além disso, os avanços nos sistemas de monitoramento e diagnóstico da condição do motor (ECM) permitem o rastreamento em tempo real da integridade do motor, garantindo que possíveis problemas sejam identificados e resolvidos rapidamente.

Protocolos de manutenção rigorosos

(Foto: Olena Yakobchuk/Shutterstock)
As práticas de manutenção são a espinha dorsal da segurança da aviação. De acordo com a Airbus , as aeronaves modernas passam por rigorosas verificações de manutenção a cada 400-600 horas de voo (ou cerca de 200-300 voos). Esses intervalos podem variar de acordo com o modelo específico da aeronave.

Durante este processo, técnicos qualificados realizam tarefas como a substituição de filtros, a realização de inspeções minuciosas do sistema e a garantia da lubrificação essencial. Além disso, eles examinam meticulosamente os equipamentos de emergência. Em média, este procedimento, conhecido como “verificação A”, leva aproximadamente 50 a 70 horas para ser concluído.

As companhias aéreas seguem protocolos de manutenção rigorosos que envolvem inspeções regulares, reparos e substituição de componentes. O sistema de gerenciamento de estoque just-in-time (JIT) garante que as peças sobressalentes estejam prontamente disponíveis quando necessário, reduzindo o tempo de inatividade e riscos potenciais.

Treinamento e experiência de pilotos

O papel dos pilotos na garantia de voos seguros não pode ser exagerado. De acordo com o National Transportation Safety Board (NTSB), o erro do piloto contribui para cerca de 85% dos acidentes de aviação. Os pilotos modernos passam por um treinamento abrangente que abrange diversos cenários, desde operações de rotina até situações de emergência. Os pilotos são obrigados a completar pelo menos 1.500 horas de treinamento antes de serem certificados. Simuladores de vôo avançados permitem que os pilotos pratiquem manobras e lidem com emergências em um ambiente controlado, aprimorando suas habilidades e capacidade de tomada de decisão.

O treinamento em gerenciamento de recursos de tripulação (CRM) é outro aspecto essencial da educação de pilotos. Enfatiza a comunicação eficaz, o trabalho em equipe e a tomada de decisões entre os membros da tripulação da cabine, promovendo uma cultura de colaboração que aumenta a segurança.

(Foto: Yakobchuk Viacheslav/Shutterstock)
Gestão de tráfego aéreo e comunicação

A complexidade do espaço aéreo global exige sistemas eficientes de gestão do tráfego aéreo (ATM). Esses sistemas utilizam radar, satélite e tecnologias terrestres para monitorar e direcionar aeronaves, garantindo a manutenção de distâncias seguras entre elas.

Só nos Estados Unidos, aproximadamente 5.000 voos operam a cada minuto durante os horários de pico. Os controladores de tráfego aéreo (ATCs) desempenham um papel crucial na orientação dos pilotos nas várias fases do voo, desde a descolagem até à aterragem.

Segurança e bem-estar dos passageiros

As companhias aéreas priorizam a segurança e o conforto dos passageiros, desde o momento em que entram no aeroporto até o momento em que desembarcam no destino. De acordo com

Administração de Segurança de Transporte (TSA ), 3.251 armas de fogo foram interceptadas em postos de controle de segurança nos Estados Unidos no primeiro semestre de 2023, ressaltando um firme compromisso com a segurança dos passageiros. Triagens de segurança rigorosas, sistemas modernos de manuseio de bagagem e demonstrações de segurança abrangentes contribuem para uma experiência de viagem segura.

(Foto: CamaleõesEye/Shutterstock)

Então, o que torna o voo seguro hoje?


As viagens aéreas modernas atingiram níveis de segurança sem precedentes graças a uma combinação de regulamentações rigorosas, tecnologia de ponta, práticas de manutenção meticulosas e ao trabalho de profissionais qualificados. A indústria da aviação continua a investir em melhorias de segurança, resultando numa melhoria notável nas taxas de acidentes ao longo dos anos. Os viajantes podem agora embarcar nas suas viagens com confiança, sabendo que os céus são navegados com o máximo cuidado e compromisso com o seu bem-estar.

Voar é mais seguro do que dirigir?


Voar é geralmente considerado significativamente mais seguro do que dirigir. Esta conclusão é apoiada por dados estatísticos de diversas fontes, incluindo agências governamentais e organizações de aviação. Aqui está um resumo da comparação de segurança entre voar e dirigir:

Mortes por milha/distância percorrida

De acordo com dados da Administração Nacional de Segurança no Trânsito Rodoviário (NHTSA) e da FAA, a taxa de mortalidade por quilômetro percorrido é muito maior dirigindo do que voando. Para os automóveis, a taxa situou-se em 150 acidentes por 10 mil milhões de quilómetros percorridos pelo veículo, o que é surpreendentemente 750 vezes superior por quilómetro, em comparação com voar num avião comercial. Portanto, em média, é mais provável que você se envolva em um acidente fatal enquanto dirige do que enquanto voa.

Comparação de riscos

Os riscos associados à condução e ao voo são fundamentalmente diferentes. Ao dirigir, você está exposto a perigos potenciais de outros motoristas, condições da estrada, clima e outros fatores. Por outro lado, a aviação opera num ambiente controlado e regulamentado, com pilotos, controladores de tráfego aéreo e protocolos de segurança rigorosos em vigor para minimizar os riscos.

Redundância e regulamentação

A aviação comercial está sujeita a rigorosas regulamentações de segurança, aplicadas por autoridades aeronáuticas como a FAA nos Estados Unidos. As aeronaves são projetadas com redundância em mente, incluindo vários motores, sistemas e planos de backup para lidar com diversas emergências. Em contrapartida, os automóveis têm menos redundâncias incorporadas e estão expostos a uma gama mais ampla de variáveis.

Fatores humanos e treinamento

Os pilotos passam por treinamento extensivo e testes recorrentes para garantir sua competência no manejo de uma variedade de situações diferentes. Embora a condução também exija formação, a formação geral e o nível de competências dos pilotos podem contribuir para resultados mais seguros na esfera da aviação.

Tempo e condições

As condições meteorológicas adversas podem ter um impacto significativo na segurança rodoviária, ao passo que os pilotos têm acesso a informações meteorológicas avançadas e são treinados para navegar através de vários cenários meteorológicos.

Comparação global

Globalmente, a segurança da aviação tem melhorado continuamente ao longo dos anos. A Associação Internacional de Transporte Aéreo ( IATA ) relatou uma diminuição consistente no número de acidentes aéreos e mortes, refletindo o compromisso da indústria com a segurança.

É importante observar que embora voar seja estatisticamente mais seguro, a percepção de risco pode variar entre os indivíduos. O medo de voar, conhecido como aviofobia, é um fenômeno comum, embora a probabilidade estatística de um acidente seja baixa.

Edição de texto e imagens por Jorge Tadeu com informações do Aerotime

Vídeo: O Primeiro Ministro de Portugal Estava a Bordo - Camarate


Um primeiro-ministro de Portugal embarca em um avião de campanha para ajudar o seu candidato. E o avião sofre um acidente. Acidente ou Sabotagem? Senta que lá vem história.



Vídeo: Mayday Desastres Aéreos - Voo Atlantic Airwars 670 - À Beira de um Desastre


Aconteceu em 10 de outubro de 2006: Voo 670 da Atlantic Airways - Um "perigo aceitável"

No dia 10 de outubro de 2006, um avião das Ilhas Faroé transportando engenheiros de gás natural para um pequeno aeroporto insular na Noruega invadiu a pista ao pousar, fazendo o jato cair de um penhasco em direção ao mar. 

O avião parou em uma encosta íngreme e pegou fogo, desencadeando uma corrida desesperada para escapar antes que as chamas consumissem a cabine. 

Os passageiros lutaram por suas vidas contra portas bloqueadas e fumaça tóxica, enquanto os pilotos travaram uma luta heróica para salvar aqueles que estavam presos lá dentro. 

No final, doze pessoas escaparam, enquanto quatro morreram no inferno - um resultado milagroso, pelo menos aos olhos dos primeiros respondentes, que acreditavam que todos os passageiros haviam morrido. 

Mas por que o British Aerospace 146 não conseguiu parar quando deveria ter espaço de sobra? 

Os investigadores acabariam descobrindo uma confluência de fatores ambientais e falhas mecânicas que lançaram os pilotos do voo 670 da Atlantic Airways em uma luta terrível para desacelerar - e que um sistema de segurança projetado para ajudar a desacelerar o avião realmente o enviou para sua ruína.

A rota do voo 670 dentro da Noruega e a localização das Ilhas Faroe
Atlantic Airways é uma companhia aérea estatal* pertencente ao governo das Ilhas Faroe, um território autônomo da Dinamarca localizado entre a Escócia e a Islândia. 

A companhia aérea já prestou serviços em diversas ocasiões entre as Ilhas Faroe e o Reino Unido, Noruega e Dinamarca, bem como alguns voos de conexão dentro desses países. 

Uma pequena frota de helicópteros serviu em rotas dentro das próprias Ilhas Faroe. A Atlantic Airways também ofereceu helicópteros e serviços de fretamento de asa fixa e, no início dos anos 2000, a empresa de engenharia norueguesa Aker Kværner contratou regularmente a Atlantic Airways para transportar seus funcionários de sua base em Stavanger para a cidade de Molde, onde forneceu suporte para um operação de extração de gás natural. 

O voo geralmente fazia uma parada intermediária no Aeroporto de Stord, na ilha de Stord, a menos de 60 quilômetros de Stavanger, para pegar mais passageiros.

* Nota: No ano seguinte ao acidente, a companhia aérea foi parcialmente privatizada.

OY-CRG, a aeronave envolvida no acidente
Operando este voo charter em 10 de outubro de 2006 estava o British Aerospace BAe-146-200A, prefixo  OY-CRG (foto acima), um jato de curto alcance quatro motores projetado para pousos e decolagens curtas. 

Construído no Reino Unido entre 1983 e 2002, o BAe 146 tinha um bom histórico de segurança e várias centenas estavam em serviço em todo o mundo. 

No comando do voo naquele dia estavam dois conceituados pilotos faroenses: o capitão Niklas Djurhuus, 34, e o primeiro oficial Jakob Evald, 38, ambos com registros perfeitos e muita experiência em voos para aeroportos em pequenas ilhas. 

Na primeira etapa juntaram-se a eles dois comissários de bordo e 12 passageiros, que se espalharam pela cabine, deixando a maioria dos assentos vazios.

Depois de transportar combustível e passageiros, o voo 670 da Atlantic Airways partiu do aeroporto de Stavanger às 7h15, pouco antes do amanhecer. 

Oito minutos depois, o primeiro oficial Evald abriu a comunicação por rádio com o controlador de aproximação, baseado em uma instalação em Bergen, e planejou pousar na pista 15 em Stord. Embora o vento na época favorecesse a pista 15, os pilotos logo mudaram de ideia. 

Como estavam se aproximando pelo sul, precisariam ultrapassar o aeroporto e fazer uma curva de 180 graus para chegar à pista 15 pelo norte; faria mais sentido ir direto para a pista 33, a mesma pista na direção oposta, já que o vento de cauda era de apenas 5 nós (9 km/h), bem dentro dos limites. 

O controlador de aproximação então entregou o voo ao oficial do Aerodrome Flight Information Service (AFIS) no Aeroporto Stord - uma posição semelhante a de um controlador, mas sem autoridade para dar ordens às aeronaves. 

A tripulação do voo 670 informou ao oficial do AFIS que pousariam na pista 33, e os pilotos começaram a se preparar para a aproximação final. 

Tinha chovido naquela manhã, mas agora o tempo estava claro e, embora um pouco de água permanecesse na pista, não era o suficiente para realmente chamá-la de “molhada” e a ação de frenagem era esperada como boa.

As duas possibilidades de acesso ao Aeroporto Stord pelo sul, com vento no dia do acidente
O Aeroporto de Stord é um pequeno campo de aviação que atende comunidades na parte sul do condado de Hordaland, na Noruega, entre as cidades de Bergen e Stavanger. Ele hospeda apenas serviços regulares limitados usando aeronaves relativamente pequenas, e o BAe 146 usado pela Atlantic Airways foi o maior avião que normalmente pousava lá. 

O aeroporto está situado no topo de uma colina acima do estreito de Stokksundet, um canal estreito entre as ilhas de Bømlo e Stord, cercado por encostas íngremes e rochosas que descem direto para o mar. 

Ambas as extremidades da pista apresentam quedas significativas sem espaço para erro, e deve-se ter cuidado ao tentar pousar lá em um BAe 146, especialmente com vento de cauda. Mas a Atlantic Airways voou para muitos desses aeroportos, incluindo o Aeroporto de Vágar, sua base nas Ilhas Faroe, que fica em terreno igualmente precário,

Uma vista aérea do Aeroporto Stord (Foto: Javier Bobadilla)
A abordagem final ocorreu sem problemas, com os pilotos cuidadosamente garantindo que voassem na velocidade e ângulo corretos; todas as listas de verificação foram concluídas no prazo e o avião estava devidamente alinhado com a pista. 

Às 7h32, o voo 670 pousou a poucos metros do ponto ideal de aterrissagem e os pilotos começaram a série de etapas necessárias para parar o avião. 

O primeiro passo após o toque é implantar os spoilers de sustentação - o conjunto de flaps nas asas que literalmente “estragam” sua capacidade de produzir sustentação, permitindo que o peso da aeronave desloque-se para as rodas e tornando os freios mais eficazes.

Um exemplo de spoiler de elevação em uso em um Airbus A321. No BAe 146, uma aeronave de asa alta, os spoilers não seriam visíveis da cabine; no entanto, sua aparência é semelhante (Foto: FAA)
Assim que as rodas tocaram a pista, o primeiro oficial Evald gritou: "E ... spoilers."

O capitão Djurhuus puxou a alavanca do spoiler para engatar os spoilers, certificando-se de que encaixou na retenção adequada, enquanto Evald monitorava as luzes do spoiler no painel de instrumentos para garantir que fossem acionados corretamente. 

Mas, para sua surpresa, as luzes não acenderam.

"Sem spoilers", disse ele, usando o texto explicativo que foi treinado para fornecer. 

Ficou imediatamente claro que não se tratava de um alarme falso: por algum motivo, os spoilers não funcionaram!

No BAe 146, os spoilers são essenciais para fazer o avião parar com segurança. Entre as aeronaves de grande porte, o 146 é o único que não tem capacidade de gerar empuxo reverso, o que significa que depende mais dos freios das rodas para reduzir a velocidade.

Os freios, por sua vez, dependem do funcionamento correto dos spoilers. Se os spoilers não forem acionados, o peso do avião não será transferido para as rodas tão rapidamente, reduzindo a eficácia do freio em até 60%. 

Então, quando o capitão Djurhuus pisou no freio para tentar diminuir a velocidade, ele não recebeu o feedback que esperava. 

Apenas um ou dois segundos se passaram desde que o primeiro oficial Evald gritou “sem spoilers”, e ele ainda não tivera tempo de fazer a conexão entre a falta de spoilers e a incapacidade dos freios para reduzir a velocidade do avião. 

Aparentemente acreditando que os freios também estavam funcionando incorretamente, ele acionou a chave seletora de freio para mudar o sistema hidráulico que alimentava os atuadores do freio, mas isso não resolveu o problema. 

Após mais três segundos, já bastante alarmado com a velocidade excessiva do avião, o capitão Djurhuus tentou a última solução que lhe ocorreu: acionou o freio de emergência.

Diagrama dos sistemas de travagem do BAe 146. Observe como os dois conjuntos de
freios são fornecidos pelos sistemas hidráulicos “amarelo” e “verde” (AIBN)
Um efeito colateral de ativar o freio de emergência no BAe 146 é que ele contorna o sistema antiderrapante do avião. 

Normalmente, os sensores no trem de pouso detectam se as rodas estão girando corretamente e reduzem automaticamente a pressão do freio se ocorrer uma derrapagem, de modo que a roda pode começar a girar novamente e a pressão do freio pode ser gradualmente reaplicada. Isso evita que as rodas travem e garante que a força de frenagem seja usada com eficácia. 

Mas, quando o capitão Djurhuus acionou o freio de mão, o sistema antiderrapante foi desligado automaticamente, porque uma falha desse sistema poderia ser a razão para o uso do freio de mão em primeiro lugar. Sem o sistema antiderrapante regulando a pressão do freio, as rodas travaram quase imediatamente e o avião começou a derrapar. O som de pneus cantando chamou a atenção de todo o aeroporto,

Quando as rodas do voo 670 travaram, eles experimentaram um fenômeno raro chamado aquaplanagem de borracha revertida.

Numa aquaplanagem normal, uma grande quantidade de água parada levanta as rodas do avião da pista e impede que os freios diminuam a velocidade do avião. 

Em contraste, a aquaplanagem de borracha revertida pode ocorrer mesmo em uma pista que está apenas úmida. Conforme o pneu desliza pela superfície da pista, a fricção gera calor, o que faz com que o pneu volte ao seu estado original não curado, semelhante ao líquido. 

O atrito também aquece a água na pista até que se transforme em vapor. A borracha revertida forma uma vedação que retém o vapor, fazendo com que ele levante parcialmente o pneu da superfície. Isso faz com que o avião deslize sobre uma almofada de vapor, tornando os freios quase totalmente inúteis, e o fenômeno pode persistir até velocidades tão baixas quanto 20 nós (37 km/h). 

Assim que o voo 670 começou a experimentar a aquaplanagem de borracha revertida, não havia nada que os pilotos pudessem fazer para parar o avião a tempo - eles estavam indo para o fim da pista de qualquer jeito.

Indicadores de aquaplanagem de borracha revertida observados após o acidente (AIBN)
Com o fim da pista se aproximando rapidamente, o capitão Djurhuus ficou cada vez mais desesperado para parar o avião. 

Enquanto os passageiros seguravam para salvar sua vida, ele desviou para a direita, depois para a esquerda, depois para a direita novamente e, finalmente, de volta para a esquerda, fazendo o avião escorregar em uma tentativa de diminuir a velocidade. 

Mas não foi suficiente: ainda viajando a 15–20 nós (28–37 km/h), o voo 670 derrapou no final da pista. 

O avião oscilou à beira do precipício e depois caiu, mergulhando na encosta íngreme e arborizada; pedras atingiram a fuselagem e o motor número quatro foi arrancado da asa. 

Finalmente, o avião bateu em um afloramento de rocha e parou. A asa direita se desprendeu da fuselagem com o impacto, deixando um buraco no teto através do qual os passageiros foram encharcados com combustível de aviação.

Um fogo violento irrompeu imediatamente pela asa decepada, crescendo a um tamanho considerável segundos após o acidente. 

Dentro do avião, todos os 16 passageiros e tripulantes sobreviveram - mas sua provação estava apenas começando.

Uma animação do acidente (Mayday)
Dentro da cabine, o capitão Djurhuus desligou imediatamente o fluxo de combustível para os motores e puxou as alças do extintor de incêndio, mas a conexão com o motor número dois foi cortada e ele se recusou a desligar. 

Incapaz de pará-lo, Djurhuus e Evald mudaram seu foco para tirar os passageiros do avião em chamas. 

Mas eles não obtiveram resposta quando tentaram contatar os comissários de bordo através do interfone da cabine, e a porta da cabine estava presa em sua moldura e não abriu, impedindo-os de alcançar os passageiros. 

Pensando rapidamente, Djurhuus abriu a janela lateral do capitão e os dois pilotos saltaram por ela, saltando 2 a 3 metros até o solo. 

Djurhuus correu até a porta de saída dianteira direita e tentou abri-la pelo lado de fora, mas essa porta também havia emperrado e ele não conseguiu entrar.

Um cinegrafista amador no topo de uma colina do Estreito de Stokksundet filmou o avião em chamas cerca de 13 segundos após o acidente. Os clipes mostrados aqui são posteriores na sequência (Mayday)
Enquanto isso, na cabine, os passageiros correram para encontrar uma saída utilizável enquanto as chamas consumiam o lado direito do avião. 

Ambas as saídas do lado direito foram bloqueadas por fogo, e a saída frontal esquerda não abriu, deixando apenas a saída traseira esquerda disponível. 

O comissário de bordo se apressou para abrir a porta, mas achou extremamente difícil mantê-la assim, pois ela abria para cima e tentava se fechar. 

Como o avião estava em uma inclinação de 30 graus, os passageiros na frente do avião tiveram que escalar o corredor usando os assentos como uma escada para chegar à cauda, ​​onde se viram presos em uma fila de pessoas tentando passar a saída que se recusou a permanecer aberta. 

Um passageiro abriu a porta traseira direita, viu chamas do lado de fora e imediatamente fechou-a novamente.

Este printscreen do vídeo mostra o momento em que o motor número dois finalmente
falhou, jogando destroços em chamas de volta encosta acima (TV2)
Conforme os passageiros começaram a pular 3-4 metros da porta de saída, chamas e fumaça surgiram na cabine. Alguém gritou “FORA, FORA”, e as pessoas correram pela porta, caindo umas em cima das outras no terreno irregular. 

Bem no nariz, o capitão Djurhuus desistiu de tentar abrir a porta dianteira esquerda e, em vez disso, voltou a subir pela janela para tentar a porta da cabine novamente. 

Desta vez, ele tentou remover os pinos que prendiam fisicamente a porta na moldura, mas também falhou; ele também não conseguiu chutar a porta porque ela havia sido reforçada após os ataques terroristas de 11 de setembro de 2001. 

Com as chamas invadindo a cabine, ele foi forçado a fugir pela janela mais uma vez, após o que concluiu que não havia mais nada ele poderia fazer. 

O primeiro oficial Evald havia se ferido no acidente e não conseguia andar, mas em um feito heróico de força, Djurhuus fisicamente o pegou e o carregou para fora do avião. 

Quase ao mesmo tempo, os últimos passageiros e o comissário de bordo escaparam pela porta de saída, alguns sofrendo queimaduras graves no processo, pois o fogo se espalhou por baixo do avião e irrompeu também pelo lado esquerdo. 

Olhando para trás, eles sabiam que nem todos haviam escapado, mas o avião foi completamente consumido pelas chamas e não havia nada que pudessem fazer para ajudá-los.

A fumaça sai dos destroços do voo 670 poucos minutos após o acidente (TV2)
Enquanto os passageiros e a tripulação fugiam para salvar suas vidas, os bombeiros - que haviam testemunhado o acidente - correram para o final da pista para extinguir as chamas. 

Mas o fogo estava localizado no limite do alcance de suas mangueiras, e os jatos do motor número dois, ainda em funcionamento, criaram um vento contrário que soprou a água para longe do avião. 

Como resultado, eles lutaram para controlar o fogo e, como só conseguiam alcançar o lado direito do avião, não sabiam que alguém havia escapado. 

Na verdade, quase todos os passageiros desceram em direção à praia depois de deixar o avião, onde dois foram resgatados por um barco que passava, enquanto os outros deram uma volta e subiram de volta para a pista em um local diferente. 

Os sobreviventes se reuniram atrás dos caminhões de bombeiros, onde os bombeiros, acreditando que ninguém havia escapado, confundi-os com passageiros de outro avião da Atlantic Airways que pousara alguns minutos antes. 

Até 20 minutos após o acidente, os homens do resgate ainda não relatavam sinais de sobreviventes, embora os sobreviventes estivessem a apenas alguns metros de distância deles. 

Por fim, o mal-entendido foi resolvido e os feridos foram levados às pressas para o hospital, incluindo os dois pilotos, que sofreram queimaduras significativas ao tentar salvar pessoas da cabine de passageiros. 

Mas eles tiveram sorte. Ao todo, três passageiros e o comissário de bordo morreram nas chamas, pelo menos dois deles enquanto tentavam abrir uma ou ambas as portas emperradas na frente do avião. Para seu eterno pesar, o capitão Djurhuus não foi capaz de salvá-los.

Os bombeiros observam os destroços enquanto as brasas continuam a arder
Com o resgate concluído e o incêndio extinto, investigadores do Conselho de Investigação de Acidentes da Noruega (AIBN) começaram a chegar ao local. 

Embora o acidente tenha ocorrido na Noruega, ele trouxe notícias importantes nas Ilhas Faroe, onde a comunidade unida ficou chocada com o primeiro acidente fatal de um avião das Ilhas Faroé e com a morte de um dos comissários de bordo. 

Mas enquanto os ilhéus (que dependiam da Atlantic Airways para se conectar ao mundo exterior) clamavam por respostas, os investigadores noruegueses logo descobriram que encontrar a causa do acidente poderia ser impossível. Ambas as caixas pretas sofreram exposição prolongada ao fogo e suas embalagens protetoras foram comprometidas. 

O gravador de dados de voo teve uma perda quase total, com apenas pequenas seções da fita produzindo qualquer informação legível. 

O gravador de dados de voo (FDR) danificado pelo calor
O gravador de voz da cabine era um modelo de estado sólido, mas também tinha sido seriamente danificado e teve de ser enviado ao fabricante com sede nos Estados Unidos antes que os dados pudessem ser extraídos. 

O Cockpit Voice Recorder (CVR), também danificado
As conversas dos pilotos revelaram que os spoilers falharam em desdobrar, embora os investigadores pudessem ouvir o som característico da alavanca do spoiler se movendo para a posição “desdobrada”. 

Um exame dos atuadores do spoiler recuperados dos destroços confirmou que eles estavam recolhidos. 

Era aparente que algum tipo de falha mecânica havia ocorrido, mas a trilha terminava ali - a maioria dos destroços tinha se transformado em cinzas e, sem o gravador de dados, não havia mais nada que pudesse apontar uma causa. 

Um investigador examina os destroços (BAAA)
O fracasso dos spoilers foi apenas metade da história, no entanto. Mesmo sem spoilers funcionais, o avião poderia teoricamente ter parado a tempo. 

Mas as evidências físicas deixadas na pista e um pneu que sobreviveu ao incêndio mostraram que o avião havia passado por aquaplanagem de borracha revertida, um fenômeno raro e perigoso que o impedia de desacelerar normalmente. 

A aquaplanagem revertida da borracha só foi possível por dois motivos. 

Primeiro, a pista estava úmida, fornecendo uma fonte de água para se transformar em vapor. Os pilotos não sabiam que a pista estava úmida porque a designação de “pista úmida” havia sido eliminada; para todos os efeitos práticos, uma pista úmida se comportava da mesma forma que uma pista seca, e a ausência de transmissão sobre uma pista molhada teria informado a tripulação de que estava seca. 

Contudo, o abandono do termo “úmido” não levou em consideração o fato de que a aquaplanagem reversa da borracha pode ocorrer mesmo em uma pista que está apenas úmida e sem água parada.

O segundo fator que levou à reversão da aquaplanagem de borracha foi a desativação da proteção antiderrapante, que ocorreu devido ao acionamento do freio de emergência. Os investigadores ficaram perturbados ao descobrir que o uso do freio de emergência na verdade aumentou a distância de parada necessária por uma margem significativa, levando diretamente ao acidente. 

Os pilotos, que nada sabiam sobre a aquaplanagem de borracha revertida, pensaram que usar o freio de emergência faria com que parassem mais rápido, uma suposição totalmente razoável que, neste caso, acabou se revelando errada. 

Claro, tecnicamente não havia necessidade de ativá-lo, já que seus freios estavam funcionando corretamente; mas com apenas alguns segundos para determinar o que estava errado, era compreensível que o capitão Djurhuus tentasse puxar o freio de emergência quando o avião não diminuísse normalmente.

Os investigadores também observaram que o acidente resultou em ferimentos e mortes porque o terreno além do final da pista era altamente implacável. 

O aeroporto, na verdade, não atendia às diretrizes da Organização de Aviação Civil Internacional (ICAO) que estipulavam uma área de segurança pavimentada no final da pista de pelo menos 180 metros (o Aeroporto de Stord tinha apenas 130, e as regras da Noruega exigiam 300), e que a inclinação além do a pista não deve exceder 20 graus (o voo 670 caiu em uma inclinação superior a 30 graus). 

Tanto o aeroporto quanto a Autoridade de Aviação Civil da Noruega (CAA) estavam bem cientes desse problema e, de fato, a CAA Noruega fez a renovação da licença do Aeroporto Stord de 2006 dependente de um acordo para tornar as áreas de segurança da pista em conformidade até outubro de 2008. No entanto, o terreno tornou quase impossível cumprir totalmente, e no momento do acidente,

Os investigadores vasculham os restos irreconhecíveis da cabine de passageiros (BAAA)
Enquanto alguns investigadores analisaram os aspectos operacionais, outros se concentraram em tentar descobrir por que os spoilers não foram acionados. Eles executaram uma complexa análise de árvore de falhas, examinando todas as maneiras pelas quais vários sistemas interagem e, finalmente, reduziram a duas possibilidades. 

Como os spoilers dependem de dois sistemas hidráulicos diferentes e todos têm atuadores independentes, há muito poucas falhas que afetarão todos os spoilers, como ocorreu no voo 670. 

Uma possibilidade era uma falha na ligação mecânica conectando a alavanca do spoiler aos interruptores que enviam um sinal aos atuadores do spoiler. Embora não tenha havido registro dessa falha em um BAe 146, esse cenário explicaria o acidente. 

A outra possibilidade era uma falha dos dois interruptores que detectam a posição do acelerador. Como os spoilers só podem se estender se o empuxo estiver em marcha lenta ou inferior, há dois interruptores redundantes que fazem contato quando as alavancas de empuxo são movidas para a marcha lenta, permitindo que o sinal de "implantação" seja transmitido da alavanca do spoiler para o atuadores. 

Esses microinterruptores já haviam falhado antes e, como resultado, precisavam ser inspecionados a cada 625 horas de voo; no entanto, se uma chave falhasse, ela não seria notada até esta inspeção. Portanto, um interruptor poderia estar quebrado por algum tempo, então quando o segundo também quebrasse, os spoilers não funcionariam - desde que os dois microinterruptores parassem de funcionar após a última inspeção e antes da próxima. 

O AIBN observou que ambas as falhas possíveis são extremamente improváveis ​​em princípio, mas tendo descartado todas as outras possibilidades, uma delas deve ter ocorrido; no entanto, eles não sabiam dizer qual. 

O relatório final, publicado seis anos após o acidente, afirmou que os investigadores não conseguiram determinar por que os spoilers não foram acionados.

Outra visão dos destroços, logo após o incêndio ter sido extinto (BAAA)
No entanto, a AIBN tinha muito a dizer sobre o conceito de risco latente. Ao analisar a queda do voo 670, ficou claro que pousar um BAe 146 em Stord era relativamente arriscado e que isso era conhecido das autoridades locais. 

No início de 2006, o Aeroporto de Stord conduziu um estudo que descobriu que o risco de um acidente para um pouso BAe 146 em Stord era de aproximadamente 2,24x10 (-7), ou um em 4,5 milhões, mais de duas vezes o máximo sugerido pela ICAO de 1 em 10 milhões .

Isso se deveu em parte ao fato de que o BAe 146 dependia de spoilers funcionais e que, se eles não disparassem, devido a falha mecânica ou erro humano, o avião poderia escapar do final da pista e cair encosta abaixo. Surpreendentemente, este estudo identificou o cenário exato que levou à queda do voo 670! 

Mas o aeroporto apenas forneceu à Atlantic Airways o valor de 2,24 x 10 (-7), sem incluir uma análise de como esse número foi derivado. 

Esse número abstrato é difícil de conceituar por si só, e a companhia aérea aparentemente não fez nada com ele; sobre este assunto, os investigadores escreveram: “Existem poucas empresas que têm o conhecimento ou a capacidade de se relacionar com valores de risco deste tipo e o que eles significam na prática”. 

Em vez disso, se a Atlantic Airways tivesse recebido os fatores de risco específicos que tornaram esse número tão alto - como a vulnerabilidade do BAe 146 a falhas de spoiler - então a companhia aérea poderia ter tomado medidas para mitigar esse risco. 

Na realidade, não fez nada - na verdade, no início de 2006, um pedido da Atlantic Airways à CAA Noruega para usar uma distância máxima de pouso mais longa para o BAe 146 em Stord (a fim de pousar com pesos brutos mais elevados) foi rejeitado porque a companhia aérea tinha não realizou qualquer análise do risco que possa estar envolvido.

Os investigadores trabalham na seção da cauda carbonizada da aeronave (BAAA)
Parte do problema era que o conhecimento desses fatores de risco estava espalhado por três agências diferentes, nenhuma das quais tinha um quadro completo da situação. 

As operações da Atlantic Airways foram aprovadas pelo CAA dinamarquês, o aeroporto foi aprovado pelo CAA norueguês e o projeto da aeronave foi aprovado pelo CAA britânico. 

Cada um deles viu apenas uma parte do todo - a natureza marginal de pousar um BAe 146 em uma pista tão curta, a falta de salvaguardas em torno do Aeroporto Stord e a dependência do avião em spoilers em funcionamento - e determinou que estes eram, isoladamente, aceitável. 

Não havia ninguém que pudesse olhar para os três e perceber que, quando considerados em conjunto, poderia haver um nível de risco inaceitável.

A porta dianteira esquerda, que o capitão Djurhuus tentou e não conseguiu abrir (AIBN)
Como resultado do acidente, a Atlantic Airways fez várias mudanças voluntárias, incluindo a introdução de uma regra exigindo que os pilotos verifiquem o status dos spoilers antes da decolagem. 

A companhia aérea também interrompeu os voos para o Aeroporto de Stord e afirmou que evitaria pousar o BAe 146 em pistas com menos de 1.300 metros de comprimento, sempre que possível.

O Stord Airport também fez alterações. Logo descobriu que estender a pista não seria viável, mas conseguiu encontrar outra solução para adequar as áreas de segurança das extremidades da pista. 

Em vez de estender as áreas de segurança para fora, ele as estendeu para dentro, aumentando o comprimento das áreas de segurança e, ao mesmo tempo, diminuindo o comprimento da pista. 

Ao estender as áreas de segurança para 190 metros, o comprimento da pista foi reduzido para 1.199 metros; acima de 1.200 metros, a lei norueguesa exigia áreas de segurança nas extremidades da pista de 300 metros, mas abaixo desse comprimento, apenas 180 metros eram exigidos, tornando o aeroporto em conformidade. 

Essa movimentação foi considerada segura porque a queda abaixo de 1.200 metros também implicou na redução do peso máximo das aeronaves permitidas para pousar no aeroporto.

A fim de garantir que os socorristas possam responder mais rapidamente a futuras ultrapassagens da pista, o aeroporto também construiu novos caminhos de acesso e comprou um barco que poderia resgatar pessoas e enfrentar incêndios diretamente do mar. 

A AIBN também sugeriu que o aeroporto instalasse um Sistema de Supressor de Materiais Projetados - muito parecido com uma rampa de caminhão em fuga para aviões - para forçar as aeronaves em alta velocidade a parar antes que possam cair da borda. No entanto, em 2020, nenhum sistema desse tipo foi instalado.

Visão geral dos destroços (AIBN)
Em seu relatório final, a AIBN emitiu duas recomendações adicionais. Em primeiro lugar, recomendou que, quando a CAA Noruega exigir que os aeroportos façam atualizações de segurança, também os obrigue a pôr em prática medidas para mitigar o risco causado por essas não conformidades, até que sejam corrigidas. 

Em segundo lugar, observou que a tripulação acreditava que seus freios tinham falhado, embora a eficácia reduzida do freio fosse um efeito colateral normal da falha dos spoilers. Provavelmente, isso ocorreu porque eles nunca foram treinados sobre o que fazer no caso de uma falha do spoiler e, se soubessem disso, talvez não tivessem puxado o freio de mão. 

Os procedimentos também exigiam uma volta se os spoilers não disparassem no touchdown, mas, novamente, sem que o tópico fosse abordado no treinamento, era improvável que eles se lembrassem disso. 

Como resultado, o AIBN recomendou que a British Aerospace garantisse que todos os operadores do BAe 146 estivessem cientes dos perigos de falhas de spoiler e implementassem programas de treinamento para ajudar os pilotos a responder. 

Em relação à falha do spoiler em si, o AIBN não emitiu nenhuma recomendação porque não determinou a causa, porque nenhuma falha semelhante era conhecida por ter ocorrido anteriormente e porque o uso do tipo de aeronave estava diminuindo, tornando improvável que uma falha semelhante ocorrer no futuro.

Um Airbus A319 da Atlantic Airways no pátio do aeroporto Vágar, nas Ilhas Faroé. A companhia aérea sempre teve altos padrões de segurança e, por causa do acidente, eles agora são ainda maiores (Atlantic Airways)
Como resultado de suas ações imediatamente após o acidente, que ajudou a salvar muitas vidas, os comissários de bordo Maibritt Magnussen e Guðrun Joensen (falecido) foram selecionados pelos leitores do principal jornal das Ilhas Faroé como os faroenses do ano. 

Embora não tenha tido sucesso em suas tentativas de salvar seus passageiros, o capitão Niklas Djurhuus também realizou vários atos altruístas de heroísmo, pelos quais ele também deve ser elogiado. Enquanto seu avião queimava ao seu redor, ele arriscou sua própria vida para subir a bordo e prestar assistência, um nível de bravura que ia além do seu dever.

O próprio acidente deve servir de lição sobre a natureza do risco. A lista de fatores de risco naquele dia era bastante longa: o BAe 146 não tinha impulso reverso; a pista era curta; o aeroporto tinha margens de segurança ruins; o voo estava pousando com vento de cauda; e a superfície da pista estava úmida. 

Em retrospectiva, podemos olhar para trás e entender por que um acidente aconteceu naquele dia, mas quando os eventos acontecem em tempo real, o quadro geral se torna muito mais difícil de ver. 

O primeiro oficial Evald disse ao AIBN que eles provavelmente só precisavam de mais 10 metros para parar com segurança - se ele estivesse certo, até mesmo a escolha de pousar com o vento de cauda foi decisiva. Clique AQUI para ler o Relatório Final do acidente.

Esteja você pilotando um avião ou dirigindo um carro, nunca é demais pensar sobre quais fatores podem estar adicionando risco à sua viagem. Se pudermos mitigar os riscos conhecidos, poderemos evitar ser rudemente acordados pelos riscos desconhecidos que silenciosamente nos acompanham em cada viagem, como aconteceu com os passageiros e tripulantes do voo 670 da Atlantic Airways.

Por Jorge Tadeu (Site Desastres Aéreos) com Admiral Cloudberg, ASN e Wikipédia

Aconteceu em 10 de outubro de 1998: Boeing 727 da Lignes Aériennes Congolaises é abatido por míssil no Congo


Em 10 de outubro de 1998, o avião Boeing 727-30, prefixo 9Q-CSG, da Lignes Aériennes Congolaises (foto abaixo), operava um serviço doméstico não regular de passageiros entre Kindu e Kinshasa, na República Democrática do Congo, levando a bordo 38 passageiros e três tripulantes.


A aeronave 9Q-CSG fez seu voo inaugural em 10 de março de 1965. Foi entregue novo à Lufthansa , antes de servir à Condor até 1981. A partir daí o a aeronave foi operada pela Royal Oman Police Air Wing sob o registro A40-CF. 

Em 1993 era operada pela Seagreen Airlines e mais tarde no mesmo ano pela Shabair sob o registo 9Q-CSG. Em 1994, foi adquirida pela New ACS antes de ser transferida para a Lignes Aériennes Congolaises em 1997. A fuselagem tinha 33 anos em 1998.

O Boeing 727-30 da Lignes Aériennes Congolaises decolou do Aeroporto de Kindu (KND/FZOA) em um voo doméstico não regular de passageiros para o Aeroporto de N'djili, em Kinshasa. 

Com apenas 3 minutos de voo, a traseira da aeronave foi atingida por um míssil terra-ar Strela 2 (também conhecido como SA-7) de fabricação russa, lançado pelas forças rebeldes durante a Segunda Guerra do Congo. 

O capitão tentou um pouso de emergência, mas o 727 caiu em uma densa selva perto de Kindu, a .39 km a leste do aeroporto, 11 minutos depois. Todas as 41 pessoas a bordo morreram.

A RDC é o segundo maior país de África e tem uma população de 71 milhões
Os aldeões que encontraram os destroços na floresta não encontraram vestígios de sobreviventes.

Os rebeldes alegaram que a aeronave foi alvejada durante o pouso com 40 soldados a bordo. O governo alegou que os 40 a bordo eram passageiros civis que fugiam dos combates em Kindu e que o avião estava decolando.

Kindu, a base oriental das forças governamentais congolesas (FAC), estava sob ataque dos rebeldes.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro