As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
No dia 6 de outubro de 1981, um jato regional Fokker F28 operando um voo doméstico na Holanda encontrou uma linha de tempestades logo após a decolagem de Rotterdam. Enquanto os pilotos tentavam contornar a tempestade que se formava, uma lacuna se fechou sobre eles e o avião foi atingido por ventos extremos.
De repente, uma rajada massiva atingiu o avião, submetendo-o a forças muito maiores do que seus limites de projeto. A asa direita arrancou em voo, fazendo o jato tombar das nuvens sobre Moerdijk. Nenhuma das 17 pessoas a bordo sobreviveu ao acidente.
Os investigadores se perguntaram: que força poderia ter derrubado um avião do céu tão de repente? A turbulência poderia realmente ser a culpada?
Mas, à medida que a história se desenrolava, ficou claro que o voo 431 da NLM Cityhopper encontrou algo muito mais mortal do que mera turbulência: na verdade, o avião parecia ter voado direto para um tornado que estava abrindo seu próprio caminho de destruição no interior da Holanda nos minutos que antecederam a queda.
O Fokker F-28 PH-CHI envolvido no acidente
A NLM Cityhopper, agora conhecida como KLM Cityhopper, é uma subsidiária integral da transportadora de bandeira holandesa KLM, especializada em voos curtos dentro da Holanda e para países vizinhos. Na década de 1980, a NLM Cityhopper operava uma frota composta principalmente de turboélices Fokker F-27 e jatos regionais F-28 de fabricação holandesa.
O voo 431 da NLM era um voo regular de Rotterdam para Hamburgo, Alemanha, com escala na cidade de Eindhoven. O avião Fokker F-28 Fellowship 4000, prefixo PH-CHI (foto acima), com motor traseiro, tinha espaço para 65 passageiros - mas no dia 6 de outubro de 1981, estava quase vazio.
Apenas 17 pessoas embarcaram no voo do final da tarde, incluindo os dois pilotos, Capitão Jozef Werner e o Primeiro Oficial Hendrik Schoorl. Dois comissários de bordo cuidaram dos 13 passageiros, a maioria viajantes de negócios da Alemanha, Reino Unido e Estados Unidos.
Naquela tarde, um conjunto de condições climáticas incomuns convergiam para a Holanda. Uma frente quente e estacionária se estendia por grande parte da Europa Ocidental, trazendo altas temperaturas e chuvas para uma região que se estendia de Lisboa a Colônia.
Enquanto isso, uma zona de baixa pressão e uma frente fria associada estavam se movendo para o leste através da Irlanda. Uma segunda área de baixa pressão ao largo da costa de Portugal colidiu com a frente quente, enviando uma onda que se propagou na frente e empurrando-a para o norte, para a Holanda.
Ao mesmo tempo, a frente fria se aproximou da Holanda pelo oeste ao passar pelas Ilhas Britânicas, pressagiando uma colisão dos dois sistemas climáticos na área ao redor de Rotterdam. Impulsionado por ventos fortes a uma altitude de cerca de 3.000 pés, o ar frio começou a passar sobre a camada de ar quente que permanecia ao redor do solo. Como o ar quente geralmente sobe e o ar frio geralmente desce, uma massa de ar frio em cima de uma massa de ar quente é extremamente instável.
Essa instabilidade pode gerar tempestades e outras condições climáticas severas, incluindo granizo, micro-explosões ou mesmo tornados. Quando as duas massas de ar colidiram sobre a Holanda, linhas de tempestades surgiram ao longo da zona de convergência, metralhando Holanda e Brabant com chuva, ventos fortes e relâmpagos.
Às 4h20 daquela tarde, o capitão Werner e o primeiro oficial Schoorl foram informados sobre as tempestades localizadas a sudeste de Rotterdam durante o briefing pré-voo. No entanto, até onde se sabia, essas tempestades não eram incomuns de forma alguma.
Relatórios meteorológicos distribuídos a partir do radar instalado no Aeroporto Schiphol de Amsterdã indicaram apenas chuva leve e nenhum fenômeno anormal de vento. Os pilotos planejaram evitar as tempestades se possível, mas naquela época certamente não tinham motivos para se preocupar. Às 5h04, o voo 431 da NLM Cityhopper decolou do aeroporto de Rotterdam e virou para o sul, escalando a cidade.
Os últimos relatórios meteorológicos da época ainda não incluíam nenhuma menção a quaisquer tempestades perigosas. Mas, na verdade, os boletins meteorológicos fornecidos pelos controladores em Rotterdam tinham mais de 20 minutos.
Antes que alguém recebesse a informação, um meteorologista em Amsterdã teve que observar o estado da tela do radar meteorológico, esboçar as tempestades em um mapa e enviar cópias do mapa para aeroportos na Holanda, um processo que geralmente leva 20 minutos. Mas nesse período, muita coisa pode mudar.
Embora ninguém soubesse ainda, as condições na área ao sul de Rotterdam foram propícias à formação de ventos ciclônicos extremos. O que aconteceu a seguir foi mal compreendido na época, mas uma provável sequência de eventos pode ser reconstruída retroativamente usando o conhecimento moderno de como os tornados se formam.
Na intersecção das duas frentes, ventos soprando em diferentes direções em diferentes altitudes começaram a causar a rotação da camada de ar entre elas. À medida que a massa de ar frio acima de 3.000 pés desceu pelo ar mais baixo e mais quente sob a força da gravidade, o ar quente foi forçado para cima, criando correntes ascendentes que colidiram com a camada giratória.
A corrente ascendente e o “tubo” giratório de ar se fundiram, fazendo com que a corrente ascendente começasse a girar em torno do eixo vertical. Este vórtice, com vários quilômetros de diâmetro, é conhecido como mesociclone - e se as condições forem adequadas, pode rapidamente se transformar em um tornado. No entanto, um mesociclone não é diretamente visível no radar meteorológico, que detecta a intensidade da precipitação.
Hoje, os meteorologistas podem detectar mesociclones procurando por padrões de vento revelados por radar Doppler, que pode medir a velocidade e direção dos ventos dentro de uma tempestade.
Mas na Holanda, em 1981, os meteorologistas que divulgavam relatórios meteorológicos para aeronaves não tinham radar Doppler nem qualquer especialização em mesociclones e tornados. Como resultado, o mesociclone que se formou sobre o estuário Hollands Diep passou completamente despercebido.
Pouco depois das 17h, um tornado começou a tomar forma quando o mesociclone passou perto do município de Moerdijk, na costa sul de Hollands Diep. Uma corrente descendente penetrou no mesociclone, fazendo com que a coluna de ar em rotação descesse do fundo da base da nuvem em direção ao solo abaixo.
A corrente descendente contraiu progressivamente a base da corrente ascendente ainda fluindo para o mesociclone, fazendo com que sua velocidade de rotação aumentasse como um patinador no gelo puxando seus braços para acelerar um giro.
Um residente local tirou esta foto do tornado de Moerdijk na direção oposta
À medida que a corrente ascendente sugava o ar em baixa altitude, ela criou uma zona de baixa pressão que puxou o ciclone ainda mais para baixo até atingir o nível do solo. As velocidades extremas do vento precipitaram o vapor de água do ar, criando uma clássica nuvem em funil ao redor do ciclone. Não havia dúvida - um tornado havia atingido o interior da Holanda, a oeste do parque industrial de Moerdijk!
Movendo-se para nordeste a mais de 50 quilômetros por hora, o tornado atravessou fazendas e campos antes de atingir o parque industrial, enviando fragmentos leves para o alto. No que diz respeito aos tornados, não era particularmente forte - provavelmente não mais poderoso do que um EF1, a segunda menor intensidade na escala de 0-5 Fujita aprimorada. Mas mesmo um tornado EF1 pode atingir velocidades de vento superiores a 170 quilômetros por hora, causando danos isolados, mas graves, a estruturas não reforçadas.
Sem saber da presença do tornado, os pilotos do voo 431 do NLM Cityhopper continuaram voando para o sul em direção ao estuário Hollands Diep. Cinco minutos após a decolagem, eles observaram tempestades à frente que ultrapassavam significativamente a intensidade sugerida pela última previsão do tempo.
Para evitar o pior da tempestade, eles solicitaram um desvio para o sul para voar entre as duas áreas de precipitação mais intensa, conforme mostrado em seu radar meteorológico de bordo. O controlador de tráfego aéreo atendeu ao pedido, e o voo 431 apontou para a lacuna entre as duas nuvens cumulonimbus em forma de bigorna.
À medida que voavam para a lacuna, as nuvens se fechavam em torno deles e a turbulência começou a sacudir o avião para cima e para baixo e de um lado para o outro. Os pilotos aceleraram para 425 km/h em uma tentativa de tornar a viagem mais suave. Enquanto isso, várias testemunhas avistaram o tornado quando ele passou sobre o parque industrial de Moerdijk, incluindo algumas que relataram um segundo tornado nas proximidades.
Ao mesmo tempo, um policial em um barco em Hollands Diep perseguiu o tornado, tirando uma série de fotos da nuvem em funil que se movia rapidamente enquanto lutava para alcançá-la. Mas, apesar do grande número de testemunhas, não havia autoridade capaz de receber rapidamente os relatos do tornado e repassá-los às aeronaves próximas.
Precisamente às 17h12, quando o voo 431 passou sobre Hollands Diep a 3.000 pés, ele cruzou o caminho com o curso superior do tornado dentro da nuvem. A turbulência severa atingiu o avião, jogando-o violentamente em várias direções. Quando o avião se aproximou do vórtice, as correntes descendentes em torno do tornado o atingiram com força por cima, colidindo com o F-28 com 2,5 vezes a força da gravidade.
Uma fração de segundo depois, o avião passou pela corrente ascendente central do tornado e para a corrente descendente do outro lado, fazendo com que a força invertesse a direção duas vezes, de -2,5g para + 6,8G para -3,2G, em um período extremamente curto.
O golpe duplo da corrente ascendente violenta seguida pela corrente descendente extrema excedeu os limites do projeto estrutural do avião, arrancando a asa direita e incendiando os tanques de combustível rompidos.
Perdendo toda a asa direita, o voo 431 mergulhou das nuvens, girando em um saca-rolhas em um halo de fogo. Não havia absolutamente nada que os pilotos pudessem fazer para salvar suas aeronaves danificadas.
O avião despencou do céu e caiu no chão segundos depois na borda do parque industrial. A fuselagem bateu na lateral da estrada do perímetro, enviando destroços sobre uma ponte da ferrovia e através de ambas as faixas de tráfego.
O avião explodiu com o impacto, lançando uma nuvem de fumaça que o policial capturou em filme momentos depois de fotografar o tornado. A três quilômetros de distância, a asa direita decepada também caiu do céu, parando nas águas rasas de Hollands Diep. Quanto ao próprio tornado - ele se dissipou um minuto após a queda, desaparecendo no céu noturno de onde veio.
Equipes de emergência correram para o local, mas tudo o que restou do avião foram destroços espalhados e uma enorme cratera em um campo. Nenhuma das 17 pessoas a bordo havia sobrevivido.
O acidente também tirou indiretamente a 18ª vida no solo: um bombeiro de 49 anos, ao avistar o avião caindo do céu acima dele, sofreu um ataque cardíaco e morreu no local. Fora da queda do avião, no entanto, o tornado causou relativamente poucos danos e ninguém mais morreu ou ficou ferido.
Na verdade, a conexão entre o tornado e a queda do avião não era imediatamente óbvia. Jornais na Holanda relataram que havia mau tempo na área, mas não mencionaram um tornado, e as primeiras especulações culparam em grande parte a forte turbulência ou sabotagem.
Mas o gravador de dados de voo pintou um quadro nítido: no espaço de apenas alguns segundos, o voo 431 foi submetido a forças que variam de + 6,8 G a -3,2 G, bem além dos limites estruturais de qualquer avião comercial. A tempestade era realmente tão intensa ou havia outra explicação? Os investigadores precisavam de provas de que o avião poderia ter encontrado o tornado fotografado pelo policial minutos antes do acidente.
Investigadores holandeses solicitaram uma análise do tornado ao Escritório Meteorológico do Reino Unido para avaliar a probabilidade de derrubar o voo 431. Ao analisar as fotografias, mapas meteorológicos, dados de voo e outros recursos, a equipe foi capaz de afirmar com certeza que o Fokker F-28 encontrou o curso superior do vórtice tornádico logo após o funil se elevar do solo próximo ao final de seu ciclo de vida.
Mas o relatório precisava ir além disso. O encontro com o tornado foi um golpe de sorte completo ou poderia ter sido feito mais para evitar o acidente?
O problema enfrentado pela indústria da aviação em 1981 era que não havia maneira confiável de detectar tornados, exceto observá-los visualmente do solo e relatar sua posição. Não se podia esperar que os pilotos veriam um tornado e se desviassem porque apenas a ponta inferior do tornado é visível.
Meteorologistas experientes podiam identificar áreas de provável formação de tornado procurando ecos de radar em forma de gancho nas bordas das tempestades, mas essa técnica, embora amplamente usada por caçadores de tempestades na América do Norte, era relativamente obscura na Europa na época.
Na verdade, uma revisão dos dados do radar no momento do acidente mostrou um gancho distinto na área onde o tornado se formou, mas a importância disso não foi avaliada até depois do acidente.
Mapa mostra todos os tornados conhecidos que atingiram a Europa entre 2000 e 2012
No geral, as autoridades europeias pareciam pouco preparadas para lidar com a ameaça de mau tempo. Embora os tornados na América do Norte sejam muito mais fortes em média, os dados mostram que muitas áreas da Europa experimentam tornados a uma taxa por unidade de área semelhante à dos EUA e Canadá. Como a maioria deles é fraca, eles causam relativamente poucos danos, e as pesquisas sobre eles ficaram atrás das americanas.
Mas, como o tornado de Moerdijk demonstrou, não é preciso um EF5 para derrubar um avião. Portanto, considerando o número de tornados que ocorrem em todo o mundo, qual a probabilidade de outro avião se encontrar na mesma situação que o voo 431 do NLM Cityhopper?
Em seu relatório, o Escritório Meteorológico afirmou que um encontro entre um avião comercial e um tornado pode acontecer aproximadamente uma vez a cada 300 milhões de horas de voo - certamente raro, mas não tão raro que não precisasse ser pensado. O que a Europa precisava, eles escreveram, era algum sistema para detectar tornados ou outros eventos de vento severo - porque do jeito que as coisas estavam, a Europa não tinha sistema algum.
Para fins de segurança da aviação, detectar um tornado não é tão diferente de detectar qualquer tipo de cisalhamento do vento - ou seja, o vento se movendo em direções diferentes em uma pequena área geográfica.
Tornados são essencialmente apenas uma manifestação muito dramática de cisalhamento do vento, um problema que vem causando acidentes há anos. Na época, o melhor conselho que os reguladores podiam dar aos pilotos era evitar tempestades por princípio. Mas isso não era uma panaceia.
Os pilotos do voo NLM 431 fizeram o possível para evitar a tempestade sobre Moerdijk, voando ao redor da parte mais intensa da célula. No entanto, os tornados costumam se formar adjacentes ao centro da tempestade, em vez de diretamente abaixo dele. Mal sabiam eles que, ao contornar a borda, o capitão Werner e o primeiro oficial Schoorl corriam um perigo ainda maior!
Ao longo dos próximos anos, o problema do cisalhamento do vento mudou para a vanguarda do interesse global devido a dois acidentes fatais nos Estados Unidos, ambos envolvendo micro-explosões - uma corrente descendente súbita e poderosa associada a uma tempestade que pode empurrar um avião para o chão.
Em 1982, o voo 759 da Pan Am encontrou uma micro-explosão na decolagem de Nova Orleans, causando a queda do avião em uma área residencial. Todas as 145 pessoas a bordo e 8 no solo foram mortas.
Acima: os restos do voo Delta 191
Três anos depois, o voo 191 da Delta caiu perto da pista depois de encontrar uma micro-explosão na aproximação final em Dallas, matando 136 das 163 pessoas a bordo, bem como uma no solo. Esses acidentes estimularam a Federal Aviation Administration a investir pesadamente em tecnologia para detectar cisalhamento do vento a bordo do avião.
A tecnologia para detectar cisalhamento de vento de um ponto centralizado no solo de fato já existia. Em 1973, o Laboratório Nacional de Tempestades Severas (NSSL) dos EUA documentou pela primeira vez todo o ciclo de vida de um tornado usando radar Doppler, que mede as mudanças na frequência de um sinal de rádio de retorno para determinar a velocidade das partículas transportadas pelo ar dentro de uma nuvem.
Essa tecnologia já estava sendo empregada em algumas aeronaves militares, mas mal havia começado a ser aplicada para uso civil. Em 1981, o radar meteorológico Doppler entrou em serviço para detectar tempestades severas nos Estados Unidos, mas a Europa carecia de qualquer programa semelhante.
Acima: espectadores observam um tornado na Romênia
Alguns aeroportos, como o London Heathrow, tinham sistemas que podiam detectar cisalhamento do vento perto das pistas, mas a maior parte do continente não tinha essa cobertura. No momento do acidente, Os meteorologistas da Holanda ainda estavam olhando para um mapa básico de precipitação, desenhando o que observavam e distribuindo os esboços aos aeroportos!
No seu relatório, o Meteorological Office escreveu aos seus homólogos holandeses, “É opinião dos autores que algum serviço que alerta a aviação para a possibilidade de fortes tempestades e que pode operar de forma semelhante ao serviço de alerta de cisalhamento de vento em Heathrow ( mas com acesso a um visor de radar adequado) seria melhor do que nenhum serviço.”
Em seu próprio relatório, os investigadores holandeses também recomendaram o estabelecimento de um programa que alertaria pilotos e controladores de tráfego aéreo sobre a presença de mau tempo em tempo hábil. Também recomendou que os reguladores estudassem a possível implementação de um sistema de alerta de tempestades em toda a Europa, auxiliado por novas tecnologias de detecção.
No final da década de 1980, ocorreram dois grandes avanços no combate ao cisalhamento do vento. Em 1988, os Estados Unidos implementaram um sistema de radares Doppler que forneceria uma cobertura quase completa de todo o país, permitindo que os meteorologistas detectassem com rapidez e precisão todos os tornados e outros eventos climáticos severos à medida que ocorressem, e os previsse com antecedência.
Na mesma época, a FAA desenvolveu com sucesso um sistema de detecção de cisalhamento de vento que poderia ser instalado em aviões de passageiros. Esses sistemas foram implantados nos Estados Unidos em 1993 e, no mesmo ano, o Canadá completou sua própria rede nacional de radares Doppler.
Os países europeus seguiram o exemplo no final da década de 1990, e a maioria alcançou cobertura completa em 2004. Durante esse tempo, nenhum outro avião voou para dentro de tornados e, graças aos modernos sistemas de detecção, tal encontro hoje é quase impossível de imaginar.
O voo 431 da NLM Cityhopper continua, e provavelmente sempre será, o único caso confirmado de acidente aéreo causado por um tornado. O impacto que este acidente específico teve na segurança da aviação é difícil de avaliar, mas tal evento único não merece cair na obscuridade total.
Com Admiral Cloudberg, Wikipedia, ASN - Imagens: C. Mulder, Christian Volpati, WT Roach e J. Findlater, Vanessa Ezekowitz, LA Times, European Severe Storms Laboratory, Dallas Morning News, Romênia Journal e Johan van Tuyl. Algumas imagens são de domínio público.
O voo 455 da Cubana de Aviación foi um voo cubano de Barbados para a Jamaica que foi derrubado em 6 de outubro de 1976 por um ataque terrorista a bomba. Todas as 73 pessoas a bordo da aeronave Douglas DC-8 morreram depois que duas bombas-relógio explodiram e o avião caiu no mar. O acidente matou todos os membros da equipe nacional de esgrima de Cuba.
Plano de fundo
Em 11 de junho de 1976, a Coordenação das Organizações Revolucionárias Unidas (CORU) foi fundada na República Dominicana. CORU uniu cinco grupos de exilados cubanos anti-Castro, incluindo Alpha 66 e Omega 7. Durante três meses antes do bombardeio do voo 455, CORU empreendeu uma campanha de violência contra vários países caribenhos que estabeleceram laços com Cuba.
Em julho de 1976, o mesmo voo foi alvejado na Jamaica por uma mala-bomba que explodiu pouco antes de ser embarcada no avião. Outros atentados no verão incluíram vários escritórios de companhias aéreas que faziam negócios com Cuba, incluindo os escritórios da BWIA West Indies Airways em Barbados; da Air Panama na Colômbia; e da Iberia e Nanaco Line na Costa Rica.
Outros ataques incluíram o assassinato de um funcionário cubano no México e mais dois funcionários cubanos na Argentina; o assassinato de Orlando Letelier em setembro em Washington, DC; e "um incêndio misterioso na Guiana [que] destruiu uma grande quantidade de equipamentos de pesca fornecidos por cubanos".
Preparações
Em 5 de outubro de 1976, Lugo e Hernán Ricardo Lozano partiram de Caracas com destino a Trinidad, chegando à 1h. No dia seguinte, procuraram embarcar no voo CU-455 da Cubana de Aviación, que estava programado para voar da Guiana a Havana, em Cuba, via Trinidad, Barbados e Kingston, na Jamaica, após rejeitar uma oferta de um voo anterior com a British West Indies Airways (BWIA).
Com um membro da equipe cubana de esgrima aguardando o voo Cubana auxiliando na interpretação, a dupla pôde insistir em embarcar no voo Cubana posterior. A dupla deixou o voo em Barbados e depois voltou para Trinidad.
O voo e as explosões a bordo
O Douglas DC-8-43, prefixo CU-T1201, da Cubana de Aviación (foto acima), uma aeronave que realizou seu primeiro voo em 1961, partiu do Aeroporto Seawell (agora Aeroporto Internacional Bridgetown-Grantley Adams), em Barbados, levando a bordo 48 passageiros e 25 tripulantes.
Onze minutos após a decolagem do Aeroporto Seawell e a uma altitude de 18.000 pés, duas bombas explodiram a bordo. Um estava localizado no lavatório traseiro da aeronave e outro no meio da cabine de passageiros. O primeiro acabou destruindo os cabos de controle da aeronave, enquanto o último fez um buraco na aeronave e iniciou um incêndio.
O avião entrou em uma descida rápida, enquanto os pilotos tentavam, sem sucesso, devolver o avião ao aeroporto Seawell.
À esquerda, o Capitão Wilfredo Pérez Pérez
O capitão, Wilfredo Pérez Pérez, comunicou por rádio à torre de controle: "Temos uma explosão a bordo - estamos descendo imediatamente! Temos fogo a bordo! Solicitamos pouso imediato! Temos uma emergência total!"
Abaixo, o áudio original dos momentos finais do voo:
Percebendo que um pouso bem-sucedido não era mais possível, parece que o piloto desviou a aeronave da praia em direção ao Mar do Caribe perto de Porters, St James, salvando a vida de muitos turistas. O acidente ocorreu a cerca de oito quilômetros do aeroporto.
A busca e os destroços do voo 455 da Cubana
Todos os 48 passageiros e 25 tripulantes do avião morreram: os passageiros eram 57 cubanos, onze guianenses e cinco norte-coreanos.
Entre os mortos estavam todos os 24 membros da equipe nacional de esgrima cubana de 1975 que acabara de ganhar todas as medalhas de ouro nos campeonatos da América Central e do Caribe; muitos eram adolescentes.
Membros da equipe cubana de esgrima, vencedora da medalha de ouro, estavam a bordo
Vários funcionários do governo cubano também estavam a bordo do avião: Manuel Permuy Hernández, diretor do Instituto Nacional do Esporte (INDER); Jorge de la Nuez Suárez, secretário da frota camaroneira; Alfonso González, Comissário Nacional de Esportes com Armas de Fogo; e Domingo Chacón Coello, agente do Ministério do Interior.
Os onze passageiros guianenses incluíam cinco que viajaram a Cuba para estudar medicina, e a jovem esposa de um diplomata guianense. Os cinco coreanos eram funcionários do governo e um cinegrafista.
Processos judiciais
Prisões
Horas depois das explosões, as autoridades de Trinidad prenderam Freddy Lugo e Hernan Ricardo Lozano, dois venezuelanos que embarcaram no avião em Trinidad e despacharam sua bagagem para Cuba, mas que saíram do avião em Barbados e voaram separadamente para Trinidad. Lozano viajava com uma identidade falsa com o nome de José Vázquez García.
Hernán Ricardo e Freddy Lugo após sua prisão em Trinidad
Lugo e Lozano confessaram e declararam que agiam sob as ordens de Luis Posada Carriles, um agente da CIA. Seu depoimento, junto com outras evidências, implicou Posada e o colega agente da CIA Orlando Bosch, um cubano anti-Castro que vive na Venezuela.
Em 14 de outubro de 1976, Posada e Bosch foram presos em Caracas, na Venezuela, e os escritórios da Investigaciones Comerciales e Industriales CA (ICICA), uma empresa privada de detetive de Posada, foram invadidos. Armas, explosivos e um transmissor de rádio foram encontrados. Lozano era funcionário do ICICA no momento do ataque, enquanto Lugo trabalhava como fotógrafo para o Ministério de Minas e Hidrocarbonetos.
Em 20 de outubro, autoridades de Trinidad, Cuba, Barbados, Guiana e Venezuela reuniram-se em Port of Spain, durante a qual se decidiu realizar o julgamento em Caracas, na Venezuela, visto que os quatro acusados eram cidadãos desse país. Pouco depois, Lugo e Lozano foram deportados para a Venezuela.
Julgamento militar
Em 25 de agosto de 1977, a juíza Delia Estava Moreno encaminhou o caso a um tribunal militar, acusando todos os quatro co-conspiradores de traição. Em setembro de 1980, um juiz militar venezuelano absolveu os quatro homens.
O promotor apelou, argumentando que um tribunal militar era o foro errado para julgar o caso por duas razões: nenhum dos homens era militar em 1976, e o crime de homicídio qualificado ou homicídio qualificado não pode ser julgado por um tribunal militar.
O Tribunal Militar de Apelações concordou e entregou a jurisdição, tornando a absolvição discutível. O Juiz decidiu que os acusados “são civis e os crimes a eles imputados são regidos pelo código penal (e não militar). Civis e crimes de direito comum não estão sujeitos às disposições do Código de Justiça Militar”.
Julgamento civil
Os quatro foram então acusados de homicídio qualificado e traição perante um tribunal civil.
Em 8 de agosto de 1985, o juiz venezuelano Alberto Perez Marcano, da 11ª Vara Penal, condenou Lugo e Ricardo, sentenciando-os a vinte anos de prisão. O juiz reduziu a pena ao seu limite mínimo "pela circunstância atenuante de não haver antecedentes criminais".
Orlando Bosch foi absolvido porque as provas recolhidas pelas autoridades de Barbados durante a investigação não puderam ser utilizadas no julgamento da Venezuela, por terem sido apresentadas tardiamente e não terem sido traduzidas para o espanhol.
Posada fugiu da penitenciária de San Juan de los Morros na véspera do pronunciamento de sua sentença. Ele havia sido confinado lá após duas tentativas anteriores de fuga fracassadas. Alegações foram feitas de que autoridades venezuelanas foram subornadas para ajudá-lo a escapar.
Nenhum veredicto foi dado contra Posada porque, de acordo com o Código Penal venezuelano, o processo judicial não pode prosseguir sem a presença do acusado. O tribunal emitiu um mandado de prisão contra ele que durou até sua morte.
Consequências
Um juiz diferente então ordenou que o caso fosse revisado por um tribunal superior. O governo venezuelano se recusou a apelar do caso e, em novembro de 1987, Bosch foi libertado. Ele passou 11 anos na prisão, apesar de ter sido absolvido duas vezes. Lugo e Lozano foram libertados em 1993 e continuam residindo na Venezuela.
Posada então fugiu para o Panamá e para os Estados Unidos. Em abril de 2005, um novo mandado de prisão em conexão com o atentado foi emitido na Venezuela pelo governo de Hugo Chávez. No entanto, um juiz de imigração dos Estados Unidos decidiu que Posada não deveria ser deportado para Cuba ou Venezuela porque poderia ser torturado nesses países.
Em 2007, o congressista Bill Delahunt e Jose Pertierra, um advogado de imigração que representa o governo da Venezuela, argumentou que Posada poderia ser deportada sob o argumento de que os Estados Unidos estavam abrindo uma exceção para Posada. Porque, argumentaram, os EUA praticam entrega extraordinária envolvendo a apreensão e transporte de suspeitos de terrorismo para a Síria e Egito, que praticam tortura, os EUA também poderiam deportar Posada, uma terrorista, para Cuba ou Venezuela.
Livre das acusações da Venezuela, Bosch foi para os Estados Unidos, auxiliado pelo Embaixador dos Estados Unidos na Venezuela, Otto Reich; lá, ele acabou sendo preso por violação da liberdade condicional.
Orlando Bosch
Em 18 de julho de 1990, Bosch foi perdoado de todas as acusações americanas pelo presidente George HW Bush a pedido de seu filho Jeb Bush , que mais tarde se tornou governador da Flórida; esse perdão ocorreu apesar das objeções do próprio departamento de defesa do presidente de que Bosch era um dos terroristas mais mortíferos trabalhando "no hemisfério".
Embora muitos países tenham buscado a extradição de Bosch, ele permaneceu em liberdade nos Estados Unidos. A pressão política para conceder perdão a Bosch foi iniciada durante a campanha parlamentar dirigida por Lleana Ros-Lehtinen, ela mesma uma cubano-americana, supervisionada por seu gerente de campanha, Jeb Bush.
Em 2005, Posada foi detido por autoridades dos Estados Unidos no Texas sob a acusação de presença ilegal em território nacional antes que as acusações fossem rejeitadas em 8 de maio de 2007. Sua libertação sob fiança em 19 de abril de 2007 provocou reações iradas de cubanos e venezuelanos governos.
Luis Posada Carriles
O Departamento de Justiça dos Estados Unidos instou o tribunal a mantê-lo na prisão porque ele era "um mentor admitido de conspirações e ataques terroristas", um risco de fuga e um perigo para a comunidade.
Em 28 de setembro de 2005, um juiz de imigração dos EUA decidiu que Posada não poderia ser deportado porque ele enfrentava a ameaça de tortura na Venezuela.
Possível envolvimento do FBI e da CIA
“As autoridades norte-americanas sabem que o terrorista internacional Orlando Bosch Avila e sua organização da qual Luis Posada Carriles faz parte armaram o complô para explodir este avião. Isso não é apoiado apenas pelas investigações realizadas em Cuba. O procurador-geral associado dos Estados Unidos, Joe Whitley, que analisou centenas de documentos públicos e arquivos secretos da CIA e do FBI, concluiu que a Coordenação das Organizações Revolucionárias Unidas foi responsável pelo ataque e o líder máximo desse grupo terrorista é Bosch." (Jose Luis Mendez, autor de vários livros sobre militantes anti-Castro).
Relatório desclassificado do FBI que diz: "Nossa fonte confidencial apurou (...) que o bombardeio do DC-8 da Cubana foi planejado, em parte, em Caracas, na Venezuela, em duas reuniões com a presença de Morales Navarrete, Luis Posada Carriles e Frank Castro".
Luis Posada Carriles, um cubano naturalizado venezuelano, foi o Diretor de Contra-espionagem do equivalente do FBI da Venezuela, o DISIP, de 1967 a 1974. Um documento do governo dos Estados Unidos divulgado por meio da FOIA também confirma o status de Posada junto à CIA: "Luis Posada, em quem A CIA tem um interesse operacional - Posada está recebendo aproximadamente US$ 300 por mês da CIA".
Posada esteve fortemente envolvida com grupos anti-Castro de direita, em particular a Fundação Nacional Cubano-Americana (CANF) e a Coordinadora de Organizaciones Revolucionarias Unidas (Coordenação das Organizações Revolucionárias Unidas - CORU), liderada na época por Orlando Bosch.
Segundo documentos, Posada deixou de ser um ativo da CIA em 1974, mas permaneceu "contato ocasional" até junho de 1976, alguns meses antes do bombardeio. A CIA tinha inteligência antecipada concreta, já em junho de 1976, sobre possíveis planos de grupos terroristas exilados cubanos para bombardear um avião cubano, e o adido do FBI em Caracas tinha múltiplos contatos com um dos venezuelanos que colocou a bomba no avião e forneceu ele com visto para os Estados Unidos cinco dias antes do atentado, apesar das suspeitas de que estava envolvido em atividades terroristas sob a direção de Luis Posada Carriles.
Um documento desclassificado da CIA datado de 12 de outubro de 1976, poucos dias após o atentado, cita Posada dizendo, poucos dias depois de uma reunião de arrecadação de fundos para a CORU realizada por volta de 15 de setembro: "Vamos atingir um avião cubano. Orlando tem os detalhes" (Comentário da fonte: As identidades de" Nós "e" Orlando "não eram conhecidas na época).
Manifestantes fora da audiência de imigração de Carriles em El Paso, Texas, 10 de janeiro de 2011, exigem sua extradição para a Venezuela e a libertação de cinco cubanos
Esperamos que o governo dos Estados Unidos designe Luis Posada Carriles como terrorista e o responsabilize pela dor, sofrimento e perdas que ele causou a nós e a tantas outras famílias. (Roseanne Nenninger, cujo irmão de 19 anos, Raymond, estava a bordo do voo 455)
Um documento do FBI desclassificado datado de 21 de outubro de 1976, cita o membro do CORU Secundino Carrera afirmando que o CORU "foi responsável pelo bombardeio da Cubana Airlines DC-8 em 6 de outubro de 1976... este bombardeio e as mortes resultantes foram totalmente justificados porque CORU estava em guerra com o regime de Fidel Castro." Carrera também expressou sua satisfação com a atenção dispensada aos Estados Unidos por causa do atentado, pois estava desviando a atenção de si mesmo e de seu associado.
Documentos divulgados pelo Arquivo de Segurança Nacional em 3 de maio de 2007 revelam as ligações de Posada com o bombardeio da companhia aérea Cubana em 1976 e outros ataques terroristas e conspirações, incluindo um escritório da British West Indian Airways em Barbados e a Embaixada da Guiana em Trinidad.
Isso forneceu prova adicional do envolvimento de Posada em esforços violentos para minar o governo socialista de Castro, disse Peter Kornbluh , diretor do Projeto de Documentação de Cuba do Arquivo de Segurança Nacional. O Arquivo é uma organização de pesquisa independente localizada na George Washington University.
Memoriais e Legado
Este memorial foi erguido em reconhecimento às 73 pessoas mortas no acidente do voo 455 da Cubana, na costa de Bridgetown, Barbados, no início de outubro de 1976
Um monumento foi erguido em Payne's Bay, Saint James, Barbados, em memória das pessoas mortas no bombardeio. Foi visitado várias vezes por Fidel Castro e outras autoridades cubanas e venezuelanas, incluindo uma visita durante a reunião da CARICOM em dezembro de 2005, durante a qual as autoridades cubanas pediram que Posada "fosse levada à justiça para encerrar este notório incidente que causou tanta dor à população da região”.
Em outubro de 2012, um monumento adicional à tragédia foi inaugurado na Guiana, América do Sul, no campus Turkeyen da Universidade da Guiana (foto acima).
Também houve propostas na região do Caribe para que as Nações Unidas aprovassem uma resolução para tornar o dia anual de 6 de outubro o "Dia Internacional das Nações Unidas contra o Terrorismo".
Na quinta-feira, 6 de outubro de 1955, o Douglas DC-4, prefixo N30062, da United Airlines, operava o voo 409 partindo de Nova York, com destino final em São Francisco, na Califórnia, com escalas em Chicago, Denver e Salt Lake City.
O voo 409 saiu de Nova York com uma hora e 11 minutos de atraso. Mudanças de rotina na tripulação foram feitas em Chicago e Denver.
O DC-4 partiu de Denver, Colorado às 6h33 de 6 de outubro de 1955, 83 minutos após o horário de partida programado, levando a bordo três tripulantes e 63 passageiros.
Um Douglas DC-4 da United Airlines, semelhante à aeronave envolvida no incidente
O caminho designado que o avião deveria voar era ao longo das vias aéreas V-4 Denver para Laramie, Wyoming V-118 para Rock River, rádio Wyoming , V-6 para Fort Bridger, Wyoming , e V-32 para um pouso em Salt Lake City .
O voo estava operando sob as Regras de Voo Visual e foi atribuído a uma altitude de cruzeiro de 10.000 pés. Porque a aeronave não estava pressurizada, a altitude foi escolhida para evitar que os passageiros e a tripulação experimentassem o desconforto que voar mais alto poderia causar.
A rota atribuído ao avião foi projetado especificamente para permitir a passagem segura a 10.000 pés sobre a divisão continental nas montanhas rochosas.
Um relatório de posição esperado da tripulação do United, agendado para 8h11 enquanto sobre Rock Springs, não foi recebido, e as repetidas tentativas de fazer contato por rádio com o voo 409 não obtiveram resposta.
Com o status do avião desconhecido, a Autoridade Aeronáutica Civil foi alertada sobre o desaparecimento da aeronave.
Nenhum radar estava instalado para a aviação civil nesta região em 1955. Sem traços de radar, buscas manuais foram necessárias para encontrar a aeronave.
A Guarda Aérea Nacional de Wyoming lançou dois aviões de busca: um T-33 Shooting Star de dois lugares pilotado por Mel Conine e um F-80 Shooting Star de um assento pilotado por Ed Weed.
Partindo do pressuposto de que o avião da United pode ter tomado um atalho não autorizado para compensar o atraso de 83 minutos saindo de Denver, os dois aviões de busca apontaram suas aeronaves para as montanhas mais altas da região, Elk Mountain e Medicine Bow Peak.
Depois que uma busca em Elk Mountain não conseguiu encontrar o DC-4 desaparecido, Conine e seu observador avistaram às 11h40 uma mancha preta e destroços a sudoeste da parte mais alta de Medicine Bow Peak. A turbulência os manteve longe demais para localizar possíveis sobreviventes e eles deixaram o local para retornar à sua base em Cheyenne.
O Douglas DC-4 havia colidido com o Medicine Bow Peak , perto de Laramie, no Wyoming, matando todas as 66 pessoas a bordo (63 passageiros e os 3 membros da tripulação).
As vítimas incluíam cinco mulheres do Coro do Tabernáculo Mórmon e militares. Na época, este foi o acidente aéreo mais mortal da história da aviação comercial americana.
Os primeiros socorristas a chegarem ao local disseram ter encontrado cerca de 50 corpos espalhados ao longo de um percurso de 300 pés descendo a face da montanha.
Apenas um pedaço da cauda, parte da fuselagem e uma asa do avião foram localizados no meio da tarde por equipes de resgate que lutaram contra montes de neve e um vento uivante no Medicine Bow Peak de 12.005 pés.
A montanha fica a cerca de 40 milhas a oeste daqui em Snowy Range . Acreditava-se que a parte frontal do avião dividido tenha caído do outro lado do pico. Outro grupo de resgate subiu a face norte da montanha de Rawlins. A operação foi suspensa esta noite por causa de uma tempestade de neve e escuridão.
A cena foi marcada por duas grandes manchas de óleo onde os motores do avião aparentemente atingiram cerca de 15 a 25 metros do pico. Os destroços então deslizaram pela encosta íngreme em duas ravinas, muitos deles parando a 300 pés abaixo em uma pequena geleira.
Um C-47 foi enviado de Cheyenne, Wyo., Para circundar o pico, particularmente o lado noroeste, para procurar a parte frontal do avião. A Administração da Aeronáutica Civil disse que os aviões não conseguiam voar perto da montanha por causa das condições climáticas.
A recuperação dos restos mortais amplamente espalhados das vítimas foi extremamente difícil devido ao terreno difícil no local do acidente.
Na base do penhasco quase perpendicular onde a aeronave bateu, o movimento foi prejudicado por um amplo talude de rocha fragmentada e desgastada e grandes pedregulhos, todos empilhados livremente em uma encosta íngreme.
Os montanhistas que faziam o trabalho de recuperação também precisavam estar constantemente atentos às quedas de pedras que poderiam ser desencadeadas pelas atividades das pessoas acima deles na face do penhasco. O tempo frio e neve ocasional também contribuíram para impedir os esforços de recuperação.
A recuperação de restos mortais não foi concluída até a noite de 11 de outubro de 1955, cinco dias inteiros após o acidente.
Por questões de segurança, a equipe de investigação do acidente CAB —não treinada em técnicas de montanhismo alpino— não pôde visitar o local do penhasco onde o DC-4 inicialmente atingiu.
O estudo dos destroços que puderam ser recuperados para exame sugeriram uma atitude de nariz para cima e uma velocidade do avião anormalmente baixa , sugerindo que o avião estava tentando uma subida no momento da queda.
As razões para isso não são explicitamente conhecidas, mas existem várias teorias:
Um altímetro indicando uma altitude imprecisa , levando o piloto a acreditar que estava mais baixo do que realmente estava;
Obscurecimento da montanha por nuvens, impedindo a visão visual do pico da montanha antes que fosse tarde demais para reagir e evitar o acidente;
Turbulência , especificamente correntes descendentes , em torno do pico do Medicine Bow, empurrando o Voo 409 para a montanha.
A possível incapacitação da tripulação por monóxido de carbono proveniente de um aquecedor de cabine com defeito foi especulada com base nas observações da tripulação de recuperação de que os corpos da tripulação pareciam 'descoloridos'. Esta teoria nunca foi provada, e o relatório do CAB afirma especificamente que não havia nenhuma evidência para apoiar a incapacitação da tripulação.
Depois que a investigação dos destroços acessíveis foi concluída, a United Airlines solicitou que os destroços restantes fossem destruídos pelos militares.
Foram feitas tentativas para conseguir isso, mas apesar do uso de explosivos, fogo de artilharia e - de acordo com a maioria das fontes - bombas de napalm lançadas de aeronaves, a obliteração completa dos destroços não foi possível.
Uma fonte, um livro de 2007 sobre o Rocky Mountain Rescue Group, contradiz a afirmação de que jatos militares bombardearam o local com napalm; em vez disso, o livro afirma que a face do penhasco foi minada com explosivos que foram detonados na primavera de 1956, e o evento foi rigidamente controlado e não divulgado.
Independentemente do método de descarte, pequenos fragmentos da fuselagem do voo 409 e peças dos motores ainda existem na área ao redor do local do acidente.
Em 25 de agosto de 2001, uma placa memorial de bronze com financiamento privado foi inaugurada no acampamento do mineiro ( 41 ° 20′30 ″ N 106 ° 18′21 ″ W ), ao longo da Wyoming Highway 130 (Snowy Range Road). A placa está voltada para a montanha onde ocorreu o acidente.
A placa diz: "Em memória dos 66 passageiros e tripulantes que morreram no Medicine Bow Peak em 6 de outubro de 1955".
No reino das comunicações de emergência, poucos sinais têm tanto peso e urgência quanto o chamado mayday. Este sinal de socorro, sinônimo de situações de risco de vida, é parte integrante dos protocolos de segurança em comunicações de aviação, marítimas e até terrestres. Entender o propósito, o significado e o uso correto de um chamado mayday pode ser a diferença entre a vida e a morte em situações críticas.
Um chamado mayday é um sinal de socorro usado durante situações de emergência para indicar uma ameaça grave e iminente que requer assistência imediata. É universalmente reconhecido e recebe a mais alta prioridade sobre todas as outras transmissões.
História
O termo “mayday” tem uma história rica que abrange quase um século, evoluindo de um simples pedido de ajuda para um sinal de emergência reconhecido globalmente.
Origens Marítimas
“Mayday” tem origem na frase francesa “m'aidez” ou “venez m'aider”, que significa “ajude-me” ou “venha me ajudar”. Foi adotada na década de 1920 pelo oficial de rádio marítimo Frederick Stanley Mockford, que buscava uma palavra que fosse facilmente compreendida por pilotos e marinheiros britânicos e franceses.
O termo rapidamente se tornou parte integrante dos sinais de socorro marítimo, com incidentes históricos importantes amplificando seu uso. Desastres marítimos notáveis, onde chamadas de socorro desempenharam um papel crítico nas operações de resgate, ressaltam a adoção e a eficácia do termo.
Adoção da aviação
A transição de chamadas de mayday de emergências marítimas para aeronáuticas marcou um desenvolvimento significativo em protocolos de segurança aérea. Organizações internacionais de aviação, reconhecendo a necessidade de um sinal de socorro padronizado, adotaram oficialmente o “mayday” para comunicações de emergência.
Essa adoção facilitou uma resposta unificada às emergências da aviação, garantindo que os pilotos em perigo pudessem se comunicar efetivamente com o controle de solo e outras aeronaves.
Protocolos e Procedimentos
Os protocolos para fazer um pedido de socorro são rigorosamente definidos, variando ligeiramente entre contextos marítimos e de aviação, mas mantendo uma estrutura central projetada para transmitir informações críticas de forma rápida e clara.
Etiqueta de comunicação
A comunicação eficaz durante uma situação de socorro é primordial. A etiqueta para emitir um chamado de socorro inclui declarar a palavra “mayday” três vezes, seguida de informações importantes, como a natureza da emergência, a assistência específica necessária e a localização ou posição da parte em perigo. Este protocolo garante que o chamado seja imediatamente reconhecido como um sinal de socorro e que os socorristas tenham as informações necessárias para ajudar.
Exemplos e estudos de caso
Incidentes da vida real ressaltam o impacto do pedido de socorro e a importância do uso oportuno e adequado.
Resgates bem-sucedidos
Existem vários casos em que chamadas rápidas de socorro levaram a operações de resgate bem-sucedidas. Por exemplo, incidentes marítimos em que navios estavam entrando na água ou aeronaves com falha de motor viram tripulações e passageiros resgatados com segurança, graças a chamadas rápidas e claras de socorro. Esses exemplos destacam a eficácia do sinal de socorro na mobilização de esforços de resgate.
Lições Aprendidas
Por outro lado, houve casos infelizes em que a falta ou o atraso de chamadas de socorro resultaram em desfechos trágicos. Analisar esses incidentes fornece lições valiosas sobre a necessidade de comunicação de socorro precoce e as potenciais consequências da hesitação ou falha em seguir os protocolos estabelecidos.
Conclusão
O chamado mayday continua sendo um elemento crucial da comunicação de emergência, simbolizando um apelo por assistência imediata em situações terríveis. Sua história, das origens marítimas à adoção da aviação, ilustra a evolução dos protocolos de segurança que salvaram inúmeras vidas.
Entender e respeitar os protocolos e procedimentos para emitir um chamado de socorro pode impactar significativamente a eficácia da resposta a emergências. Como tal, é imperativo que indivíduos em áreas onde os chamados de socorro são aplicáveis se familiarizem com esses protocolos de comunicação de emergência, garantindo que estejam preparados para agir decisivamente e se comunicar efetivamente caso a necessidade surja.
Cada tipo de viajante possui um "setor adequado" para viajar, dizem especialistas.
(Foto: Unsplash)
Viajar sozinho, acompanhado, com bebê, em voo direto ou com escala. A experiência de viajar de avião não é a mesma a depender das condições que você embarca. Seja qual for o destino, todos os viajantes tem uma espécie de assento ideal - e a escolha não está relacionada com o preço, mas com o conforto que se procura e necessita. Diante disso, qual é o assento ideal para escolher no avião?
O portal Traveller, especializado em viagens, fez uma lista com dicas práticas para facilitar a escolha do assento no avião. Mas vale lembrar que em alguns casos há um custo extra, por isso o o fator monetário dever ser considerado antes de tomar uma decisão.
Passageiros que querem dormir no avião
Assentos na janela e próximos às saídas de emergência são os melhores para quem quer tirar um cochilo durante o voo, segundo o jornal La Nación. E aqueles localizados nas últimas filas da classe econômica devem ser evitado. Isso porque eles não reclinam e ficam próximos às cozinhas e banheiros, aumentando o fluxo de pessoas.
Quem senta na janela tem a vantagem de não bloquear a passagem para o corredor e evita ser interrompido por possíveis solicitações de outros passageiros.
Já quem fica nas saídas de emergência garante mais espaço para as pernas. Mas há outras desvantagens, como a necessidade de maior atenção em caso de acidentes e falta de telas multimídia com séries, músicas e filmes, geralmente disponíveis em voos longos.
Passageiros com escala
A escala curta entre voos é um dos principais desafios aos viajantes. Nesse caso, cada minuto importa, e a rápida descida do avião pode ser decisiva para chegar a tempo. Por isso, os especialistas aconselham ficar próximo à parte frontal da cabine ou tentar reservar um assento no corredor.
O melhor nestes casos é evitar as janelas e evitar ficar muito longe dos portões de embarque. Isso pode atrasar a partida e perder minutos cruciais para viajar até o próximo portão de embarque, principalmente em aeroportos de grande porte e de longa distância entre setores.
Passageiros com medo de voar
Sentar-se na parte central do avião, na altura das asas, pode ser o melhor assento para quem sente ansiedade ou medo de embarcar em um avião, dizem especialistas. Assentos voltados para o corredor também são recomendados.
Isso porque há maior sensação de estabilidade nas curvas, pois é onde está localizado o ponto de equilíbrio de quase todas as aeronaves. Lugares próximos do serviço de bordo para poder ver o pessoal a trabalhar e tê-los por perto em caso de necessidade também são recomendados
Passageiros com bebês
Para pais que viajam com crianças pequenas, os especialistas recomendam escolher as primeiras filas, localizadas logo atrás da divisão entre classe executiva e econômica ou entre econômica e turismo. Essas filas oferecem um espaço adicional na frente, ideal para prender um berço e ter espaço extra para qualquer necessidade durante o voo.
Caso esses assentos não estejam disponíveis (pois são bastante procurados por causa do espaço extra para as pernas), é aconselhável optar por assentos na janela. Isso facilita o transporte do bebê nos braços ou a instalação de um assento especial, que geralmente só pode ser fixado ao lado da janela.
Aeroporto Internacional de Paro, no Butão (Imagem: Doug Knuth/Creative Commons)
O Aeroporto Internacional de Paro, no Butão, é uma joia para amantes da aviação — ou um filme de terror para quem tem medo de avião. Isto porque sua única pista de 2.265 metros é considerada como "a aterrissagem mais perigosa do mundo", tanto que apenas cerca de 50 pilotos no mundo possuem licença para pousar por lá, segundo informações da rede CNN americana.
Alguns elementos tornam a chegada no único aeroporto internacional do pequeno reino de cerca de 800 mil pessoas no Himalaia tão diferente de outros centros urbanos no mundo. E o principal deles é a geografia.
A pista única entre as montanhas prova-se um desafio para os pilotos (Imagem: eric lafforgue/Corbis via Getty Images)
A pista de Paro está situada a 2.250 metros de altitude entre dos picos montanhosos de cerca de 5.500 metros, o que torna o terreno complexo de navegar durante as manobras de aterrissagem. Justamente por causa desta topografia, as condições meteorológicas na área nem sempre oferecem a melhor visibilidade.
Um artigo publicado pela Druk Air — ou Royal Bhutan Airlines, a companhia aérea estatal do país — em junho explica que, por este motivo, pousos e decolagens só são permitidos entre o nascer e o por do sol em Paro. Além disso, contar com a tecnologia não é uma opção por lá, já que não há radares.
Poucos aviões circulam no aeroporto, que depende de pilotos experientes e bem treinados (Imagem: Domínio Público)
Paro é classificado como um aeroporto de categoria C pela Organização Internacional de Aviação Civil (ICAO), o que quer dizer que há regras de operação específicas em vigor para evitar colisões no ar e, por isso, pilotos precisam ter treinamento especial para trabalhar nestes espaços aéreos. Todos devem ser capazes de pousar manualmente.
Ainda é imprescindível conhecer bem a paisagem ao redor do aeroporto porque o menor erro pode levar uma aeronave a colidir com uma casa. Um vídeo do youtuber Sam Chui de 2019 mostra como é este procedimento — e o piloto ainda destaca a enorme proximidade da pista com monastérios nas montanhas.
"Em primeiro lugar, Paro é difícil, mas não perigoso. É desafiador para as habilidades do piloto, mas não é perigoso, porque se fosse eu não estaria voando", garantiu o capitão Chimi Dorji, piloto da companhia há 25 anos, à CNN americana. "Em Paro, você realmente precisa ter habilidades 'locais' e conhecer a área de competência", explicou.
Ele ainda revelou que treina outros pilotos com um método específico para serem capazes de chegar ou partir de Paro. "Em altas altitudes, o ar é mais rarefeito, então a aeronave essencialmente tem que voar pelo ar mais rápido. Sua velocidade verdadeira no ar será a mesma, mas a sua velocidade relativa ao solo é muito mais rápida."
Príncipe William e a Princesa Kate na chegada ao Aeroporto Internacional de Paro, no Butão, em 2016 (Imagem: Mark Cuthbert/UK Press via Getty Images)
Para Dorji, é importante para o treinamento do piloto não só saber como voar, mas saber quando não voar.
Segundo o capitão, a parte da manhã é mais segura — e, por isso, preferencial — para as manobras de pouso. "Tentamos evitar operações depois do meio-dia porque você tem muitos ventos térmicos, temperaturas subindo e chuvas que ainda não aconteceram. O solo está ressecado e você recebe essas gotículas e ventos anabáticos e catabáticos no vale durante a tarde. As manhãs são mais calmas".
Vista da pista e dos hangares (Imagem: Reprodução/Departamento de Transporte Aéreo do Butão)
Toda quinta, receba sugestões de lugares para comer e beber bem em São Paulo e dicas das melhores comidinhas, de cafés a padarias.
Os ventos anabáticos são correntes de ar ascendentes de alta densidade que são fruto do aquecimento das encostas das montanhas. Já os catabáticos são descendentes e geralmente mais frios. Ambos são úteis para os pilotos experientes estabilizarem as aeronaves, mas sem estes cuidados, a chegada pode ser turbulenta.
Ou seja, a parte da tarde costuma ser reservada para as partidas e não para as chegadas. Outras mudanças às programações têm que ser feitas geralmente entre junho e agosto para evitar riscos extras nas temporadas de tempestades. Acompanhe uma aterrissagem cuidadosa no Aeroporto Internacional de Paro:
O monomotor se preparava para pousar no Aeroporto de Juazeiro do Norte. Duas pessoas estavam na aeronave e sofreram ferimentos leves.
A queda ocorreu próximo à rodovia CE-292, a pouco mais de 9 quilômetros de distância do Aeroporto de Juazeiro do Norte (Foto: Reprodução)
O avião de pequeno Cessna 150L, prefixo PR-SRR, registrado para Alberto Alves Falcão Ltda., fez um pouso forçado na tarde deste sábado (5) na cidade de Missão Velha, no Ceará. A aterrissagem ocorreu próximo à rodovia CE-292, a pouco mais de 7 quilômetros de distância do Aeroporto de Juazeiro do Norte, em uma área de mato.
O Corpo de Bombeiros do Ceará confirmou que foi acionado para atender a ocorrência nesta tarde.
Equipes do Corpo de Bombeiros prestaram socorro às duas vítimas (Foto: Divulgação/SSPDS)
Segundo informações de uma pessoa que trabalha no Aeroporto de Juazeiro e do colunista Igor Pires, duas pessoas estavam na aeronave, que iria pousar no terminal. Uma delas seria o piloto. O homem teve machucados na cabeça, mas está consciente. As duas pessoas a bordo foram encaminhadas ao Hospital Regional.
Em nota, o Hospital Regional do Cariri (HRC) informou que as vítimas do acidente deram entrada na unidade e estão recebendo cuidados da equipe multidisciplinar.
A Secretaria da Segurança Pública e Defesa Social (SSPDS) confirmou, em nota, que "o avião era ocupado por duas pessoas, que foram socorridas, sem ferimentos graves, por equipes médicas", e que "as vítimas foram conduzidas para um hospital em Juazeiro do Norte".
Já a Aena, concessionária do Aeroporto de Juzeiro do Norte, informou que "um avião de pequeno porte, modelo Cessna 150, que pousaria no Aeroporto de Juazeiro do Norte no início da tarde deste sábado, declarou emergência na aproximação final".
Ainda conforme a nota, a aeronave "se acidentou a cerca de 7 quilômetros da cabeceira da pista" e equipes do aeródromo foram acionadas para prestar assistência nas buscas e resgate.
Pouso forçado ocorreu em área de mata (Foto: Divulgação/SSPDS)
Veja a nota da Aena na íntegra:
"A Aena informa que um avião de pequeno porte, modelo Cessna 150, que pousaria no Aeroporto de Juazeiro do Norte no início da tarde deste sábado declarou emergência na aproximação final. A aeronave se acidentou a cerca de 7 quilômetros da cabeceira da pista. As equipes do aeródromo foram acionadas para prestar assistência nas buscas e resgate. As duas pessoas que estavam a bordo foram encaminhadas ao Hospital Regional. Mais informações podem ser obtidas com as autoridades locais e com o Seripa II (Serviço Regional de Investigação e Prevenção de Acidentes Aeronáuticos)."