segunda-feira, 11 de março de 2024

Aconteceu em 11 de março de 1982: Voo Widerøe 933ㅤAcidente ou colisão com jato militar?

Um acidente que passou por quatro investigações



O voo 933 da Widerøe, também conhecido como o "Acidente de Mehamn", foi a queda de um de Havilland Canada DHC-6 Twin Otter operado pela companhia aérea norueguesa Widerøe. O Twin Otter caiu no Mar de Barents perto de Gamvik, Noruega, em 11 de março de 1982, às 13h27, matando todas as quinze pessoas a bordo. 

Os resultados das quatro investigações oficiais foram que o acidente foi causado por falha estrutural do estabilizador vertical durante turbulência de ar puro. Uma falha mecânica no elevador do sistema de controle fazia com que os pilotos perdessem o controle do pitch; e uma série de estolagens ou uma rajada de vento de alta velocidade fez com que a aeronave perdesse altitude sem a capacidade da tripulação de reagir, resultando na falha do estabilizador vertical.

O acidente ocorreu durante um exercício militar da OTAN, dentro de uma zona auto-declarada de exclusão aérea para aeronaves militares aliadas. Uma extensa operação de busca e resgate foi realizada e os destroços submersos foram encontrados em 13 de março. A aeronave e todos os falecidos, exceto um, foram recuperados. Uma investigação oficial foi concluída em 20 de julho de 1984.

Uma teoria da conspiração surgiu mais tarde após a investigação do acidente ter sido concluída, alegando que o acidente foi causado por uma colisão no ar com um Harrier Jump Jet da Força Aérea Real Britânica. A teoria é baseada em relatos que surgiram anos ou décadas após o acidente. As reclamações e o renovado interesse da imprensa resultaram em três investigações adicionais, estabelecidas em 1987, 1997 e 2002. Todas as quatro investigações chegaram às mesmas conclusões gerais e rejeitaram uma colisão.

Aeronave




A aeronave envolvida no acidente era o de Havilland Canada DHC-6 Twin Otter 300, prefixo LN-BNK, da Widerøe (foto acima), um avião que foi construído pela de Havilland Canada em 1977, entregue em Widerøe e registrado na Noruega em 9 de fevereiro de 1978. 

A aeronave foi danificada por uma explosão de jato de um Douglas DC-9 no aeroporto de Tromsø em março de 1980, após o que o leme foi substituído. Além disso, o Twin Otter não foi sujeito a nenhum outro incidente extraordinário. Cumpriu todos os requisitos de manutenção e certificação e operou cerca de 10.000 horas até o momento do acidente.

Voo


O voo 933 da Widerøe era um serviço regular do aeroporto de Kirkenes, Høybuktmoen para o aeroporto de Alta, com paradas intermediárias no aeroporto de Vadsø, aeroporto de Berlevåg, aeroporto de Mehamn e aeroporto de Honningsvåg, Valan, todas localidades da Noruega.

O capitão tinha 38 anos e o primeiro oficial tinha 26 anos. A aeronave levava treze passageiros a bordo, incluindo duas crianças, ao partir de Berlevåg. O tempo estava bom, mas com vento forte de sul. O capitão optou por voar com regras de voo visual. Outras aeronaves que passaram pela área do acidente após o voo Widerøe 933 experimentaram forte turbulência entre 1.000 pés (300 m) e 1.500 pés (460 m).

Em 11 de março de 1982, o Twin Otter deixou Berlevåg às 13h19, 11 minutos mais cedo, fazendo com que um passageiro perdesse o voo. O primeiro oficial relatou ao Mehamn Aerodrome Flight Information Service (AFIS) às 13h22 que a aeronave estava a 2.000 pés (610 m) de altitude sobre o Tanafjord e tinha um tempo estimado de chegada às 13h33. 

O contato por rádio terminou às 13h22:53s. A rota do voo foi monitorada por um oficial do centro de controle e relatório da Real Força Aérea Norueguesa (RNoAF) em Honningsvåg entre 13h23:20s e 13s25:25s, após o qual a aeronave não apareceu mais no radar. O oficial do centro RNoAF presumiu que a aeronave havia caído abaixo do horizonte do radar de 1.200 pés (366 m) de altitude.

O Mehamn AFIS  transmitiu ao voo 933 por rádio às 13h35:52s, mas não obteve resposta. Depois de várias tentativas, o Mehamn AFIS contatou o Berlevåg AFIS e o aeroporto de Kirkenes, que também não conseguiu estabelecer contato por rádio. Uma aeronave Widerøe em rota de Honningsvåg a Mehamn também tentou fazer contato. 

O Centro de Coordenação de Resgate Conjunto do Norte da Noruega foi informado da situação às 13:41 e coordenou imediatamente uma operação de busca e salvamento. Três grupos do Corpo de Busca e Resgate da Cruz Vermelha Norueguesa foram despachados e dez navios na área se ofereceram para ajudar na busca. 

Um CF-104 Starfighter durante a busca pelo  DHC-6 Twin Otter LN-BNK
Eles foram complementados por dois navios de busca e salvamento da Sociedade Norueguesa de Resgate Marítimo (NSSR); aDraug, o navio de mergulho da Marinha Real norueguesa ; e o navio da Guarda Costeira norueguesa Horten.

Dois caças RNoAF CF-104 e um Westland Sea King na estação aérea de Banak participaram da busca junto com outros dois helicópteros militares, assim como um Twin Otter de Widerøe e uma aeronave da companhia aérea norueguesa Norving. Partes da aeronave acidentada foram encontradas por volta das 18h do dia do acidente. 

Mapa da rota do vôo 933. A linha grossa é a rota seguida pelo radar;
"Vrak" é onde os destroços foram encontrados
A descoberta veio às 17h39 do dia 13 de março, quando um navio da NSSR encontrou o avião naufragado a 45 metros (150 pés) de profundidade, 1,1 quilômetros (0,7 mi) ao norte de Teistbergan. 

No dia seguinte, dois mergulhadores da polícia exploraram o local e confirmaram que se tratava da aeronave desaparecida. Um dos mergulhadores sofreu de doença descompressiva, que causou uma lesão cerebral vitalícia e subsequente incapacidade.

Uma tropa de mergulhadores chegou da Base Naval de Ramsund naquela noite e começou a trazer os corpos. O último corpo foi recuperado em 20 de março. Todos, exceto o capitão, foram encontrados, embora um corpo estivesse localizado a 300 metros (1.000 pés) dos destroços. 

Como os passageiros teriam sido expostos a uma força de 50 a 100 G no momento do impacto, todos teriam morrido instantaneamente. A Widerøe pagou uma indenização máxima de 330.000 coroas norueguesas (NOK) pelo acidente, custando à companhia aérea entre 4 e 5 milhões de coroas norueguesas.

Busca da causa do acidente


A investigação dos destroços mostrou que, antes do acidente, havia rachaduras no tubo de torque que conectava o elevador de bombordo ao sistema de controle do elevador. 

A Widerøe, a de Havilland Canada e a comissão de investigação inicial foram de opinião que isso era irrelevante para o acidente, enquanto a Transport Canada e o Swedish National Defense Research Instituteforam de opinião que isso causou um enfraquecimento da estrutura. 

A área do acidente estava sofrendo de forte turbulência em tempo claro de até 6.000 pés (1.800 m) de altitude. A velocidade do vento era comparável aos níveis usados ​​para certificar a aeronave. Pilotos Twin Otter de Widerøe e RNoAF confirmaram que o controle da altitude da aeronave pode ser difícil em condições de forte turbulência.

É possível que a turbulência tenha causado a quebra do tubo de torque que conduz o elevador de bombordo; isso permitiria que o elevador portuário se movesse livremente, mas os pilotos ainda reteriam aproximadamente metade de seu controle de atitude. A aeronave também tinha uma haste de tração com defeito e cabos de direção gastos, embora não se tenha certeza se isso foi parte da causa.

O estabilizador vertical da aeronave acidentada após ser recuperado do mar
Presume-se que a causa direta do acidente seja o colapso do estabilizador vertical. Existem duas explicações alternativas para como o acidente pode ter acontecido. 

A primeira explicação é que a falta de controle vertical causada pelo tubo de torque do elevador quebrado paralisou a aeronave. Por causa da falta de controle de inclinação, teria sido fácil para a aeronave cair de novo em um estol repetidamente, a cada vez perdendo altitude. A aeronave, portanto, eventualmente teria caído no mar. A barbatana vertical e o leme teriam se quebrado com o impacto. Essa teoria não explica por que o estabilizador vertical foi encontrado a essa distância da aeronave.

A segunda explicação é baseada na aeronave atingindo uma velocidade de pelo menos 180 nós (210 mph; 330 km/h), em comparação com a velocidade de cruzeiro normal da aeronave de 140 nós (160 mph; 260 km/h). Isso é possível em condições extremas de vento, uma vez que os pilotos perderam o uso do elevador. As simulações mostram que cada rajada de vento tinha 0,5% de possibilidade de quebra do leme; e a última comissão de inquérito concluiu que era provável que a aeronave pudesse ter sido atingida por pelo menos dez dessas rajadas. Esta alternativa explica porque o estabilizador vertical foi encontrado a essa distância da aeronave.

Atividade militar


A OTAN estava realizando o exercício militar "Alloy Express" no Norte da Noruega de 24 de Fevereiro a 24 de Março de 1982. O exercício estava praticando o envio de forças da OTAN para o Norte da Noruega em resposta a uma possível invasão soviética. 

Entre as aeronaves participantes estavam RNoAF F-5 Freedom Fighters, F-104 Starfighters e F-16 Fighting Falcons, bem como F-4 Phantom IIs e F-15 Eagles da Força Aérea dos Estados Unidos. 
Um mapa mostrando locais relevantes relacionados ao voo 933 e atividades militares na área
O porta-aviões da Marinha Real HMS Invincible estava ancorado em Vestfjorden e seus Sea Harriers estavam participando, assim como um destacamento de Hawker Siddeley Harriers do Squadron No. 1 da RAF voando para fora do Aeroporto de Tromsø. 

A política norueguesa proibia qualquer aeronave da OTAN de operar a leste do meridiano leste 24º, a menos que tivesse permissão explícita do governo; nenhuma permissão foi concedida para "Alloy Express".

No dia do acidente, dois Harriers voaram em missões de Tromsø, chamados Red 1 e Red 2. O primeiro foi o Harrier de dois lugares de número de série XW925 com o Wing Commander Peter Squire como piloto e o Major norueguês Bjørnar Vollstad. 

A aeronave deixou Tromsø às 14h27, quase uma hora após o acidente. Eles voaram para um campo de tiro perto de Setermoen, seguido por Red 2, um Harrier GR.3. O campo de tiro foi envolvido por uma nevasca, mas Squire optou por realizar a prática. 

Hawker Siddeley Harriers da RAF no Aeroporto de Tromsø durante o exercício "Alloy Express" em 1982
O Red 1 foi sujeito a uma explosão de ar; mas o piloto Squire não registrou nenhum dano, optando por retornar a Tromsø e pedindo um pouso prioritário por segurança. O piloto do Red 2 acreditou que suas armas não estavam seguras e optou por realizar um pouso prioritário na Estação Aérea de Bardufoss, localizada nas proximidades.

A violação da política do meridiano 24º por aeronaves militares durante os exercícios seria descoberta pelos centros de controle e notificação, que ordenariam que as aeronaves voltassem. Quaisquer incidentes seriam registrados no Centro de Controle e Relatório Sørreisa (CRC) e na estação de radar que rastreava as aeronaves.

Durante um exercício três anos depois, em 13 de março de 1985, dois Sea Harriers do HMS Invincible, então ancorados ao largo de Andøya, foram registrados como estando 150 quilômetros (93 mi) dentro da zona de exclusão aérea, comparativamente perto do local onde o HMS Invincible estava em 1982. 

O porta aviões do Reino Unido HMS Invincible
Este foi o único incidente que a comissão parlamentar conseguiu verificar. Os membros da comissão realizaram entrevistas com dezenas de controladores de tráfego aéreo, pilotos e comandantes civis e militares; nenhum jamais havia observado aeronaves estrangeiras na zona de exclusão aérea, embora todos tivessem ouvido rumores de tal atividade. A comissão concluiu que as supostas violações frequentes da zona eram resultado de uma lenda urbana.

As investigações


Primeira investigação

A primeira investigação foi realizada por uma comissão militar, liderada pelo Tenente General Wilhelm Mohr e composta pelo Capitão Stein I. Eriksen, o Inspetor de Polícia Liv Daae Gabrielsen e o piloto Hallvard Vikholt. Os destroços foram salvos por MS Hugo Trygvasson a partir de 16 de março. Os destroços foram içados a bordo e armazenados antes de serem transportados para um hangar no aeroporto de Bodø, onde foi realizada a investigação. A falta de espaço a bordo do navio fez com que os destroços ficassem amontoados e poderiam ter sofrido danos durante o carregamento e transporte. Algumas das análises técnicas dos componentes da aeronave foram realizadas por de Havilland Canada e por Transport Canada. 

Houve uma testemunha ocular do acidente - Grete Mortensen, que trabalhava ao ar livre em um jardim de infância em Gamvik. Os comentários de Mortensen foram fundamentais para localizar a aeronave após o acidente. Ela afirmou ter ouvido um barulho alto e informou a comissão inicial que "um pouco depois" ela viu um caça a jato na área. A comissão inicial não pediu na época o intervalo de tempo entre os avistamentos das duas aeronaves. 

Em 1987, ela especificou que o caça surgiu cerca de um a cinco minutos após o estrondo. A comissão final afirmou que a especificação posterior poderia muito bem ter sido influenciada pelos relatos da mídia. A última comissão afirmou que o não interesse da primeira comissão em acompanhar seus comentários foi utilizado pela mídia para levantar dúvidas sobre a existência de um caça na área.

A primeira comissão concluiu que "partes vitais do estabilizador vertical entraram em colapso devido à sobrecarga enquanto ainda estava no ar tornando impossível o controle adicional da aeronave". A conclusão foi unânime e foi apresentada em uma coletiva de imprensa em Mehamn em 20 de julho de 1984. 


O principal programa de notícias da Norwegian Broadcasting Corporation (NRK), Dagsrevyen, optou por enfatizar a parte do relatório que foi considerada interessante - que o capitão havia tomado medicamentos sem permissão de um médico autorizado da aviação. Parte da história continha fotos de medicamentos e o programa dava a impressão de que a comissão estava colocando parte da culpa no capitão, enquanto na realidade não havia tais conclusões no relatório.

Segunda investigação

O Eastern Finnmark está localizado perto da então fronteira da Noruega com a União Soviética, com grande atividade militar em ambos os lados. A Guerra Fria forçou o sigilo sobre as instalações militares - por exemplo, os alcances dos sistemas de radar militares - o que fez com que certos detalhes não fossem revelados no relatório da comissão. 

Vários eventos históricos fizeram com que as pessoas em Finnmark tivessem uma atitude mais cética em relação às autoridades. Logo após o acidente, começaram a circular rumores sobre vários detalhes das operações de salvamento; que foram subsequentemente fáceis de verificar como não sendo verdadeiras. A quarta comissão descobriu que havia dezenas de rumores e observações menores e maiores que foram relatados por testemunhas; que eram fáceis de provar como falsas, muitas vezes porque as pessoas em questão não se encontravam no local em questão na data do acidente.

Um debate público sobre a causa do acidente surgiu após o relatório, em parte por causa dos avistamentos de caças a jato. Tais relatos vinham aparecendo na mídia logo após o acidente. Fremover relatou em janeiro de 1987 que o radar havia observado uma aeronave não identificada que estava em rota de colisão com o Twin Otter. O problema aumentou com o irmão do capitão, o piloto-chefe de Widerøe, John Hovring, afirmando que o acidente deve ter ocorrido como resultado de uma colisão com um caça ou míssil. Ele afirmou ainda que o General Mohr, como oficial da Força Aérea, tinha grande interesse em encobrir a causa real.

O governo, portanto, nomeou três novos membros para a comissão em 6 de fevereiro de 1987 e ordenou uma nova investigação do acidente. Os novos membros foram o Juiz de Apelação Christian Borchsenius, Erik Øie da Administração de Aviação Civil da Noruega e o Professor Janne Carlzon do Instituto Real de Tecnologia de Estocolmo. A comissão ampliada foi encarregada de examinar especialmente três questões: todos os movimentos aéreos na área na época; como a rachadura no tubo de torque foi causada; e uso de medicação pelo piloto.

A comissão realizou investigações em todos os registros de tráfego da região, bem como entrevistas com várias pessoas novas. A TI concluiu no seu relatório de 29 de Junho de 1988 que poderia ser excluída a existência de outras aeronaves na área; e que nenhum outro objeto no ar poderia ter causado o acidente. Além de ser mais explícito em alguns aspectos técnicos das conclusões, a segunda comissão concordou com a primeira. Mohr recebeu várias ameaças, incluindo algumas contra sua vida.

Terceira investigação

O debate sobre o acidente ressurgiu em 1997. O sobrinho do capitão apresentou novas evidências de um oficial anônimo da Força Aérea, mais tarde identificado como Per Garvin. O parlamentar Erling Folkvord (Aliança Eleitoral Vermelha) posteriormente levantou questões sobre o acidente no Parlamento ao Ministro dos Transportes e Comunicações sobre a investigação; e tinha um capítulo em um livro que escreveu dedicado ao assunto. 

Sua principal afirmação foi que a observação de Mortensen não havia sido investigada com mais cuidado. A mídia também informou que a causa do acidente nunca foi encontrada e que um Harrier danificado pousou em Tromsø no dia do acidente.

O Accident Investigation Board Norway (AIBN) decidiu em 1997 investigar as novas alegações. Ele investigou registros de aeroportos e estações de radar, mas não conseguiu encontrar nenhuma evidência de aeronaves no ar no momento do acidente. Em fevereiro, foi feita uma reclamação de que as toras do aeroporto de Tromsø haviam sido adulteradas; a análise mostrou que não era esse o caso. O AIBN concluiu que não havia evidências para apoiar as reivindicações.

Quarta investigação - Investigação parlamentar

Em 19 de novembro de 2002, a série de documentários "Brennpunkt" da NRK transmitiu o episódio " Vanskelige vitner" ("Testemunhas difíceis"). O programa alegou que tinha novas evidências sobre o acidente, que mostravam conclusivamente que o Twin Otter havia colidido com um Harrier. 

Incluía uma entrevista com o ex-tenente-coronel Per Garvin, então encarregado do CRC Sørreisa. Ele afirmou ter visto dois Harriers voando para a zona de exclusão aérea no dia do acidente, combinado com um comentário de que Harriers voando de Gamvik para Tromsø foram observados por testemunhas durante todo o caminho. O principal pesquisador do documentário foi o ex-piloto Widerøe Ulf Larsstuvold, que havia sido um porta-voz a favor da 'teoria Harrier'.

Isso estimulou um debate público sobre o incidente e subsequente debate no Parlamento. Foi debatido pela primeira vez em 16 de dezembro de 2002 e uma nova comissão foi nomeada em 6 de fevereiro de 2003. O jurista Gaute Gregusson , ex-presidente da Corte de Apelação de Hålogaland , foi nomeado presidente da comissão. Entre os outros sete membros estava o ex- bispo de Hålogaland, Ola Steinholt, bem como quatro especialistas nas áreas de aerodinâmica, radar, gestão de risco e operações de voo, incluindo um professor e um piloto.

A comissão conduziu trinta audiências públicas e 219 testemunhas foram entrevistadas - todas exceto três em audiências públicas. Entre as três comissões, 309 pessoas foram entrevistadas. A comissão realizou 35 reuniões e entrevistou funcionários britânicos, além de visitar todos os sites relevantes. Também considerou todo o material arquivado das três primeiras investigações. 

O Chefe da Defesa da Noruega desclassificou todo o pessoal militar de seu sigilo profissional em relação ao incidente. Além disso, vários documentos relevantes para o caso foram desclassificados pelos militares. Os destroços da aeronave foram enterrados após a investigação inicial e, portanto, não foi possível para a quarta comissão investigá-los. A busca de peças foi realizada em setembro de 2003; um tanque de queda foi encontrado, mas era incompatível com aqueles usados ​​por um Harrier.

Entrevistas e análise

Per Garvin afirmou à comissão que observou aeronaves na zona de exclusão aérea no dia do acidente e comunicou-se com a estação de Kautokeino, que também observou essas aeronaves. Ele afirmou que havia ordenado que seu assistente registrasse o incidente. 

Outro operador deu provas de que observou o Red 1 e o Red 2 voar primeiro de Tromsø para Setermoen e depois para norte para Alta e Kautokeino, na zona de exclusão aérea. Nenhum outro funcionário da Sørreisa poderia se lembrar de tais incidentes, e os registros mostravam que Garvin não estava trabalhando no dia do acidente. Garvin nunca fez nenhum comentário sobre Harriers durante a década de 1980 e suas declarações entre 1997 e 2003 mudaram de uma possibilidade para um certo fato.

Um funcionário de Kautokeino afirmou ter observado aeronaves aliadas na zona de exclusão aérea no dia do acidente, mas as investigações mostraram que ele não estava trabalhando em Finnmark em março. As investigações dos registros em Kautokeino e Sørreisa não mostraram entradas a respeito de qualquer tráfego aéreo da OTAN.

O capitão Stein Aarbogh, trabalhando no campo de tiro de Setermoen, afirmou que no dia do acidente dois Harriers eram esperados, mas que apareceram várias horas atrasadoa, por volta das cinco horas da tarde. Aarbogh tinha certeza de quem era o oficial de tiro no campo de tiro no dia do incidente, mas a comissão pôde documentar que a pessoa em questão estava trabalhando na Estação Aérea de Rygge em 11 de março. Portanto, este incidente não poderia ter ocorrido no dia do acidente.

Quatro testemunhas afirmaram ter observado aviões de combate na área do acidente. Um pescador afirmou que viu um Twin Otter e um caça a jato ao mesmo tempo na área, mas não conseguia se lembrar se foi antes ou depois do acidente, nem mesmo se foi no mesmo dia. Caso fosse após o acidente, ele estaria observando duas das aeronaves de busca.

Algumas testemunhas afirmaram ter visto um Harrier danificado em Bardufoss no momento do acidente. Alguns alegaram que a asa direita foi danificada, outros a asa esquerda ou a barriga. Algumas das testemunhas afirmaram que havia restos de tinta verde na aeronave. No momento do acidente, Widerøe não tinha um esquema de pintura verde dominante em sua aeronave. A distância de Gamvik a Bardufoss é de 430 quilômetros (270 milhas) e o Harrier teria que voar para fora e para trás sob cobertura de radar. Um Harrier não tem combustível suficiente para essa viagem de ida e volta e a aeronave teria passado por mais de dez aeroportos na rota de Gamvik para Bardufoss.

A fratura do estabilizador vertical foi apontada nos relatórios como a causa do acidente
O relatório foi publicado em 20 de setembro de 2005. Ele apoiou totalmente as conclusões de todos os três relatórios anteriores e não encontrou nenhuma evidência de impacto com um Harrier ou qualquer outra aeronave. 

A conclusão foi fundada em primeiro lugar em uma revisão completa de todos os registros e documentação e uma revisão completa de todas as análises técnicas nos primeiros relatórios. Concluiu que todas as testemunhas de aeronaves de caça haviam prestado declarações muitos anos após o acidente e que havia um alto grau de incerteza quanto ao momento de suas observações. Apenas a declaração de Grete Mortensen não pôde ser rejeitada, mas a comissão também não conseguiu descobrir que apresentasse qualquer evidência conclusiva. 

A comissão também concluiu, sem sombra de dúvida, que nenhum Harrier estava no ar no momento do acidente. A comissão também rejeitou que a saúde do capitão a saúde teve uma influência no acidente e descobriu que falhas semelhantes de controle de elevador ocorreram em outros Twin Otters acidentados.

Reação


Apesar das conclusões do relatório, a NRK afirmou que manteve a posição de que seu programa documentou um incidente de Harrier. O jornalista de Nordlys, Skjalg Fjellheim, afirmou após a reportagem que, embora tivesse aplaudido o programa de documentários na época, ele agora o caracterizava como ficção.

O Bispo Steinholt da comissão afirmou que quando ele viu o programa originalmente, ele imediatamente pensou em "assassinato". No dia da reportagem, ele criticou a NRK por transmitir o documentário, afirmando que o programa não atendia aos próprios requisitos de objetividade da NRK e que tinha testemunhas e entrevistados escolhidos a dedo. A última comissão afirmou que, de vários jornalistas independentes trabalhando ao longo do tempo, a falha em encontrar evidências de uma colisão fortalece a rejeição da 'teoria Harrier'.

O pesquisador do documentário Ulf Larsstuvold afirmou que acreditava que o Parlamento estava agindo como parte do acobertamento e que a comissão havia sido secretamente instruída a ocultar qualquer evidência em apoio à 'teoria Harrier'.

Wera Dahle Jensen, que perdeu seu marido no acidente, foi a única parente mais próxima a não ter acreditado na história de Harrier. Ela afirmou após o relatório final que isso tinha sido um fardo extra e que ela não tinha sido considerada parte no caso. Ela também estava preocupada que as "histórias fantásticas" tivessem colocado o foco na segurança da aviação de lado, já que Widerøe em acidentes posteriores também não tinha uma cultura voltada para a segurança.

Jornalista do 'Dagbladet Kristoffer Egeberg' comentou que para a teoria Harrier ser verdadeira, centenas - senão milhares - de militares, policiais, governamentais e civis da aviação teriam que ficar calados. O único propósito de um encobrimento seria proteger um único piloto britânico e evitar o desconforto marginal de admitir que uma aeronave da OTAN havia voado em uma zona de exclusão aérea auto imposta dentro do território norueguês. O encobrimento teria de ser feito ao longo de duas décadas, também após o fim da Guerra Fria. 

Tanto o fabricante quanto a companhia aérea aceitaram que o acidente foi causado por uma falha mecânica. A 'teoria Harrier' é baseada em testemunhas que relembram detalhes intrincados até duas décadas após o incidente, que elas escolheram não informar às autoridades ou à comissão durante a investigação inicial.

O custo da investigação parlamentar foi de 20 milhões de coroas norueguesas. O Parlamento decidiu, em 3 de maio de 2006, conceder um pagamento 'ex gratia' aos familiares pelo ônus extra de ter uma nova comissão para examinar o caso. O governo decidiu em outubro de 2006 conceder entre 50.000 coroas e 200.000 coroas por pessoa, totalizando 8,75 milhões de coroas norueguesas.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia e ASN 

Incidente envolvendo voo da Latam entre Austrália e Nova Zelândia deixa cerca de 50 feridos

Aeronave sofreu um forte movimento durante voo devido a um 'evento técnico', segundo a companhia. Ao todo, 12 pessoas foram levadas ao hospital, sendo uma em estado grave. Passageiros relataram uma perda brusca de altitude.


Cerca de 50 pessoas ficaram feridas em um voo da Latam entre a Austrália e a Nova Zelândia nesta segunda-feira (11) depois que o avião Boeing 787-9 Dreamliner, prefixo CC-BGG, perdeu altitude subitamente, fazendo alguns tripulantes e passageiros baterem a cabeça no teto.

O voo fazia a rota entre Sydney e Santiago, com uma escala em Auckland. Durante o trecho entre a Austrália e a Nova Zelândia, passageiros relataram uma perda súbita de altitude, fazendo com que pessoas fossem lançadas ao teto da cabine, de acordo com a imprensa da Nova Zelândia.

Um avião pode mudar de altitude subitamente em razão, por exemplo, de uma turbulência ou da necessidade de descida rápida por uma descompressão. A Latam ainda não informou as causas do incidente.

Segundo a Latam, um "evento técnico" causou um forte movimento do Boeing 787 que fazia o voo. Apesar do incidente, o pouso ocorreu dentro do horário programado.

Imagem do site Flightradar24 mostra trajeto do voo LA800, da Latam, entre Sydney e Auckland; o destaque em vermelho mostra o momento em que houve indicação de uma perda brusa de altitude (Imagem: Reprodução/Flightradar24)
De acordo com o site Flightradar24, que rastreia voos comerciais, o Boeing 787 perde altitude entre 2h20 e 2h27 de voo, saindo de 41 mil pés (12.497 metros) para 40.692 pés (12.403 m) -- essa diferença, de 94 metros, é equivalente à altura de um prédio de 31 andares. Mas não há indicação, por ora, de uma queda súbita, que aconteceria em menos tempo.

"Nossos dados não mostram uma perda significativa de altitude durante o voo", diz a conta oficial do Flightradar24 na rede social X (antigo Twitter).


De acordo com o hospital Hato Hone St John, uma pessoa foi atendida em estado grave, enquanto as demais apresentaram quadro moderado ou leve.

Entre as vítimas que precisaram ser levadas ao hospital estão três tripulantes. Sete ambulâncias e outros veículos auxiliares foram até a pista do aeroporto para prestar socorro aos feridos.

Ambulâncias respondem a um incidente no Aeroporto Internacional de Auckland (Dean Purcell/AP)
A Latam afirma que todos os passageiros e tripulantes tiveram assistência imediata e foram avaliados pela equipe médica do aeroporto.

Por causa do ocorrido, o voo até Santiago acabou sendo cancelado. Uma nova viagem foi marcada para terça-feira (12). A empresa disse que fornecerá hospedagem e alimentação aos passageiros.


Até a publicação desta reportagem outros detalhes sobre as circunstâncias do incidente não haviam sido divulgados. Também não há informações sobre o número total e nacionalidade dos passageiros.

A Latam informou que lamenta os transtornos e prejuízos que a situação pode ter ocasionado e reforçou o compromisso com a segurança. Leia a nota a seguir.

Nota da Latam

"O Grupo LATAM Airlines informa que o voo LA800, que opera hoje a rota Sydney - Auckland, teve um evento técnico durante o voo que causou um forte movimento.

O avião pousou no aeroporto de Auckland conforme programado. Como resultado do incidente, alguns passageiros e tripulantes de cabine foram afetados. Eles receberam assistência imediata e foram avaliados ou tratados pela equipe médica no aeroporto, conforme necessário.

A LATAM lamenta os transtornos e prejuízos que esta situação possa ter causado aos seus passageiros e reitera o seu compromisso com a segurança como prioridade no âmbito dos seus padrões operacionais."

Via g1, ASN e CNN 

Um breve guia para sinais manuais em uma pista de aeroporto

Como os pilotos e o pessoal de terra se comunicam sem fones de ouvido.

(Foto: Skycolors/Shutterstock)
Os pilotos de avião quase sempre conversam com a tripulação de terra usando fones de ouvido durante o pushback. Por outro lado, a aviação geral e os jatos particulares geralmente não recuam nos portões, e muitos aviões menores não conseguem conectar os fones de ouvido, que permitem a comunicação direta. Mesmo no nível das companhias aéreas, os fones de ouvido nem sempre funcionam. Por estas razões, os pilotos e os trabalhadores em terra partilham um método comunicativo padrão de utilização de sinais manuais. Vamos falar sobre a importância dos gestos de ordenação.

Taxi in


Sinais manuais, também conhecidos como empacotamento, são usados ​​durante a entrada, o empurrão , a partida do motor e a saída. Os sinais manuais mais comuns são aqueles usados ​​para direcionar uma aeronave que chega até seu estacionamento. Organizar uma aeronave que chega requer nada menos que dois agentes de terra: um no topo da fila de entrada e outro no final do "envelope de segurança". O último marshaller (fiscal de pista ou sinalizador de pátio) mencionado está lá para garantir que a área de estacionamento esteja livre de obstruções e para garantir a folga das pontas das asas durante o estacionamento. Se as circunstâncias estiverem satisfeitas, eles seguram um bastão acima da cabeça e outro paralelo ao chão. Eles podem sinalizar aos pilotos para pararem de taxiar a aeronave cruzando seus bastões.

(Foto: PedkoAnton/Shutterstock)
O marshaller no topo da linha de entrada está estrategicamente posicionado para permanecer à vista do piloto até que o avião pare. Eles fornecem instruções direcionais para ajudar os pilotos a seguirem em frente na linha. Seus sinais de orientação são intuitivos – eles movem ou gesticulam com um bastão na direção em que desejam que o nariz gire para corrigir a linha de introdução. À medida que a aeronave se aproxima da linha de estacionamento designada, o fiscal levanta as mãos sobre a cabeça e lentamente junta os braços para medir a distância restante. O avião deve ficar parado assim que os braços cruzarem a cabeça com os bastões nas mãos. Embora este tipo de triagem ainda seja uma prática comum na maioria dos lugares, alguns aeroportos utilizam indicadores de estacionamento automatizados.

Push and start


Os pushbacks geralmente exigem uma equipe de quatro pessoas: um motorista de rebocador, um marshaller líder e dois wingwalkers. Sinais manuais são usados ​​quando o motorista ou o comandante líder não está em contato de voz com os pilotos. Para iniciar um pushback, os pilotos indicam que os freios são liberados mostrando o punho cerrado e abrindo as mãos com a palma para fora ou afastando dois punhos cerrados um do outro. A equipe de terra então indica a remoção dos calços movendo as mãos de lado para fora e para cima.

(Foto: JetKat/Shutterstock)
Os pilotos indicam a direção que desejam que o nariz fique, tocando-o com um dedo e apontando na direção desejada. Um sinal de positivo é então entendido como o sinal para iniciar o empurrão. Durante ou após o empurrão, a equipe de terra pode sinalizar para ligar os motores apontando para o motor e girando o bastão acima da cabeça em um movimento circular. Alternativamente, eles podem indicar qual número do motor pode ser ligado, levantando tantos dedos e repetindo o movimento circular do bastão. A equipe de terra indica para acionar o freio de estacionamento após o empurrão, juntando as mãos ou bastões, e os pilotos respondem em parte assim que o fizerem. Depois que o rebocador é desconectado e o pessoal sai do avião, um marshall aponta seu bastão na direção em que a aeronave iniciará o táxi. Ondas (ou arcos no Japão) também costumam ser trocadas.

Hands-on


Existem outros sinais manuais sem movimento, como conectar a energia terrestre (trazendo a mão espalmada com os dedos primeiro em direção à palma aberta) ou conectar o tubo amarelo do ar condicionado à parte inferior do avião (trazendo uma mão em forma de máscara em direção o nariz e a boca). Sinais manuais para pushback não são tão comuns em operações aéreas, então as equipes de terra e os pilotos normalmente informam o procedimento antes de executá-lo. Por outro lado (trocadilho intencional), a aviação geral e os pilotos privados podem usar sinais manuais para iniciar e taxiar com muito mais regularidade. Independentemente do tipo de operação, os sinais manuais transmitem mensagens essenciais entre a cabine de comando e a rampa.

Com informações de Simple Flying

Quais mecanismos permitem que as aeronaves dirijam durante o taxiamento no solo?

Como um avião se move antes de decolar.

(Foto: Jaromir Chalobala/Shutterstock.com)
Aviões, grandes e pequenos, são obras de engenharia incríveis, permitindo que os humanos viajem de um lugar para outro com mais rapidez e segurança do que qualquer outro meio de transporte. Como muitos leitores sabem, os testes exigidos antes de uma aeronave ser certificada para voar com passageiros são extensos. No entanto, por esta razão, podemos descansar tranquilamente a bordo enquanto somos transportados para praticamente qualquer destino que possamos imaginar. Mas como exatamente uma aeronave se move antes mesmo de tentar subir aos céus?

A resistência inicial


À medida que uma aeronave sai do portão do aeroporto, ocorre uma orquestra de eventos envolvendo o(s) piloto(s), o motorista do rebocador e os wing walkers Existem vários motivos pelos quais um avião comercial não usaria o empuxo reverso para recuar , mas geralmente, um poderoso rebocador é usado para mover a aeronave para trás. Aqui, a comunicação por sinais manuais é essencial para garantir que o rebocador gire corretamente para colocar o nariz na direção desejada pelos pilotos.

Durante o táxi


Assim que o avião estiver pronto para manobrar até a pista, o piloto terá várias ferramentas à disposição. Alguns deles podem depender do tipo de aeronave, já que um pequeno avião de aviação geral, um grande avião comercial e um caça a jato são todos projetados para finalidades diferentes.

Um Airbus A321XLR taxiando em Hamburgo (Foto: Wirestock Creators/Shutterstock)
Localizado nas nadadeiras traseiras da aeronave está um leme, uma superfície de controle que permite a rotação em torno do eixo vertical. Como explica o Flightradar24, isso é semelhante a girar o volante de um carro para a esquerda ou para a direita e, como tal, o leme pode ser uma ferramenta útil, com algumas aeronaves dependendo principalmente dele.

A frenagem diferencial e o empuxo referem-se à aplicação de uma ação específica em um lado da aeronave para afetar seu movimento. O primeiro auxilia principalmente aeronaves com trem de pouso tipo triciclo com freios em ambos os lados, que podem ser operados de forma independente. Ao frear de um lado, o piloto pode executar curvas em torno do eixo normal do avião, embora só deva ser usado quando os motores estão com potência baixa ou em marcha lenta para não desgastar os freios.

O empuxo diferencial pode ser usado em aeronaves que possuem motores montados nas asas em ambos os lados, como um avião bimotor a pistão ou turboélice. Ao aplicar maior empuxo em um motor do que no outro, o piloto pode dirigir a aeronave com eficácia em uma direção específica.

(Foto: Alexandre Rotenburg/Shutterstock)
Alguns jatos executivos menores e aeronaves a hélice da aviação geral podem tirar proveito da “direção da roda do nariz”, onde a roda do nariz é conectada aos pedais do leme. Outros aviões podem ter uma roda de nariz que pode girar, mas não tem conexão direta com os pedais do leme, então os pilotos podem optar por usar a frenagem diferencial para fazer a roda e, portanto, a aeronave se moverem.

Grandes aeronaves comerciais utilizam um método de manobra denominado direção do leme. Uma pequena roda, chamada leme, pode controlar a direção que o nariz aponta à medida que a aeronave avança. Isso facilita uma experiência de conversão particularmente suave e controlada, incluindo curvas fechadas em pistas de táxi. Como menciona o Flightradar24, muitas companhias aéreas possuem regulamentações relativas ao leme, limitando ou proibindo seu uso em velocidades mais altas em solo.

Por último, especialmente para caças e um número limitado de aviões civis, a vetorização de empuxo é um método de dirigir uma aeronave no solo. É aqui que o piloto pode controlar os bicos do motor para mudar a direção do escapamento, permitindo manobras no solo e no ar, o que é muito útil para curvas fechadas e ajustes rápidos de direção.

Velocidades de táxi: as regras, procedimentos e práticas que influenciam o táxi

Rápido ou lento, longo ou curto: há uma razão para tudo isso.

(Foto: Jaromir Chalabala/Shutterstock)
Cada táxi que sai e entra é único. Rápido ou lento, longo ou curto, suave ou sacudido, toda experiência de táxi é influenciada por regras, condições climáticas, atrasos e preferências do piloto. Muitas coisas determinam a velocidade de um táxi aéreo, e este artigo tem como objetivo fornecer informações sobre muitas delas. Aqui estão alguns insights sobre taxiamento.

O taxiamento geralmente é responsabilidade do capitão. Todas as companhias aéreas de passageiros nos EUA usam procedimentos de táxi exclusivos para o capitão. Em contraste, algumas companhias aéreas em todo o mundo permitem que os primeiros oficiais taxiem se também forem os pilotos que voam nesse trecho. Uma cana do leme deve ser instalada no lado do piloto na cabine de comando para taxiar um avião comercial. A cana controla a direção da roda do nariz enquanto está no solo e pode ser usada para girar em ângulos superiores a 70 graus em algumas aeronaves. Os jatos de corpo estreito geralmente só têm lemes instalados no lado do capitão da cabine de comando, mas muitos widebodies, como o Boeing 777 e o Airbus A350, têm lemes em ambos os lados dos pilotos.

Um E-Jet da Embraer com a roda do nariz girada (Foto: aappp/Shutterstock)
As velocidades dos táxis, como muitas outras estipulações, são exigidas pela empresa. Como referência geral, a velocidade máxima de táxi em linha reta é de 30 nós, enquanto uma curva não pode exceder 10 nós. Curvas mais fechadas exigem velocidades ainda mais lentas. As companhias aéreas impõem velocidades mais lentas durante condições de baixa visibilidade, chuva e gelo. Os aviões comerciais podem taxiar facilmente com um único motor, mas é melhor usar dois motores quando as pistas de táxi têm gelo ou lama para melhorar a controlabilidade.

Os indicadores de velocidade nos monitores primários de voo dos pilotos não funcionam de forma confiável até que o avião esteja viajando entre 30 e 40 nós. Os pilotos usam velocidades de solo derivadas de GPS, uma vez que as velocidades máximas de táxi não podem ser medidas usando indicadores de velocidade no ar. Essas velocidades geralmente são mostradas no canto da tela de voo. Com a experiência, os pilotos têm uma boa noção de quão rápido estão indo sem fazer referência à velocidade de solo do GPS . É como dirigir um carro: leva um pouco de tempo para sentir como é um veículo novo, mas depois de um tempo, você pode saber a que velocidade está indo sem olhar para o velocímetro.

Não é nenhum segredo que algumas companhias aéreas têm a reputação de taxiar mais rápido do que a velocidade média percebida. Embora esta conjectura seja difícil de quantificar, é lógico que as companhias aéreas que operam mais voos curtos com os seus aviões tenham mais hipóteses de chegar a tempo se conseguirem taxiar de forma eficiente.

Um Boeing 737 MAX8 da Southwest (Foto: Southwest Airlines)
A eficiência do taxiamento é destacada como a forma número um de ganhar tempo. É simples entender que uma tripulação que voa cinco dias por dia passa muito mais tempo no solo do que uma tripulação que voa com uma ou duas pernas. A velocidade do táxi tem, portanto, um impacto muito mais significativo no desempenho operacional da pontualidade.

Independentemente da companhia aérea em que você está (e da reputação percebida em relação à velocidade dos táxis), algumas coisas podem atrasar os pilotos. Os pilotos podem taxiar mais lentamente quando há um táxi muito curto do portão até a pista de embarque por alguns motivos. Primeiro, são necessários dois a três minutos entre a conclusão da partida do motor e o ajuste da potência de decolagem para permitir o aquecimento do motor. Além disso, os pilotos devem dar aos comissários de bordo tempo suficiente para completarem as instruções, realizarem verificações de segurança e ocuparem seus assentos.

Outra razão pela qual os pilotos podem taxiar mais lentamente é se eles tiverem um horário de decolagem de muitos minutos ou se seu portão estiver ocupado na chegada . Enquanto não houver mais ninguém atrás deles, os pilotos taxiarão mais lentamente, pois não faz sentido correr para a área de espera da pista apenas para ficar estagnados por ainda mais tempo. As pessoas se sentem melhor quando estão em movimento em um avião, em vez de paradas, e um táxi mais lento ajuda muitos passageiros a se sentirem um pouco mais à vontade.

Existem limites rígidos e rápidos que regulam as velocidades de táxi, mas o piloto que está conduzindo o táxi tem maior influência em sua experiência. Alguns pilotos vão o mais rápido possível, independentemente da situação, outros taxiam bem abaixo dos limites e muitos outros ficam em algum ponto intermediário. Novamente, taxiar é comparável a dirigir um carro. Regras são regras, mas cada um possui técnicas únicas para segui-las.

Com informações do Simple Flying

domingo, 10 de março de 2024

Voo Air Canada 143 - A incrível história do 'Planador Gimli'


Já se passaram quase 38 anos desde o lendário evento do planador Gimli. Devido a uma combinação de problemas técnicos e erro humano, um Boeing 767 da Air Canada ficou sem combustível a 41.000 pés. Os pilotos conseguiram deslizar o avião até um aeródromo desativado transformado em pista de corrida de arrancada. Milagrosamente, eles pousaram sem nenhum ferimento grave aos passageiros ou tripulantes. Até a própria aeronave passou a servir mais 25 anos na companhia aérea.

Alarmes duplos a 41.000 pés


Em 23 de julho de 1983, o voo 143 da Air Canada decolou de Montreal, Québec, rumo a Edmonton, Alberta, via Ottawa. O voo foi operado por um Boeing 767-200 com cinco meses de idade e registro C-GAUN. A bordo estavam 61 passageiros e oito tripulantes.

O 'Planador Gimli' era um Boeing 767 daAir Canada (Foto: Aero Icarus via Wikimedia Commons)
Pouco depois das 20h, enquanto a aeronave estava navegando a 41.000 pés sobre Red Lake, Ontário, a tripulação da cabine recebeu um aviso de baixa pressão de combustível na bomba de combustível esquerda.

Os pilotos primeiro presumiram que a bomba de combustível havia falhado e desligaram o alarme, pois o Flight Management Computer (FMC) disse que deveria haver combustível suficiente. No entanto, em poucos instantes, o alarme da bomba de combustível certa também soou. A tripulação decidiu então desviar a aeronave para Winnipeg, a 120 milhas de distância.

Quando começaram a descida, o motor esquerdo falhou em questão de minutos. Assim que os planos para um pouso com um motor foram feitos, um estrondo pôde ser ouvido e o alarme da cabine começou a soar com "todos os motores desligados". O avião perdeu toda a potência.

Instrumentos perdidos


Como se voar sem motores não fosse ruim o suficiente, o Boeing 767 foi um dos primeiros jatos com um sistema de instrumento eletrônico de voo movido por seus motores. Isso significava que, quando os motores pararam de funcionar, todos os instrumentos apagaram.

O sistema eletrônico de instrumentos de voo escureceu quando os motores
perderam a potência (Foto: Stirling Day via Wikimedia Commons)
Felizmente, a turbina de ar ram (RAT) foi suficiente para alimentar os instrumentos de vôo de emergência suficientes para pousar a aeronave. Também fornecia algum suporte hidráulico para que a tripulação pudesse manobrar o avião, o que não era possível apenas pela força muscular.

No entanto, isso não incluía um indicador de velocidade vertical que pudesse dar uma ideia de quão longe o avião poderia planar. Gimli, uma antiga Base da Força Aérea, estava a 20 milhas mais perto da localização da aeronave do que Winnipeg.

Piloto de planador experiente na cabine


O capitão era Robin 'Bob' Pearson, 48 anos, com 15.000 horas de voo. Com ele na cabine estava o primeiro oficial Maurice Quintal, de 36 anos, com 7.000 horas de voo. Por um golpe de sorte, o capitão Pearson também era um piloto de planador estabelecido, e o primeiro oficial Quintal havia treinado em Gimli enquanto servia no exército.

Abriram caminho para a pista


Embora a base desativada não tivesse serviços de emergência, foi considerada a opção mais segura. No entanto, nenhum dos pilotos sabia que a base havia sido transformada em uma pista de corrida de arrancada - com uma grande corrida marcada para aquele mesmo dia.

Os pilotos não sabiam que Gimli era agora uma pista de corrida de arrancada
(Foto: Vince Pakahala via Wikimedia Commons)
Os dois pesados ​​trens de pouso foram deixados cair e travados no lugar usando a gravidade, mas o trem de pouso mais leve só foi estendido para baixo. Simultaneamente, a tripulação percebeu que estava chegando muito rápido e muito alto em direção à 'pista'. 

Eles optaram por escorregar para reduzir a altitude e a velocidade, conforme descrito no relatório do Conselho Canadense de Investigação: “Ao se aproximarem de Gimli, o capitão Pearson e o primeiro oficial Quintal discutiram a possibilidade de executar uma derrapagem para perder altura e velocidade e pousar próximo ao início da pista. Isso o capitão fez na aproximação final e pousou a 800 pés da soleira.”

A engrenagem do nariz cedeu imediatamente quando o avião pousou. Todos a bordo sobreviveram. No entanto, dez pessoas sofreram ferimentos leves durante a evacuação. Mais tarde, os investigadores descobriram que havia apenas 64 litros de combustível nos tanques - mas nenhum vazamento.

Então, como isso pode ter acontecido? Uma combinação de questões técnicas, desafios organizacionais, erro humano - e o sistema métrico. Em primeiro lugar, houve problemas com o Sistema de Indicação de Quantidade de Combustível (FQIS) do avião. O Boeing 767-200 tinha um canal de processamento duplo, o que significava que o outro poderia operar por conta própria se um falhasse. No entanto, isso exigia que a quantidade fosse verificada no solo por uma boa e velha medição com flutuador.

Fios cruzados


Após um voo no dia anterior ao incidente, um engenheiro em Edmonton fez uma verificação de serviço no FQIS da C-GAUN, de acordo com um boletim emitido pela Boeing. O sistema falhou, o que fez com que os medidores de combustível ficassem em branco. Com base na experiência de um incidente semelhante com a mesma aeronave um mês antes, o engenheiro, em vez de peças de reposição, corrigiu o problema desativando o segundo canal e marcando o disjuntor.

O 767 chegou com a frota da Air Canada no momento em que a aviação do país estava
passando do sistema imperial para o métrico (Foto: Getty Images)
Ele informou ao piloto que voava de Edmonton no dia seguinte que o combustível precisaria ser medido com um flutuador. No entanto, houve um mal-entendido e as informações chegaram a Montreal e a mudança de tripulação em um estado altamente confuso.

Sistema ligado novamente


Para complicar ainda mais, enquanto o avião estava no solo em Montreal, um técnico entrou na cabine e reativou o segundo canal do FQIS. Enquanto isso, ele se distraiu com o tanque de combustível do lado de fora e nunca removeu a etiqueta do disjuntor. Isso faz com que os medidores de combustível permaneçam completamente em branco.

Isso não foi tudo o que conspirou para causar o incidente do Planador Gimli. Qualquer pessoa que trabalhe internacionalmente às vezes se depara com o aborrecimento de converter entre medidas imperiais e métricas. Embora, muito raramente, tenha significado pôr em perigo cerca de cem vidas.

O C-GAUN teve uma longa carreira na Air Canada e se aposentou em 2008
(Foto: Altair78 via Wikimedia Commons)

Transição de medição


O avião acabara de ser entregue à Air Canada das instalações da Boeing em Everett, quatro meses antes. Enquanto isso, o tipo em si só havia entrado em serviço dez meses antes, e o C-GAUN foi o 47º exemplar a sair da linha de montagem final.

Foi a primeira aeronave da frota da Air Canada a usar quilogramas nos medidores de combustível, e as medidas precisaram ser inseridas em kg/L. No entanto, o abastecedor que verificou a alavanca do flutuador relatou a densidade em libras/L, pois esse ainda era o procedimento para outras aeronaves da Air Canada.

A tripulação da cabine então inseriu o valor no FMC sem recalculá-lo para os valores métricos. Portanto, em vez de abastecer os 20.088 litros de combustível necessários para o voo de volta a Edmonton, o avião partiu com pouco menos de 5.000 litros - cerca de metade do necessário para chegar ao destino. O capitão repetiu os mesmos problemas de conversão depois de outro teste com flutuador durante uma escala em Ottawa.

Pilotos premiados


Dois anos após o incidente, os pilotos receberam o primeiro Diploma da Fédération Aéronautique Internationale de Excelência em Aeronaves.

O "Planador Gimli" foi retirado para o deserto de Mojave em 2008 (Foto: Ian Abbott via Flickr)
O C-GAUN foi remendado em dois dias e depois voou para Winnipeg para reparos completos. Ele voltou ao serviço com a companhia aérea e continuou operando até 2008, quando foi retirado de serviço e posteriormente armazenado e parcialmente sucateado no espaçoporto de Mojave.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Vídeo: "O Maior Avião a Hélice do Mundo"


Ele é o maior avião a hélice já colocado em serviço! São 64,40m de envergadura e 57,90m de comprimento! Pode decolar com um peso total de até 250 toneladas!!! Um legítimo gigante, com quatro dos mais potentes motores turboélices já construídos, cada um acionando duas hélices contra-rotativas! E, mesmo com esse tamanho todo, voa a 740km/h e consegue decolar e pousar em pistas de qualquer tipo, em apenas 1.500m! Quem é esse gigante e qual a sua história?

Aconteceu em 10 de março de 2019: Voo Ethiopian Airlines 302 - Queda de Boeing 737 MAX deixa 157 mortos


O voo 302 da Ethiopian Airlines foi um voo regular de passageiros do Aeroporto Internacional Addis Ababa Bole, na Etiópia, para o Aeroporto Internacional Jomo Kenyatta, em Nairóbi, no Quênia. 

Em 10 de março de 2019, a aeronave Boeing 737 MAX 8 que operava o voo caiu perto da cidade de Bishoftu seis minutos após a decolagem , matando todas as 157 pessoas a bordo. A causa do acidente está sob investigação.

O voo 302 é o acidente mais mortal envolvendo uma aeronave da Ethiopian Airlines até o momento, superando o sequestro fatal do voo 961, resultando em um acidente perto das Comores em 1996. É também o acidente de aeronave mais mortal que ocorreu na Etiópia, ultrapassando a queda de um Antonov An-26 da Força Aérea da Etiópia em 1982, que matou 73.

O modelo Boeing 737 MAX 8, voou pela primeira vez em 29 de Janeiro de 2016 e entrou em serviço em 2017, tornando-se uma das mais novas aeronaves em Boeing ofertas avião comercial 's, ea mais recente geração do Boeing 737. 

Em fevereiro de 2019, 376 aeronaves deste modelo foram produzidas e uma outra caiu, Lion Air Flight 610 na Indonésia em outubro de 2018. Após o acidente, o 737 A série MAX de aeronaves foi aterrada em todo o mundo por várias companhias aéreas e órgãos reguladores do governo em todo o mundo.

Aeronave



A aeronave era o Boeing 737 MAX 8, prefixo ET-AVJ, da Ethiopian Airlines (foto acima), número de série do fabricante 62450 (número de construção 7243), equipado com dois motores CFM International LEAP -1B. A aeronave foi fabricada em outubro de 2018 e entregue em 15 de novembro de 2018, com cerca de quatro meses de idade na época do acidente.

Tripulação


O capitão do avião era Yared Getachew, 29, que voava com a companhia aérea há quase nove anos e registrou um total de 8.122 horas de voo, incluindo 4.120 horas no Boeing 737. Ele tinha sido um Capitão do Boeing 737-800 desde novembro de 2017, e Boeing 737 MAX desde julho de 2018. 

Na época do acidente, ele era o capitão mais jovem da companhia aérea. O primeiro oficial, Ahmed Nur Mohammod Nur, 25, era um graduado recente da academia da companhia aérea com 361 horas de voo registradas, incluindo 207 horas no Boeing 737.

Acidente


O voo 302 foi um voo internacional regular de passageiros de Adis Abeba a Nairóbi. A aeronave decolou de Addis Abeba às 08h38 hora local (05h38 UTC) com 149 passageiros e 8 tripulantes a bordo. 


Um minuto após o início do voo, o primeiro oficial, seguindo as instruções do capitão, relatou um problema de "controle de voo" à torre de controle. Aos dois minutos de voo, com o sistema MCAS do avião ficando desativado, o avião foi lançado em um mergulho em direção ao solo.

Os pilotos lutaram para controlá-lo e conseguiram evitar que o nariz mergulhasse ainda mais, mas o avião continuou a perder altitude. O MCAS então foi ativado novamente, deixando o nariz ainda mais abaixado. Os pilotos então acionaram um par de interruptores para desativar o sistema de compensação elétrica, que também desativou o software MCAS. 

No entanto, ao desligar o sistema de compensação elétrica, eles também desligaram sua capacidade de compensar o estabilizador em uma posição neutra com a chave elétrica localizada em seus garfos. A única outra maneira possível de mover o estabilizador seria girando a roda manualmente, mas porque o estabilizador estava localizado em frente ao elevador, fortes forças aerodinâmicas o pressionavam. 

Como os pilotos inadvertidamente deixaram os motores com potência total de decolagem, o que fez com que o avião acelerasse em alta velocidade, houve mais pressão no estabilizador. As tentativas dos pilotos de girar manualmente o estabilizador de volta à posição falharam. 

Após três minutos de voo, com a aeronave perdendo altitude e acelerando além dos limites de segurança, o comandante instruiu o primeiro oficial a solicitar permissão ao controle de tráfego aéreo para retornar ao aeroporto. A permissão foi concedida e os controladores de tráfego aéreo desviaram outros voos que se aproximavam. 

Seguindo as instruções do controle de tráfego aéreo, eles viraram a aeronave para o leste, e ela rolou para a direita. A asa direita veio a apontar para baixo à medida que a curva se tornava mais acentuada. 

Às 8h43, tendo lutado para evitar que o nariz do avião mergulhasse mais puxando manualmente o manche, o capitão pediu ao primeiro oficial para ajudá-lo e ligou o sistema de compensação elétrico na esperança de que isso permitiria que ele colocasse o estabilizador de volta em equilíbrio neutro. 

No entanto, ao ligar o sistema de compensação novamente, ele também reativou o sistema MCAS, o que empurrou o nariz ainda mais para baixo. O capitão e o primeiro oficial tentaram levantar o nariz puxando manualmente os manches, mas a aeronave continuou a mergulhar em direção ao solo.

A aeronave desapareceu das telas do radar e caiu às 08h44, seis minutos após a decolagem.


Dados de rastreamento de voo mostraram que a altitude da aeronave e a taxa de subida e descida estavam flutuando. Várias testemunhas afirmaram que o avião deixou uma trilha de "fumaça branca" e fez ruídos estranhos antes de cair. A aeronave impactou o solo a cerca de 700 milhas por hora (1.100 km/h). Não houve sobreviventes entre as 157 pessoas a bordo.

O Boeing 737 caiu em Woreda (distrito) de Gimbichu, região de Oromia, em um campo agrícola perto da cidade de Bishoftu, 62 quilômetros a sudeste do Aeroporto Internacional de Bole, na Etiópia. 


O impacto criou uma cratera com cerca de 90 pés (27 m) de largura e 120 pés (37 m) de comprimento, e os destroços foram empurrados até 30 pés (9,1 m) de profundidade no solo. Os destroços foram espalhados pelo campo junto com objetos pessoais e partes de corpos.

Resposta de emergência


Pouco depois do acidente, a polícia e uma equipe de combate a incêndios de uma base da Força Aérea Etíope próxima chegaram e extinguiram os incêndios causados ​​pelo acidente. A polícia isolou o local e o pessoal da Cruz Vermelha Etíope e investigadores de acidentes aéreos entraram em ação. 

Junto com os moradores locais, eles vasculharam os destroços, recuperando pedaços da aeronave, objetos pessoais e restos humanos. Caminhões e escavadeiras foram trazidos para ajudar na limpeza do local do acidente. 


Os restos humanos encontrados foram ensacados e levados para o Aeroporto Internacional de Bole para armazenamento em unidades de refrigeração normalmente usadas para armazenar rosas destinadas à exportação, antes de serem levados para o Hospital St. Paul, em Addis Abeba, para armazenamento enquanto se aguarda a identificação. 

O pessoal da Interpol e da Blake Emergency Services, uma empresa privada britânica de resposta a desastres contratada pelo governo etíope, chegou para coletar tecido humano para testes de DNA, e uma equipe forense da Polícia de Israel também chegou para ajudar na identificação dos restos mortais das duas vítimas israelenses do acidente.

A empresa chinesa de construção ferroviária CRSG, mais tarde acompanhada por outra empresa de construção, a CCCC, trouxe equipamentos de grande escala, incluindo escavadeiras e caminhões. 


Eles recuperaram as duas caixas pretas no dia 11 de março, com a primeira sendo encontrada às 9h e o segundo gravador de voo às 13h, respectivamente. As caixas pretas foram entregues à Ethiopian Airlines e enviadas a Paris para inspeção pela BEA, a agência francesa de investigação de acidentes de aviação.

Passageiros


A companhia aérea afirmou que os 149 passageiros do voo eram de 35 nacionalidades diferentes. A identificação positiva das vítimas do acidente foi anunciada em 13 de setembro de 2019. Quase uma centena de especialistas em identificação de vítimas de desastres (DVI) de 14 países apoiaram a missão da Equipe de Resposta a Incidentes da Interpol (IRT).


Todos os passageiros e tripulantes a bordo, 157 no total, morreram no acidente. Muitos dos passageiros estavam viajando para Nairóbi para participar da quarta sessão da Assembleia do Meio Ambiente das Nações Unidas. 

Um total de 22 pessoas afiliadas às Nações Unidas (ONU) foram mortas, incluindo sete funcionários do Programa Mundial de Alimentos, juntamente com funcionários do escritório das Nações Unidas em Nairóbi, da União Internacional de Telecomunicações e do escritório da Alta das Nações Unidas Comissário para os Refugiados. 

O Vice-Diretor de Comunicações da UNESCO, um diplomata nigeriano aposentado e alto funcionário da ONU que trabalhava em nome do UNITAR e um funcionário do escritório da Organização Internacional para as Migrações no Sudão também estavam entre os mortos.

A companhia aérea afirmou que um passageiro tinha um laissez-passer das Nações Unidas. Tanto Adis Abeba quanto Nairóbi têm escritórios de agências da ONU, e Adis Abeba tem a sede da União Africana. 


A rota Adis Abeba-Nairóbi também é popular entre turistas e empresários. Funcionário da Cruz Vermelha da Noruega, estagiário britânico no Norwegian Refugee Council, um agente ambiental da Associação de Operadores de Cruzeiros da Expedição ao Ártico, quatro funcionários da Catholic Relief Services e um oficial da polícia de Uganda em missão com a força de paz da União Africana na Somália também foram mortos.

Vítimas notáveis ​​a bordo incluíram o arqueólogo italiano e Conselheiro para o Patrimônio Cultural da Sicília, Sebastiano Tusa, e o acadêmico nigeriano-canadense Pius Adesanmi. O político eslovaco Anton Hrnko perdeu sua esposa e dois filhos no acidente. Outras vítimas notáveis ​​incluem Christine Alalo, uma comissária da polícia de Uganda e mantenedora da paz servindo na Missão da União Africana na Somália.

Respostas


O primeiro-ministro da Etiópia, Abiy Ahmed, ofereceu suas condolências às famílias das vítimas. O CEO da Ethiopian Airlines, Tewolde Gebremariam, visitou o local do acidente, confirmou que não havia sobreviventes e expressou simpatia e condolências. A Boeing emitiu uma declaração de condolências.

O parlamento etíope declarou o dia 11 de março como o dia de luto nacional. Durante a abertura da quarta Assembleia Ambiental das Nações Unidas em Nairóbi, um minuto de silêncio foi observado em solidariedade às vítimas. 


O presidente Muhammadu Buhari da Nigéria, em sua mensagem de condolências em nome do governo e do povo da Nigéria, estendeu suas sinceras condolências ao primeiro-ministro Abiy Ahmed da Etiópia, ao povo da Etiópia, Quênia, Canadá, China e todas as outras nações que perdeu cidadãos no acidente.

Em 11 de março, a FAA comentou que o modelo Boeing 737 Max 8 estava em condições de aeronavegabilidade. No entanto, devido a preocupações com a operação da aeronave, a FAA ordenou que a Boeing implementasse mudanças no projeto a partir de abril. Ele afirmou que a Boeing "planejava atualizar os requisitos de treinamento e os manuais da tripulação de voo em resposta à mudança de projeto" do Sistema de Aumento das Características de Manobra (MCAS) da aeronave . 

As mudanças também incluiriam melhorias na ativação do MCAS e no ângulo do sinal de ataque. A Boeing afirmou que a atualização foi desenvolvida em resposta ao acidente da Lion Air, mas não o vinculou ao acidente da Ethiopian Airlines.

Em 19 de março, a Secretária de Transporte dos EUA, Elaine L. Chao, enviou um memorando ao Inspetor-Geral dos EUA pedindo-lhe que "procedesse com uma auditoria para compilar um histórico factual detalhado e objetivo das atividades que resultaram na certificação do Boeing Aeronave 737-MAX 8."

A Flight International comentou que o acidente provavelmente aumentaria a inquietação sobre o Boeing 737 MAX após o acidente do Lion Air Flight 610 em outubro de 2018, que também ocorreu logo após a decolagem e matou todos a bordo. 

As ações da Boeing caíram 11% no fim de semana; em 23 de março, a Boeing havia perdido mais de US $ 40 bilhões em valor de mercado, caindo cerca de 14% desde o acidente.

Aterramento dos MAX 8


Após o acidente da Ethiopian Airlines, a China e a maioria das outras autoridades da aviação precederam a Administração Federal de Aviação dos Estados Unidos (FAA) ao aterrar o avião por causa dos riscos de segurança percebidos. 

A FAA emitiu uma Notificação de Aeronavegabilidade Contínua para a comunidade internacional em 11 de março e resistiu à pressão dos legisladores dos EUA para aterrar a aeronave. O CEO da Boeing, Dennis Muilenburg, ligou para o presidente Donald Trump em 12 de março para garantir que o avião estava seguro. 

Em 13 de março de 2019, a FAA encontrou semelhanças entre os dois acidentes e aterrou o avião. Cerca de 30 aeronaves MAX estavam voando no espaço aéreo dos Estados Unidos na época e foram autorizadas a chegar a seus destinos.

Boeing's 737 MAX de várias empresas aterrados em 13.03.2019
Em 18 de março, os reguladores aterraram todas as 387 aeronaves MAX em serviço com 59 companhias aéreas em todo o mundo e fazendo 8.600 voos por semana. Vários voos de balsa foram operados com flaps estendidos para contornar a ativação do MCAS.

O encalhe posteriormente se tornou o mais longo de um avião americano. Em janeiro de 2020, outras 400 aeronaves recém-fabricadas aguardavam entrega às companhias aéreas enquanto a aeronave retornava ao serviço.

Investigação


A Autoridade de Aviação Civil da Etiópia (ECAA), a agência responsável por investigar acidentes de aviação civil na Etiópia, estava investigando. A fabricante de aeronaves Boeing afirmou que estava preparada para trabalhar com o National Transportation Safety Board dos Estados Unidos e auxiliar a Ethiopian Airlines. A Administração Federal de Aviação dos Estados Unidos também ajudaria na investigação.


Tanto o gravador de voz da cabine quanto o gravador de dados de voo foram recuperados do local do acidente em 11 de março. A agência francesa de investigação de acidentes de aviação BEA anunciou que iria analisar os gravadores de voo do voo. O BEA recebeu os gravadores de voo em 14 de março. 

Em 17 de março, o ministro dos transportes da Etiópia, Dagmawit Moges, anunciou que "a caixa preta foi encontrada em boas condições, o que nos permitiu extrair quase todos os dados de dentro" e que os dados preliminares recuperados do gravador de dados de voo mostram um clara semelhança com os do Lion Air Flight 610, que caiu na Indonésia.

Em 13 de março de 2019, a FAA anunciou que novas evidências encontradas no local do acidente e dados de satélite no voo 302 sugeriam que a aeronave pode ter sofrido do mesmo problema que a aeronave que opera o voo Lion Air 610 sofreu. 

Estabilizador genérico ilustrado. O MAX usa um estabilizador ajustável, movido por um
parafuso de macaco, para fornecer as forças de compensação de passo necessárias 
Os investigadores descobriram que o parafuso de macaco que controlava o ângulo de inclinação do estabilizador horizontal do voo 302 estava na posição totalmente "nariz para baixo". A descoberta sugeriu que, no momento do acidente, o voo 302 estava configurado para mergulhar, semelhante ao Lion Air Flight 610. 

Devido a essa descoberta, alguns especialistas na Indonésia sugeriram que o Comitê Nacional de Segurança de Transporte da Indonésia (NTSC) deveria cooperar com a equipe de investigação do voo 302. 

Mais tarde na noite, o NTSC ofereceu assistência à equipe de investigação do voo 302, declarando que o comitê e o Ministério dos Transportes da Indonésia enviariam investigadores e representantes do governo para ajudar na investigação do acidente.

Relatório preliminar


Em 4 de abril de 2019, a ECAA divulgou o relatório preliminar sobre o acidente. O relatório preliminar não mencionava especificamente o MCAS, mas afirmava que "aproximadamente cinco segundos após o fim do movimento do estabilizador ANU (nariz da aeronave para cima), uma terceira instância do comando de ajuste automático AND (nariz da aeronave para baixo) ocorreu sem qualquer movimento correspondente do estabilizador, que é consistente com os interruptores de corte do trim do estabilizador na posição "corte".

Aproximadamente um minuto após o início do voo, uma velocidade no ar de 238 nós (441 km/h; 274 mph) foi selecionada. Cerca de 12 segundos depois, o piloto automático foi desativado. O relatório preliminar afirma que o empuxo permaneceu no ajuste de decolagem (94% N1) e os aceleradores não se moveram durante todo o voo. 


Nos próximos 30 segundos, o trim do estabilizador moveu o nariz para baixo 4,2 graus, de 4,6 para 0,4 unidades. Nos próximos 10 segundos, o compensador voltou a subir para 2,3 unidades como resultado da entrada do piloto e os pilotos concordaram e executaram o procedimento de corte do compensador do estabilizador, cortando a energia do motor de compensação operado pelo MCAS.

Relatório provisório


Em 9 de março de 2020, a ECAA divulgou um relatório provisório sobre o acidente. Este relatório afirma que os valores dos ângulos de ataque direito e esquerdo (AOA) desviam-se 59°. A mensagem de desacordo AOA não apareceu. 

A velocidade operacional mínima esquerda e a velocidade do oscilador do stick esquerdo foram calculadas para serem maiores do que a velocidade operacional máxima sem qualquer detecção de invalidade. 


As barras de pitch Flight Director desapareceram e reapareceram com a esquerda e a direita exibindo orientações diferentes. O shaker do manípulo esquerdo foi ativado. O trim para baixo do nariz (MCAS) disparou quatro vezes. O clacker de excesso de velocidade certo foi ativado. 

No terceiro gatilho MCAS, não houve movimento correspondente do estabilizador, o que é consistente com os interruptores de corte do trim do estabilizador na posição de "corte" naquele momento. 

O projeto do MCAS dependia de entradas de sensor AOA simples, tornando-o vulnerável a ativação indesejada. A diferença de treinamento de B737NG para B737 MAX foi inadequada.

Reações à investigação


Declarações das partes

A Ethiopian Airlines disse que o MCAS estava "até onde sabemos" ativo quando a aeronave caiu. De acordo com o ministro dos transportes da Etiópia, Dagmawit Moges, a tripulação "executou todos os procedimentos repetidamente fornecidos pelo fabricante, mas não foi capaz de controlar a aeronave". 

Bjorn Fehrm do Leeham News afirmou que o relatório preliminar confirma "a tripulação de voo seguiu os procedimentos prescritos pela FAA e pela Boeing na Diretriz de Aeronavegabilidade 2018-23-51", divulgada logo após o Lion Air bater.

O CEO da Boeing, Dennis Muilenburg, disse em 29 de abril que se "você verificar a lista de verificação ela indica ações que seriam tomadas em relação ao gerenciamento de energia e de inclinação do avião. Também se refere aos interruptores de corte, que após uma ativação que não foi induzido pelo piloto, que você iria acionar os interruptores de corte. E, em alguns casos, esses procedimentos não foram totalmente seguidos".


Um pico de dados nos dados de voo levou a especulações sobre um pássaro ou outros detritos atingindo o avião enquanto ele estava decolando, cortando o sensor de fluxo de ar. Essas especulações foram rejeitadas pela Ethiopian Airlines, e o investigador-chefe Amdye Ayalew Fanta afirmou que não havia indicação de tais danos.

Em 25 de abril, o The Aviation Herald submeteu 25 questões que surgiram após o acidente ao Flight Standardization Board (FSB) da FAA sobre o projeto para a certificação da aeronave Boeing 737 MAX. 

Anteriormente, afirmou que uma cópia da versão da seção 2.6 do Manual de Operações de Voo, "Irregularidades Operacionais", em uso pela Ethiopian Airlines no momento do acidente, datava de 1º de novembro de 2017 e não incluía material do Boletim do operador emitido pela Boeing em 6 de novembro de 2018.

Especialista em análise


Com base no relatório preliminar, o The Aviation Herald chegou à conclusão: "Nenhuma das três tripulações" (JT-43, JT-610 , ET-302) "teria sido forçada a reagir sob pressão de tempo para evitar um acidente , [...] sem os defeitos técnicos [dos sensores de ângulo de ataque] e as entradas de compensação do nariz para baixo."

De acordo com o jornal de aviação The Air Current e The Seattle Times , o relatório preliminar mostra que os pilotos inicialmente seguiram o procedimento para desabilitar o ajuste de runaway, mas o esforço de recuperação não teve sucesso. Os pilotos demonstraram no simulador que as rodas de compensação não podem ser movidas em condições severas de desalinhamento combinadas com alta velocidade no ar. 

O CEO do Ethiopian Airlines Group, Tewolde GebreMariam, em meio aos destroços do voo ET 320
Conforme os pilotos do voo 302 puxavam o manche para elevar o nariz, as forças aerodinâmicas no profundor da cauda criariam uma força oposta no parafuso de compensação do estabilizador que impediria os pilotos de mover a roda de compensação com as mãos.

A resolução para este problema de corte preso não faz parte do atual manual do 737 da Boeing, de acordo com a The Air Current. O Seattle Times relatou que os pilotos do 737-200 foram treinados para esta falha, mas os modelos posteriores tornaram-se tão confiáveis ​​que este procedimento não era mais necessário.

Os especialistas teorizaram que a dificuldade de compensar fez com que a tripulação de voo liberasse o corte e tentasse usar o compensador eletrônico em um esforço para corrigir a configuração fora do corte. De acordo com Bjorn Fehrm (Leeham News) e Peter Lemme, neste momento o avião estava voando "a 375kts e o MCAS nunca foi projetado para compensar nessas combinações de velocidade/altitude".

Análise do Piloto


O capitão do voo condenado da Ethiopian Airlines não teve a chance de praticar no
 novo simulador de sua companhia aérea para o Boeing 737 MAX 8
John Cox, um ex-piloto do 737 e representante de segurança do sindicato dos pilotos, e Chesley Sullenberger, que pousou o voo 1549 da US Airways no rio Hudson, fizeram replicações do Flight Simulator do voo 302. Cox descreveu o rápido início de eventos imprevistos como "um terreno fértil para confusão e saturação de tarefas." 

Sullenberger comentou que "Mesmo sabendo o que estava para acontecer, eu podia ver como as tripulações ficariam sem tempo e altitude antes de poderem resolver os problemas." Enquanto defendia as ações dos pilotos, Sullenberger também foi altamente crítico em permitir que alguém com apenas 200 horas de experiência de voo fosse o primeiro oficial. 

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, ASN, baaa-acro.com

Vídeo: Mayday Desastres Aéreos - Voo Air Ontario 1363ㅤO Assassino Branco

Via Cavok Vídeos