terça-feira, 27 de maio de 2025

Como funcionam os sistemas de entretenimento a bordo?

Olhando para o funcionamento interno do entretenimento a bordo (IFE).

O IFE da British Airways (Foto: British Airways)
O entretenimento a bordo (IFE) é uma das partes mais empolgantes das viagens de longo curso, com a maioria das companhias aéreas instalando telas em aviões widebody. Dependendo da companhia aérea com a qual você voa, o IFE pode variar na seleção e qualidade do conteúdo. Ainda assim, como exatamente esses sistemas de entretenimento funcionam? Eles estão saindo devido a reduções de custos?

História


Embora o entretenimento a bordo possa parecer um dado adquirido em aviões modernos de longa distância (na maioria das operadoras), a tecnologia em si é mais nova do que você imagina. Você deve ter notado que alguns aviões mais antigos ainda têm telas suspensas no painel superior. Essas telas eram os sistemas IFE originais, com telas exibindo um único filme por vez. Os passageiros podiam conectar fones de ouvido individualmente e ouvir o filme na tela.

Telas individuais eram inéditas até o final da década de 1980, quando a Northwest Airlines realizou um teste de telas internas de 2,7 polegadas em seus 747s. A tela da operadora permitia que os clientes escolhessem entre seis canais que exibiam uma série de filmes, músicas, notícias e documentários.


A companhia aérea recebeu apoio esmagador para este sistema de vídeo sob demanda, e isso desencadeou a tendência da tela IFE que vemos hoje. No entanto, muita coisa mudou neste campo ao longo das décadas.

As telas suspensas permaneceram em serviço até o início dos anos 2000 com algumas companhias aéreas, até que foram gradualmente eliminadas. Hoje em dia, várias operadoras oferecem grandes monitores internos que oferecem uma variedade de conteúdos.

Assistindo filmes a bordo ao estilo antigo (Foto: Lars Plougmann via Flickr)

Como funciona?


Os sistemas IFE aparentemente funcionam sem fios visíveis. A fiação está realmente escondida nas paredes da aeronave, com a fiação começando no painel superior, próximo às máscaras de oxigênio e saídas de ar-condicionado. Esses fios então se conectam às unidades de energia, que estão presentes a cada poucas fileiras na parede lateral da aeronave. Alguns pequenos sistemas aviônicos também estão presentes sob o assento, completando todo o sistema.

De acordo com Cranky Flier, as unidades IFE modernas não usam muita fiação, permitindo que alguns cabos de fibra ótica transportem a maior parte dos dados e da energia. Isso significa que todo o sistema é muito mais leve e simplificado agora do que antes, onde os passageiros rotineiramente encontravam grandes caixas IFE bloqueando seu (limitado) espaço para as pernas.

A instalação das unidades do IFE acontece junto com os assentos, quando o avião está em fase de finalização. Isso permite que as equipes instalem o sistema e cubram quaisquer fios visíveis sob o interior da cabine. A redução de peso desses sistemas permitiu que as companhias aéreas instalassem mais deles sem gastar bilhões no projeto. No entanto, a adaptação de uma cabine de aeronave com telas IFE ainda pode custar mais de US$ 3 milhões por aeronave, e o custo de combustível para operar cada tela apenas aumenta o preço.

E o conteúdo?


Embora as telas IFE sejam empolgantes, o sistema é tão bom quanto o conteúdo disponível. É aqui que as companhias aéreas individuais entram em ação. Dependendo de quanto estão dispostas a pagar, as companhias aéreas podem investir em novos lançamentos (que podem custar-lhes pay-per-view) ou em conteúdo mais antigo.

De acordo com um relatório da Valor Consultoria, os filmes a bordo são divididos em conteúdo de janela inicial (EWC), conteúdo de janela tardia (LWC) e filmes internacionais. Os EWCs são os filmes mais caros e de destaque que acabaram de sair dos cinemas.

LWC inclui todos os filmes mais antigos, que incluem clássicos e outros conteúdos que podem ser tão populares e são muito mais baratos para as companhias aéreas. Os filmes internacionais tendem a ser os mais baratos e mais específicos da região, com menos opções geralmente disponíveis (exceto o país de origem da operadora).

Cabine de passageiros da American Airlines (Foto: American Airlines)
As companhias aéreas geralmente negociam preços de conteúdo diretamente com os estúdios de Hollywood, com o preço dependendo da rota que está sendo voada e da bilheteria do filme em questão. Para outros filmes, as companhias aéreas podem apenas comprar filmes por uma taxa de licenciamento fixa e anual. Esse negócio de filmes de companhias aéreas é grande, com o mercado estimado em US$ 425 milhões antes da pandemia. Para filmes de lançamento antecipado, as companhias aéreas pagam cerca de US$ 33.000 por filme.

O conteúdo adicional inclui música, videogames, um mapa em movimento 3D e mais opções. Embora tudo isso aumente o custo, os filmes ainda representam a maior parte das despesas. Ao todo, o tamanho do mercado de IFE e conectividade está previsto para atingir US$ 7,68 bilhões até 2027.

Saindo de moda?


Embora os passageiros possam desfrutar do conteúdo no encosto do assento, as companhias aéreas estão lentamente percebendo que é muito caro mantê-lo. O peso adicional desses sistemas, a energia necessária para executá-los e o custo de filmes e telas são extremamente altos para as operadoras. Em vez disso, as companhias aéreas estão lentamente em direção a um novo sistema: transmitir conteúdo diretamente para o seu dispositivo.

IFE móvel (Foto: Emirates)
Com a maioria dos passageiros voando agora tendo acesso a um telefone, laptop ou tablet, é muito mais barato para as companhias aéreas abandonar o sistema volumoso e instalar WiFi a bordo. O conteúdo pode então ser transmitido diretamente para esses dispositivos, reduzindo custos para as companhias aéreas. Embora isso possa esgotar a bateria de um dispositivo, pois os aviões terão pontos de energia, esse não é um problema importante.

O futuro


Embora a crise pandêmica inicialmente tenha afetado as inovações recentes no departamento de entretenimento a bordo, com as companhias aéreas focadas na redução de serviços, há um amplo futuro para esse mercado neste período de recuperação. A crescente prevalência de Wi-Fi a bordo permite que serviços como Netflix, Amazon Prime Video e Paramount Plus se tornem acessíveis pelo ar, sacudindo todo o sistema como o conhecemos. A maioria dos widebodies de nova geração também está pronta para WiFi, exigindo pouco trabalho adicional para ativar os sistemas.

Independentemente disso, o IFE continua sendo parte integrante das estratégias de atendimento ao cliente das companhias aéreas em todo o mundo. Seja no assento traseiro ou remoto, as operadoras estão competindo para fornecer conteúdo interessante com seus serviços.

Mesmo as operadoras de baixo custo, como a easyJet , estão expandindo o lançamento de streaming IFE baseado em WiFi em suas aeronaves . Além disso, as guerras do streaming se traduzem na indústria aérea, com empresas como a British Airways fechando acordos com provedores de conteúdo . O IFE moderno foi uma graça salvadora durante a Copa do Mundo, com milhares sintonizando para assistir seu time jogar inteiro nos céus com várias companhias aéreas. 


O entretenimento a bordo é parte integrante da experiência de voar agora, com os passageiros tendo pouco o que fazer em voos de longa distância. No entanto, à medida que as companhias aéreas buscam otimizar custos nos próximos anos, podemos ver mais inovações surgindo e mais opções para assistir conteúdo em nossos dispositivos.

Fontes: Simple Flying, Cranky Flier, Valour Consultancy e Fortune Business Insights

Aconteceu em 27 de maio de 2017: A queda do voo 409 da Summit Air no Nepal

Em 27 de maio de 2017, um Let L-410 Turbolet operando o voo 409 da Summit Air, caiu perto da pista enquanto tentava pousar no Aeroporto Tenzing-Hillary, no Nepal. o avião estava na aproximação final quando a aeronave atingiu árvores perto da pista e, subsequentemente, deslizou por um declive antes de parar cerca de 200 metros (656 pés) abaixo do nível da pista e 130 pés antes da pista. O capitão e o primeiro oficial morreram no acidente, enquanto outro tripulante ficou ferido.

Aeronave



A aeronave envolvida no acidente era o Let L-410UVP-E20, prefixo 9N-AKY, da Summit Air (foto acima), construída em 2014 para a  empresa. A aeronave se envolveu em um acidente menor anterior em 2 de junho de 2015, quando o voo de Jomsom pousou em Pokhara com o trem de pouso retraído. Todos os 18 passageiros a bordo escaparam em segurança, mas a aeronave sofreu danos no nariz.

Tripulação


O capitãoParas Kumar Rai, de 48 anos, tinha mais de 9.000 horas de voo registradas e, desde que ingressou na companhia aérea, voou mais de 1.900 horas em aeronaves L-410. Ele morreu pouco depois de ser retirado dos destroços. 

O copiloto Srijan Manandhar morreu às 21h30, horário local, na terapia intensiva do Hospital Lukla. O tripulante de cabine sobreviveu ao acidente e logo foi evacuado por motivos médicos para Katmandu para tratamento posterior. Além deles, a bordo estava a comissária de bordo Pragya Maharjan, que sobreviveu ao acidente.

Acidente


Por volta das 14h04, horário local, a aeronave estava em aproximação final à Pista 06 do Aeroporto Tenzing-Hillary, em um voo de rotina do Aeroporto de Katmandu, quando desceu abaixo da altitude mínima de segurança logo na saída da pista e colidiu com uma árvore e contatou chão três metros abaixo da pista. Em seguida, deslizou mais de 200 metros por uma ravina.

Imagens de CCTV divulgadas pelo aeroporto mostraram a aeronave mergulhando abaixo do nível da pista e fumaça subindo dos destroços.


Testemunhas afirmaram que as condições meteorológicas estavam enevoadas e que a visibilidade era bastante baixa. O aeroporto não possui nenhum tipo de equipamento de navegação, obrigando os pilotos a pousar por abordagem visual.

A pista de declive ascendente 06 não possui nenhuma orientação de aproximação por instrumentos. No momento do acidente, a visibilidade local foi substancialmente reduzida pelo nevoeiro no solo.


Investigação


Após o acidente, suspeitou-se que a causa provável do acidente foi um estol aerodinâmico provocado pela baixa velocidade de aproximação. Devido à pista anormalmente curta em Lukla, as aeronaves são obrigadas a se aproximar do aeroporto em velocidades muito baixas, tornando a aeronave extremamente vulnerável a correntes descendentes repentinas e ventos fortes que ocorrem nas montanhas. Os fatores contribuintes podem incluir pouca visibilidade na abordagem final e a inexperiência e falta de tecnologia disponível para o controle de tráfego aéreo.


Em dezembro de 2017, um comitê de investigação da Autoridade de Aviação Civil do Nepal apresentou seu relatório final sobre o acidente e concluiu que "visibilidade muito baixa" foi a causa do acidente. Como a aeronave estava voando em meio a uma densa névoa por vários minutos antes da abordagem, ela errou a pista do Aeroporto de Lukla. 


O relatório revelou ainda que tanto o controle de tráfego aéreo do Aeroporto de Lukla (que não fechou o aeroporto apesar do tempo nublado) e a tripulação do voo 409, que também são suspeitos de estar estressados ​​e fatigados, violaram os procedimentos operacionais padrão. 


Por último, a comissão sugeriu que fosse considerada a extensão da pista do aeroporto de Lukla, o que tornaria o aeroporto, onde ocorreram vários acidentes no passado, mais seguro.

Consequências


Ao contrário das práticas comuns na aviação, a Summit Air não retirou o voo número 409 e ainda opera o voo de Kathmandu para Lukla com este número.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, ASN e baaa-acro

Aconteceu em 27 de maio de 2016: O dramático incêndio do Boeing 777 no voo 2708 da Korean Air em Tóquio


Em 27 de maio de 2016, um Boeing 777-300 da Korean Air, operando o voo 2708 do Aeroporto de Haneda, em Tóquio, no Japão. para o Aeroporto Internacional Gimpo, de Seul, na Coreia do Sul, estava acelerando para decolar quando seu motor esquerdo sofreu uma falha incontida e um substancial o fogo se seguiu. 

A tripulação abortou a decolagem e, após a parada da aeronave, o incêndio foi extinto pelos serviços de emergência do aeroporto. Todos os 319 passageiros e tripulantes foram evacuados, sendo que 12 ocupantes ficaram feridos.

Aeronave e tripulação


O Boeing 777 HL7534 visto em 2009
A aeronave que operava o voo 2708 era o Boeing 777-3B5, prefixo HL7534, da Korean Air (foto acima), equipado com dois motores Pratt & Whitney PW4000, número de série 27950. Esse foi 120º Boeing 777 produzido e voou pela primeira vez em 4 de fevereiro de 1998, tendo sido entregue novo à Korean Air em 28 de dezembro de 1999.

O capitão, de 49 anos, registrou um total de 10.410 horas de voo, incluindo 3.205 horas no Boeing 777. O primeiro oficial, de 41 anos, teve 5.788 horas com 2.531 delas no Boeing 777.

Acidente


Enquanto a aeronave decolava da Pista 34R em Tóquio Haneda, com 302 passageiros e 17 tripulantes, quando vibrações incomuns foram sentidas em toda a aeronave e fumaça foi vista do motor esquerdo (PW4098). os pilotos ouviram um grande estrondo vindo da esquerda. A tripulação rejeitou a decolagem em baixa velocidade e parou a aeronave a cerca de 1300 metros antes do final da pista. Grandes chamas foram vistas no motor esquerdo, a aeronave foi evacuada.


Todos os ocupantes escaparam, mas 12 passageiros ficaram feridos e foram levados para um hospital perto do aeroporto. 

Os voos de chegada foram desviados para o Aeroporto Internacional Narita de Tóquio e para Osaka. Os bombeiros do aeroporto rapidamente extinguiram o incêndio. 


A aeronave teria viajado 700 metros abaixo da pista antes de vir para uma parada, com motor de peças espalhadas a 600 metros do ponto em que a aeronave começou a acelerar e pneu-marcas de 700 metros a partir desse ponto.

Investigação


O Conselho de Segurança de Transporte do Japão (JTSB), o Conselho de Investigação de Acidentes de Aviação e Ferrovia da Coréia do Sul (ARAIB) e o Conselho de Segurança de Transporte Nacional dos Estados Unidos (NTSB) investigaram o acidente, com a assistência de especialistas da Coreia do Sul e dos Estados Unidos. 

Em 30 de maio de 2016, os investigadores revelaram que as lâminas da turbina LP no motor Pratt & Whitney PW4098 esquerdo (número um) "estilhaçaram", com fragmentos perfurando a tampa do motor, com fragmentos posteriormente encontrados na pista. As lâminas da turbina HP do motor e o compressor HP estavam intactos e sem anormalidades, e os investigadores não encontraram evidências de colisões com pássaros. 


A aeronave foi reparada e voltou ao serviço com a Korean Air em 3 de junho de 2016.

O relatório investigativo final do JTSB, divulgado em 26 de julho de 2018, discutiu um número significativo de problemas relacionados à falha e a resposta da tripulação e dos passageiros a ela. 

Isso incluía padrões de manutenção inadequados que negligenciavam uma rachadura crescente no disco da turbina LP no motor criada pela fadiga do metal que eventualmente falhou, a falha da tripulação em localizar a lista de procedimentos de emergência para uso em tal emergência, iniciando a evacuação da aeronave enquanto os motores ainda estavam girando, havia o risco de os passageiros serem levados pelos motores e os passageiros ignorando as instruções para deixar a bagagem para trás ao usar os escorregadores de evacuação, arriscando-se a perfurá-los.


Como resultado do incêndio, a FAA emitiu uma Diretriz de Aeronavegabilidade exigindo a inspeção dos motores do tipo envolvido no incêndio para avaliar a condição dos componentes que falharam no voo 2708.

Por Jorge Tadeu (Site Desastres Aéreos) com ASN e Wikipedia

Aconteceu em 27 de maio de 1977: A queda do voo 331 da Aeroflot em Cuba


Em 27 de maio de 1977, a aeronave Ilyushin Il-62 M, prefixo CCCP-86614, da Aeroflot (foto acima), realizava o voo 331, levando a bordo 59 passageiros e 10 tripulantes.

Em uma escala em Lisboa, Portugal, uma nova tripulação assumiu o comando da aeronave. A tripulação de cinco homens consistia no capitão Viktor Orlov, no copiloto Vasily Shevelev, no navegador Anatoly Vorobyov, no engenheiro de voo Yuri Suslov e no operador de rádio Evgeniy Pankov. Cinco comissários de bordo estavam na aeronave.

Às 03h32, o voo 331 decolou do aeroporto de Lisboa e subiu para 35.000 pés (10.670 m), tendo o voo transcorrido sem intercorrências.

Durante a aproximação a Havana, a tripulação relatou ter visto leituras falsas de altitude e pressão do ar. Eles então receberam permissão para descer de 35.000 para 15.000 pés, seguido por uma descida para 3.000 pés. 

Naquele momento, as nuvens cúmulos estavam presentes, a visibilidade era de 8 km com uma névoa densa a 40 m, a pressão atmosférica era de 758 mm Hg (ou 0,99737 atm) e a temperatura era de 21° C. 


Às 8h45m28s, ainda a 1.270 m da pista, a tripulação avistou quatro cabos de transmissão a 28 m de altura e tentou evitá-los levantando o nariz da aeronave. No entanto, a 23-25 ​​m, eles cortaram todas as quatro linhas, cortando o estabilizador e cortando a asa externa direita. 

O dano fez com que a aeronave fizesse uma inclinação acentuada de 70° para a direita nos três segundos seguintes. A aeronave então atingiu o solo com a asa direita e o nariz e pegou fogo, destruindo-o. Apenas a seção da cauda permaneceu.

Apenas dois dos 70 ocupantes a bordo sobreviveram. Os únicos dois sobreviventes do acidente foram uma mulher da Alemanha Ocidental e um homem soviético. Uma das vítimas foi José Carlos Schwarz , poeta e músico guineense.

Uma investigação revelou graves erros cometidos pela tripulação nos últimos momentos do voo. A principal causa do acidente foi uma violação flagrante do procedimento de abordagem, erros no cálculo da altitude que resultaram em leituras incorretas de altitude que levaram a uma descida prematura e a tentativa da tripulação de uma abordagem visual em meio a nevoeiro denso. Também foi citado o uso incorreto do rádio altímetro pela tripulação.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia e ASN

Decolar ou não decolar? Saiba como usar o MEL (Minimum Equipment List) no avião

Diante de uma falha, a busca por uma solução que permita o voo sem risco à segurança passa pela MEL, um manual que lista os equipamentos essenciais do avião.

(Foto: Airbus)
As aeronaves modernas são projetadas com um alto grau de confiabilidade e redundância. O certificado de homologação de tipo estabelece que todos (sim, todos) os equipamentos instalados devem estar operando.

No entanto, falhas podem ocorrer durante a operação normal de uma aeronave. Atrasar ou cancelar um voo por conta de um defeito em algum equipamento representa um prejuízo considerável para uma empresa e seus clientes. Por outro lado, operar uma aeronave sem que ela esteja em perfeitas condições de segurança é algo absolutamente inadmissível.

Manuais


Encontrar uma solução que atenda aos interesses da empresa sem prejudicar a segurança é a função de manuais conhecidos como MEL (Minimum Equipment List), CDL (Configuration Deviation List) e NEF (Non Essential and Furnishings). Baseado nesses documentos, o piloto em comando de uma aeronave irá determinar se a aeronave está capacitada a fazer um determinado voo.

Durante a homologação de uma aeronave, o fabricante elabora a MMEL (Master Minimum Equipment List), na qual são listados todos os itens que podem estar inoperantes, danificados e/ou ausentes. Nele constam também os procedimentos operacionais/limitações e o tempo máximo de retificação em caso de falhas.

Ao confeccionar a MMEL, o fabricante leva em consideração a redundância de um sistema e o impacto que uma determinada falha terá na segurança do voo, na carga de trabalho da tripulação e na performance da aeronave, bem como analisa as consequências da combinação de falhas múltiplas e/ou críticas.

A interação entre os diversos sistemas da aeronave é levada em conta de modo a assegurar que múltiplas falhas não degradarão a segurança do voo. A partir disso, um item pode ser classificado em três tipos:
  1. GO: Permitido o despacho sem que haja condição ou restrição para a condução do voo em segurança. Exemplo: A aeronave possui dois conjuntos independentes de luzes de navegação. Pode ser despachada caso um deles esteja inoperante.
  2. GO-IF: Permitido o despacho, desde que algumas condições específicas sejam atendidas. Exemplo: A aeronave pode ser despachada com ambos os conjuntos de luzes de navegação inoperantes desde que esteja restrita a voos diurnos.
  3. NO-GO: Não é permitido o despacho da aeronave até que seja retificada a falha. Exemplo: falha em um dos canais do FADEC (Full Authority Digital Engine Control), o computador que controla a operação do motor.
Finalmente, uma equipe de pilotos de teste do fabricante analisa em simulador e na aeronave real o despacho com o item inoperante. Em alguns casos, o despacho da aeronave só será permitido como ”non-revenue”, ou seja, um voo de traslado ou teste, sem passageiros pagantes ou transporte remunerado de carga a bordo.

A MMEL costuma ser dividida em quatro ou cinco seções:
  1. General Information: contém informação a respeito do manual, organização, lista de revisões, aprovação, como usar o manual etc.
  2. MEL ENTRIES (opcional): consiste em uma lista de alarmes do ECAM/EICAS (quando aplicável) e sua correlação com o item que originou o alarme. É uma maneira rápida de o piloto saber se um determinado alarme do ECAM/EICAS resulta em um item GO ou NO-GO e direcioná-lo para o item MEL aplicável. Como nem todas as aeronaves possuem um sistema de alarme do tipo ECAM/EICAS, esta seção pode não estar presente.
  3. MEL ITEMS: é a lista com todos os itens que podem estar inoperantes, seu intervalo de retificação, número instalado, número necessário para despacho e eventuais condições/limitações. Eles estão agrupados por sistemas (Autoflight, Flight Controls, Hydraulic, Navigation etc), de acordo com o padrão ATA-100. Itens que não estejam nesta lista, são considerados NO-GO.
  4. Operational Procedures: nesta seção estão descritas as ações específicas a serem tomadas por parte da tripulação em caso de inoperância de algum item.
  5. Maintenance Procedures: procedimentos executados pela equipe de manutenção afim de garantir a “despachabilidade” da aeronave.

Aviação geral


O desenvolvimento e uso de uma MEL são obrigatórios para os operadores de aeronaves sob o RBAC 121, 125, 135 e 129. Operadores de aeronaves sob o RBHA 91 estão dispensados do uso de uma MEL caso operem aeronaves de asa fixa ou rotativa com motores convencionais pesando menos de 5.700 quilos ou, ainda, aeronaves de categoria primária, planadores e mais leves que o ar, desde que a aeronave tenha todos os sistemas/instrumentos requeridos para a operação pretendida (VFR ou IFR) de acordo com o manual da aeronave ou a legislação aplicável, bem como os requeridos pela seção 91.205 do RBHA.

Cabe lembrar, entretanto, que, para muitas destas aeronaves, foram desenvolvidas MMEL pelos fabricantes e elas são uma fonte valiosa de consulta e ferramenta de segurança de voo. Seu uso é altamente recomendado para quem voa na aviação geral. Elas podem ser obtidas gratuitamente no site da FAA, basta entrar na seção FSIMS, depois publicações e, enfim, em um dos intens MMEL.

Proficiência em inglês


A MEL normalmente está escrita em inglês e sua correta interpretação é fundamental para assegurar que a aeronave está despachável. Um alto nível de proficiência no idioma é essencial para garantir que não haja erro na aplicação de um determinado procedimento.

Muitas vezes você terá de consultar a MEL/CDL em um ambiente de pressão (tempo curto, já com passageiros embarcados, necessidade de replanejar a rota/alternado/combustível etc.) e em tais circunstâncias um erro de interpretação pode causar desde uma multa por operação irregular a um acidente fatal.

Esteja familiarizado com a MEL de sua aeronave. Analise cuidadosamente o item, peça a opinião de outros membros de sua tripulação e/ou equipe de manutenção. Verifique as condições de despacho e os impactos na operação, na performance de decolagem/pouso e autonomia. Como piloto em comando, você tem total autoridade para recusar uma aeronave que, no seu julgamento, não esteja em condições adequadas para uma determinada missão.

Via Paulo Marcelo Soares (Aero Magazine)

Vídeo: Surpreendentes quedas de aviões

Como funciona o delivery de suprimentos da NASA no espaço

A NASA contrata empresas privadas para o transporte de suprimentos à estação espacial. Saiba como funciona.

(Imagem: NASA/Divulgação)
No último dia 22 de abril, a NASA completou mais uma entrega de suprimentos no espaço com a missão CRS-32, em parceria com a SpaceX, levando uma carga de mais de três mil toneladas à ISS (Estação Espacial Internacional).

A sigla CRS significa “Comercial Ressuply Services”, ou “Serviço Comercial de Abastecimento”. Eles são contratos da NASA com empresas privadas para enviar suprimentos e equipamentos à ISS.


Originalmente, a NASA realizava o serviço de “delivery” usando os ônibus espaciais — que ajudaram a construir a estação espacial. No entanto, após o desastre do Columbia, bem como os altos custos, a NASA decidiu encerrar o programa, em 2011.

Três anos antes, a NASA estabeleceu o CRS e concedeu os primeiros contratos de transporte de cargas ao espaço a duas empresas: SpaceX e Orbital Sciences — atual Northrop Grumman.

Mais recentemente, a SpaceX desenvolveu a nave Dragon e o foguete Falcon 9, enquanto a Orbital Sciences construiu a espaçonave Cygnus.

Após o primeiro voo, realizado pela SpaceX em 2012, todos os lançamentos de suprimentos ao espaço foram parcerias da NASA com ambas as empresas. Aliás, a NASA estendeu o programa de abastecimento comercial em 2016, escolhendo as mesmas empresas.

Em 2023, a agência decidiu ampliar o prazo e incluir a Sierra Nevada. A intenção é continuar com o programa comercial até o fim da ISS, que será tirada de órbita por outra nave da SpaceX no no início da próxima década. Aliás, a SpaceX recebeu US$ 843 milhões da NASA para criar o projeto.

Por falar em financiamento, a nave que a SpaceX utiliza atualmente, a Dragon 2, é uma versão para cargas da cápsula de mesmo nome para voos tripulados, que a SpaceX recebeu mais de US$ 3 bilhões.

(Imagem: NASA/Divulgação)

Delivery de suprimentos da NASA ao espaço: diferenças entre Dragon e Cygnus


A Dragon 2, que realizou a 32ª missão de transporte de suprimentos ao espaço sob o contrato com a NASA, é a única reutilizável do programa. Ou seja, a nave da SpaceX transporta cargas ao espaço e também de volta à Terra. Veja o lançamento e atracagem da missão mais recente:


De acordo com a NASA, a Dragon envia suprimentos para manutenção da estação espacial, comida para os astronautas, bem como materiais para investigações científicas.

A Dragon 2 se atraca de maneira autônoma ao laboratório, com astronautas monitorando a manobra. Portanto, a nave da SpaceX não depende do auxílio do braço robótico Canadarm2, desenvolvido pela Agência Espacial do Canadá.

O braço robótico da ISS ajuda a atracar as naves, como a Cygnus, da Northrop Grumman, que usa um foguete Falcon 9 em seus lançamentos.

Já nas missões da Cygnus, astronautas e centros de controle da NASA monitoram o envio de suprimentos ao espaço, operando a porta CBM (Common Berthing Mechanism), o mecanismo de atracagem da ISS.

O Canadarm2 auxiliando a atracagem da Cygnus (Imagem: NASA/Divulgação)
Embora não seja reutilizável, a Cygnus consegue transportar mais suprimentos ao espaço em relação à Dragon, mas a NASA já prepara a próxima geração de naves de carga: a Dream Chaser.

Desenvolvida pela Sierra Nevada, a Dream Chaser é uma nave espacial que consegue voar, planar e pousar como um avião. A primeira missão de testes da Dream Chaser, conforme a NASA, deve ocorrer em junho deste ano.

Via Pablo Nogueira (Gizmodo/UOL)

segunda-feira, 26 de maio de 2025

Por que é mais rápido voar para o leste do que para o oeste

As companhias aéreas planejam suas rotas para aproveitar os fenômenos geofísicos.

Boeing 777-337(ER), VT-ALJ, da Air India (Foto: Vincenzo Pace)
Se você viajou de leste a oeste e vice-versa (ou vice-versa), provavelmente notou a discrepância nos tempos de voo entre as duas direções. Por exemplo, voar de Londres a Nova York leva pouco mais de oito horas, enquanto a viagem inversa geralmente leva menos de sete horas. Acompanhe enquanto examinamos o motivo por trás dessa ocorrência.

Não tem nada - diretamente - a ver com a rotação da Terra


Muitos podem pensar que é a rotação da Terra para o leste que é a causa das viagens mais rápidas para o leste, mas não é assim. Como Robert Frost, da NASA, explicou em uma entrevista à Forbes, a rotação da Terra na verdade não tem nada a ver diretamente com a velocidade de um voo. Assim como você não anda mais rápido ao trotar de leste a oeste, a direção não afeta a velocidade com que um avião voa.

A rotação da Terra em torno de seu próprio eixo pode parecer uma resposta intuitiva. E embora não esteja afetando diretamente a aeronave, a verdade ainda pode ser encontrada no impacto indireto que tem no clima. Mais especificamente, a verdadeira resposta tem a ver com um fenômeno geofísico conhecido como correntes de jato.

Boeing 787-9 Dreamliner, CC-BGL, da LATAM Airlines (Foto: Vincenzo Pace)

Então, o que são correntes de jato?


A razão para voos mais rápidos ao voar para o leste são as correntes de jato. Simplificando, são correntes de ar estreitas e de fluxo rápido na atmosfera encontradas em grandes altitudes. Essas correntes são formadas devido ao aquecimento atmosférico da radiação do sol e da força de Coriolis da Terra (definida como um objeto em rotação tem uma força perpendicular ao eixo de rotação). Combinados, esses fatores produzem fluxos de ar de fluxo rápido que são responsáveis ​​pelos tempos de voo que parecem significativamente diferentes de leste a oeste.

As correntes de jato mais proeminentes são a corrente polar (também chamada de jato frontal polar ou corrente de jato de latitude média) e a corrente subtropical. Estes podem ser encontrados a 60° e 30° norte e sul do equador, respectivamente. A corrente polar é a mais forte das duas e causa ventos muito mais rápidos em comparação com a subtropical. A maioria das companhias aéreas em rotas transatlânticas e transpacíficas faz uso da corrente polar ao planejar rotas de voo.

Airbus A350-1041 da Virgin Atlantic (Foto: Vincenzo Pace)
As correntes de jato podem ser tão fortes quanto 80 a 140 milhas por hora, às vezes indo até 275. Esses ventos fortes vêm com vantagens e desvantagens significativas para viagens aéreas comerciais - além do mais, conforme a temperatura da terra muda, eles podem estar prestes a mudar, impactando muito mais do que os tempos de voo.

Uma pesquisa recente da Universidade de Southampton mostrou que a corrente de jato de inverno sobre o Atlântico Norte e a Eurásia (responsável pela tempestade Eunice no Reino Unido no início deste ano) aumentou sua velocidade média em 8%, para 132 milhas por hora. Também pode se deslocar para o norte e além de seus limites históricos nas próximas décadas.

Vários aviões lutaram para pousar em Heathrow durante a tempestade Eunice (Foto: Getty Images)

Pegando carona no vento


Mas vamos esquecer o futuro por um momento e olhar para a relação histórica entre a aviação e as correntes de jato. A primeira vez que essas correntes de ar voadoras rápidas foram usadas na aviação comercial foi em 1952, em um voo de Tóquio para Honolulu.

Descobriu-se que voar ao longo das correntes de jato reduziu a jornada de 18 horas para apenas 11,5 horas, quando voando a pouco menos de 25.000 pés. As companhias aéreas perceberam rapidamente o valor dos fluxos de jato e começaram a implementá-los enquanto planejavam rotas.

Como as correntes de jato fluem de oeste para leste, elas fazem uma parte da jornada muito mais rápida (ao voar com a corrente) e outra mais lenta (contra a corrente). Imagine ir rio abaixo ou rio acima. Ou como se sente quando você está pedalando contra o vento, ao contrário de quando você o tem nas costas. Voltando ao exemplo de Nova York a Londres, alguns voos chegam a fazer uma rota um pouco mais longa, especificamente para se beneficiar do jet stream.

Trajetos de voo transatlânticos são frequentemente planejados com a
corrente de jato polar em mente (Imagem: GCMap)
Mesmo em voos transcontinentais mais curtos entre as cidades de Nova York e Los Angeles, os jatos podem afetar o tempo de voo em quase uma hora. Em rotas transpacíficas de longa distância, esses fluxos podem ser extremamente úteis para passageiros e companhias aéreas. Seguindo a corrente polar, o tempo de voo de Tóquio a Los Angeles é de apenas nove horas e cinquenta e cinco minutos, contra 11 horas e quarenta e cinco minutos ao contrário.

O recorde do Boeing 747 de 4h55min de Nova York a Londres


Em fevereiro passado, um 747 da British Airways bateu o recorde transatlântico de velocidade subsônica graças a fortes correntes de jato. A aeronave fez o salto JFK para LHR em apenas quatro horas e cinquenta e cinco minutos, um novo recorde, voando a uma velocidade de mais de 800 milhas por hora.

Em suma, os fluxos de jato podem reduzir drasticamente os tempos de voo e reduzir a queima de combustível, ambos com importantes implicações de receita para as companhias aéreas e redução de emissões para o planeta. Embora tudo isso possa parecer uma situação em que todos saem ganhando, há algumas coisas a serem levadas em consideração.

Em fevereiro de 2020, o Boeing 747-436, G-CIVI, da British Airways pegou carona na corrente
de jato polar para atingir velocidades de mais de 800 milhas por hora (Foto: Vincenzo Pace) 

Turbulência de ar claro


Embora as correntes de jato possam acelerar os voos, elas têm uma desvantagem significativa: turbulência de ar claro. A turbulência de ar limpo (CAT) é uma turbulência repentina e severa que ocorre em um céu sem nuvens, causando tremores violentos na aeronave. Acontece quando uma corrente de jato lenta interage com uma corrente de jato rápida, criando um bolsão de extrema perturbação. O CAT também é impossível de detectar visualmente ou pelo radar da aeronave, ao contrário de outras formas de turbulência.

Estudos concluíram que o CAT deve aumentar em frequência em até 170% nas próximas décadas como resultado do aquecimento global. Isso significa que voar em correntes de jato só se tornará mais arriscado nos próximos anos. Algumas áreas podem experimentar centenas de por cento a mais de turbulência. Estimativas indicam que até 2050, a taxa de lesões terá quase triplicado.

Um grande acidente CAT ocorreu a bordo do voo 826 da United Airlines de Tóquio Narita para Honolulu International em 1997 - a rota exata na qual os jatos foram usados ​​pela primeira vez em uma rota comercial. O CAT repentino fez com que a aeronave caísse 30 metros, causando graves lesões na coluna e no pescoço de 18 passageiros. Um passageiro, que não usava cinto de segurança, morreu devido à turbulência repentina.

Voos mais rápidos significam economia de combustível (Foto: Getty Images)

Não é tão simples


As correntes de jato são um fenômeno natural e, como todas as do gênero, estão sujeitas a alterações. Embora isso geralmente signifique apenas mais alguns minutos ou uma hora de voo extra na maioria dos casos, em rotas ultralongas isso pode ser um problema. Nos últimos anos, houve um aumento extraordinário na demanda e oferta de voos de mais de 15 horas, conectando a América do Norte e a Europa com a Ásia e a Oceania. No entanto, eles não vieram sem seus solavancos.

O serviço Auckland-Nova York da Air New Zealand foi fortemente afetado por ventos contrários, por exemplo, em sua infância no final do ano passado. Marcando 17,5 horas, o voo ultrapassa o limite de alcance do Boeing 787-9, o que significa que mesmo a menor alteração pode resultar em cancelamento ou, pior ainda, no descarregamento de passageiros e bagagens. De fato, a Air NZ foi forçada a enviar viajantes sem suas malas ou mesmo remarcá-los em determinados dias, pois é necessário mais espaço para combustível. Observe mais uma vez que o serviço leste com suporte de fluxo de jato é muito menos afetado e dura apenas 15,5 horas.

Um Boeing 787-9 da Air New Zealand voando abaixo das nuvens (Foto: Masakatsu Ukon)
No entanto, a esperança é que aeronaves mais novas, como o A350-1000 especialmente modificado da Qantas para o Project Sunrise, tenham a capacidade extra necessária para compensar essas pequenas mudanças. O A350-900ULR da Singapore Airlines evitou esses problemas, mas, como as companhias aéreas tentam levar seus aviões atuais ao limite, espere ler muito mais sobre condições climáticas variáveis. De fato, o Dreamliner, o A321neo e o A321LR provaram que voos de longo curso podem ser feitos por aeronaves de médio curso.

O preço do Jet Lag


Embora o tempo de voo possa ser menor ao voar de oeste para leste devido às correntes de jato, isso não é necessariamente benéfico para os passageiros. Estudos vistos em Viagens e Lazer mostraram que os passageiros sofrem mais com o jet lag em voos para o leste. Embora existam outros fatores em jogo, isso também pode significar que voos mais curtos deixam menos tempo para se ajustar e dormir um pouco nessas rotas de longa distância.

Londres a Nova York é frequentemente citada como o principal exemplo de sono perdido. Os voos noturnos de volta de JFK e Newark pousam nas primeiras horas de Londres, mas levam apenas de 6 a 6,5 ​​horas, deixando os viajantes com cinco horas de bom sono (na melhor das hipóteses). No entanto, viagens mais rápidas são sempre a escolha preferida, e é improvável que as companhias aéreas mudem de rota apenas para dar aos passageiros um pouco mais de sono.

Em resumo, as correntes de jato são a razão pela qual os voos demoram mais quando voam do oeste para o leste. Embora ajudem a economizar até algumas horas de voos longos em alguns casos, eles não são totalmente isentos de desvantagens.

Via Simple Flying, Forbes, Geophysical Research Letters e Travel and Leisure

Vídeo: Esse amava avião - Niki Lauda


Senta que lá vem a história do Niki lauda e de suas empresas aéreas.

Aconteceu em 26 de maio de 2008: A queda do voo Moskovia Airlines 9675 na Rússia


Em 26 de maio de 2008, o voo 9675 da Moskovia Airlines, a aeronave de carga Antonov An-12BP, prefixo RA-12957, da Moskovia Airlines (foto acima), caiu perto de Chelyabinsk, na Rússia. Depois de decolar para um voo para Perm, ele voltou devido a um incêndio a bordo e caiu a 11 quilômetros (6,8 milhas; 5,9 milhas náuticas) do aeroporto, matando todos os nove tripulantes.

A aeronave Antonov An-12BP (cn 88345508), foi construída em 1968. Depois de transportar uma carga de dinheiro de Moscou para Chelyabinsk, estava operando como um voo vazio de número GAI9675 para Perm .

Durante o checklist pré-decolagem, a tripulação notou alertas sobre falha de alimentação nos motores 1 e 2, mas os ignorou, conforme registrado pelo CVR:

Operador de rádio de voo : "Sanya." (nome do engenheiro)

Engenheiro de voo : "Sim?"

Operador de rádio de voo : "Número dois falhou"

Piloto instrutor : "E o número um também"

Operador de rádio de voo : "Alternador"

Um membro da tripulação : "Dane-se"

Operador de rádio de voo : "Aqui vamos nós"

A equipe de investigação concluiu que "lá vamos nós" provavelmente se referia à reativação bem-sucedida dos alternadores pelo operador de rádio.

O voo decolou às 14h03 da pista 09. Às 14h03min55s, o comandante perguntou "Qual é o problema?". O engenheiro de vôo respondeu "portas abertas". Não está claro se ele estava se referindo às portas de carga ou portas do chassi, mas o relatório final afirma que provavelmente eram as portas do chassi. A investigação constatou que as portas estavam fechadas no momento da queda, sendo o alarme falso um dos primeiros indícios de problemas nas linhas de energia da aeronave.

Outro aviso soou 6 segundos depois: "Muito baixo, marcha". Isso foi errado, pois a aeronave estava subindo, e esse aviso pode ser acionado apenas durante a descida.

Às 14h04min09s, outros tripulantes da cabine avisaram os pilotos sobre o incêndio.

Capitão : "Venha, dê uma olhada rápida ... dê uma olhada no que está acontecendo lá"

Operador de rádio de voo : "Vamos pousar talvez, ou... OK, solicitando"

Capitão : "Espere, espere"

Primeiro oficial : "Meu indicador de atitude falhou"

Capitão : "Entendi, assumindo o controle"

Nesse ponto, a aeronave estava a 470 metros (1.540 pés) de altitude e virando à esquerda. Às 14h04min28s, o capitão decidiu voltar para Chelyabinsk. A tripulação contatou o ATC e solicitou pouso prioritário devido a fumaça na cabine .

O tempo estava nublado, teto de 90–100 metros (300–330 pés), visibilidade de 1.100 metros (3.600 pés). As gravações do CVR mostraram que os pilotos discutiram outras falhas de vários sistemas, bem como vários alarmes falsos de falha. Eles também afirmaram que a origem do incêndio estava na seção de carga e consideraram despressurizar a cabine. 

Um aviso de falha de compensação foi acionado às 14h07min15seg e, às 14h08s, os indicadores de deslocamento do motor também foram acionados. O engenheiro de vôo alertou a tripulação para operar o acelerador lentamente.

Às 14h09min13s, enquanto a aeronave fazia uma curva à esquerda, o motor 2 ficou instável. Momentos depois, vários fusíveis dispararam. Às 14h09min54s, os motores 1 e 2 pararam devido à falta de combustível . O gravador de voz da cabine parou de funcionar e o gravador de dados de voo começou a funcionar mal.

Às 14h10min21seg, o capitão iniciou a curva para a aproximação final . Com apenas dois motores operando, a velocidade do avião caiu para 280 quilômetros por hora (150 kn; 170 mph), o mínimo permitido sem flaps. O motor 3 estava operando a 20% e o motor 4 foi desacelerado para 85%.

A partir das 14:10:40, a aeronave começou a inclinar fortemente para a esquerda (até 32°). Começou a descer às 14h10:48. Às 14h10:43, a tripulação contatou a torre de controle e relatou: "Gromov 9675, em pouso... virando para final, 400, aproximando-se, continuando a aproximação". Esta foi a transmissão final da tripulação.

A 31 m acima do solo, a aeronave cortou uma linha de alta tensão com sua asa esquerda. A aeronave então caiu em um campo às 14h10:56, 11 quilômetros (6,8 mi; 5,9 milhas náuticas) da pista 09. A velocidade vertical no momento do impacto foi de 5.000 pés por minuto (25 m/s). Todas as nove pessoas a bordo morreram no acidente.


Uma investigação concluiu que durante os últimos quinze segundos de voo, a tripulação não conseguiu operar os ailerons com eficácia . Os peritos médicos descartaram a incapacitação por inalação de fumaça, o que significa que os pilotos não puderam operar os ailerons por falha mecânica causada pelo incêndio.

Um incêndio também começou após o acidente. Por causa do incêndio no local do acidente, a investigação não pôde determinar a localização exata do incêndio no sistema elétrico que causou o acidente. Os gravadores de voo foram encontrados gravemente danificados, mas utilizáveis.


O relatório final indica o seguinte motivo do acidente:
  • O incidente aeronáutico com a aeronave An-12 de matrícula RA-12957 ocorreu em decorrência do impacto com o solo causado pela perda de controle da aeronave devido à destruição dos fios de controle do aileron durante uma aproximação de emergência para pouso devido a fumaça na cabine.
  • [...] Os fios de controle do Aileron foram destruídos provavelmente devido ao aquecimento significativo dos fios de aço próximos e subsequente quebra sob carga operacional.
  • O aquecimento pode ter sido causado por um incêndio em voo nas linhas de energia próximas, evidenciado por fumaça na cabine, acionamento inesperado de vários avisos, falhas de equipamentos e falha de dois motores.
O capitão tinha 14.928 horas de experiência de voo e o navegador 11.021 horas. Ambos não tiveram incidentes anteriores.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, baaa-acro e ASN

Aconteceu em 26 de maio de 2003: A queda do voo 4230 da UM Airlines na Turquia


Em 26 de maio de 2003, fretada pelo governo espanhol, a aeronave ucraniana 
Yakovlev Yak-42D, prefixo UR-42352, da UM Air (Ukrainian-Mediterranean Airlines) (foto abaixo), estava completando um voo charter de Bishkek, no Quirguistão, a Zaragoza, na Espanha, com escala intermediária para reabastecimento em Trabzon, na Turquia, transportando 62 soldados espanhóis e 13 tripulantes.


Os 62 passageiros eram, respectivamente, 41 membros das Forças Terrestres e 21 membros da Força Aérea que retornavam à Espanha após uma missão de manutenção da paz no Afeganistão.

Enquanto descia para o aeroporto de Trabzon à noite, a tripulação encontrou pouca visibilidade devido às condições de neblina. Incapaz de estabelecer um contato visual com as luzes de aproximação e a pista 29, a tripulação iniciou um procedimento de arremetida.

Poucos minutos depois, ao completar uma segunda abordagem, a tripulação não percebeu que ele não estava seguindo o padrão correto para uma abordagem à pista 29 quando a aeronave colidiu com uma montanha a uma altitude de 4.600 pés.

A aeronave se desintegrou com o impacto e todos os 75 ocupantes morreram. Os destroços foram encontrados 3,5 km a leste da vila de Maçka, cerca de 23 km a sudoeste do aeroporto de Trabzon, na Turquia, próximo ao Mar Negro.


O acidente foi a consequência de um voo controlado para o terreno devido à combinação dos seguintes fatores:
  • Perda de consciência situacional por parte da tripulação de voo,
  • A tripulação não cumpriu os Procedimentos Operacionais Padrão publicados pelo operador,
  • O a tripulação não seguiu as cartas de aproximação publicadas,
  • Implementação de uma aproximação de não precisão,
  • Uso incorreto dos sistemas de voo automatizados,
  • Treinamento inadequado (LOFT),
  • A tripulação desceu abaixo do MDA com visibilidade limitada.

Foi a terceira queda de uma aeronave operada pela Ucrânia em seis meses; um Ilyushin Il-76 havia caído em 9 de maio, matando cerca de 14 pessoas, e em dezembro anterior um Antonov An-140 caiu no Irã com 44 mortes.

O ministro da Defesa espanhol, Federico Trillo, afirmou que "as condições meteorológicas e a densa neblina causaram o drama". O Secretário-Geral da OTAN, George Robertson, afirmou: "Esta é uma tragédia terrível, dado que estes soldados serviam os interesses da paz numa difícil missão no Afeganistão".


Em 2004, o governo do Partido Socialista Espanhol demitiu três generais depois que foi descoberto que 22 dos corpos das vítimas haviam sido identificados incorretamente e devolvidos às famílias erradas.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, ASN e baaa-acro

Aconteceu em 26 de maio de 1998: Acidente fatal com voo da MIAT Mongolian Airlines


Em 26 de maio de 1998, o avião Harbin Yunshuji Y-12 II, prefixo JU-1017, da Mongolian Airlines (MIAT) (foto acima), realizava um voo doméstico na Mongólia entre as cidades de Erdenet e Moron. A bordo do avião estavam dois tripulantes e 26 passageiros.

O voo partiu do Aeroporto de Erdenet aproximadamente às 09h17 em um voo para Mörön. Aproximadamente 13 minutos após a partida, enquanto o avião subia para altitude de cruzeiro, ele atingiu o topo de uma montanha de 6.500 pés a oeste de Erdenet, matando todos os passageiros e tripulantes. Dos 26 passageiros, 14 eram adultos e 12 crianças.

O Harbin Y-12 , matrícula JU-1017 (cn 0064), voou pela primeira vez em 1992. A aeronave foi projetada para transportar apenas 19 passageiros, mas um representante do governo disse que o avião não estava sobrecarregado.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, ASN e baaa-acro

Vídeo: Mayday Desastres Aéreos - Voo Lauda Air 004 Tragédia No Ar