quarta-feira, 31 de dezembro de 2025

Aconteceu em 31 de dezembro de 1968: A queda do voo MacRobertson Miller Airlines 1750 na Austrália

Em 31 de dezembro de 1968, uma aeronave Vickers Viscount partiu de Perth, Austrália Ocidental, para um voo de 724 milhas náuticas (1.341 km) até Port Hedland. A aeronave caiu 52 km antes de seu destino, com a perda de todas as 26 pessoas a bordo. 

O voo 


O voo 1750 da MacRobertson Miller Airlines, um Vickers 720C Viscount, prefixo VH-RMQ (foto abaixo), decolou do aeroporto de Perth às 8h36, horário local. A bordo estavam dois pilotos, duas aeromoças e vinte e dois passageiros. A aeronave subiu a uma altitude de 19.000 pés (5.800 m) para o voo de 189 minutos.


Às 11h34, o piloto informou que a aeronave estava a 30 milhas náuticas (56 km) de seu destino e passando a altitude de 7.000 pés (2.100 m) na descida para o aeroporto de Port Hedland. Nenhuma outra transmissão de rádio foi recebida da aeronave. 

Quatro segundos após a conclusão desta transmissão, metade da asa direita se separou da aeronave. Vinte e seis segundos depois, a fuselagem da aeronave atingiu o solo.

Cerca das 11h35 da manhã, uma mulher na estação de Selina, 45 km a sul de Port Hedland, na região de Pilbara, na Austrália Ocidental, viu “um avião prateado a girar no ar”, nas palavras de uma reportagem de um jornal contemporâneo.

A cerca de 15 km de distância, seu marido, consertando um moinho de vento, ouviu uma explosão abafada e viu uma nuvem de fumaça se formando. “No início pensei que fosse um incêndio florestal”, disse ele aos jornais.

O marido e a mulher foram testemunhas da destruição do voo 1750 da MacRobertson Miller Airlines. Seu fim foi terrivelmente repentino. 

Naquela época, antes dos telefones celulares, não havia como as testemunhas notificarem rapidamente as autoridades. 

Quando a tripulação da aeronave não respondeu a novas chamadas de rádio, uma aeronave  Cessna 337 Skymaster foi despachada do aeroporto de Port Hedland às 12h12 para investigar. 

Onze minutos depois, o piloto do Cessna relatou ter avistado os destroços em chamas. Uma equipe terrestre de Port Hedland chegou ao local do acidente uma hora depois e confirmou que nenhum dos ocupantes havia sobrevivido ao impacto.

O local da queda do avião

Destroços 


A aeronave caiu na Indee Station em um terreno rochoso plano com vegetação de grama spinifex e algumas árvores raquíticas. Os destroços se espalharam por uma área de aproximadamente 7.750 pés (2.360 m) de comprimento e 2.500 pés (760 m) de largura.

Clique na imagem para ampliá-la

Os investigadores do acidente observaram imediatamente que metade da asa direita, seu motor externo e a hélice estavam próximos uns dos outros, a cerca de 3.000 pés (910 m) dos destroços principais. 

A meia asa havia sido empurrada para o solo rochoso pelo impacto, mas estava claro que a longarina principal da asa havia se quebrado durante o voo, causando a separação imediata da meia asa do resto da aeronave.

Investigação 


A investigação detalhada das duas superfícies de fratura mostrou que a fadiga do metal causou o crescimento de rachaduras na lança inferior (ou flange inferior) da longarina principal da asa direita até que afetaram aproximadamente 85% da área da seção transversal. Com tanto da lança inferior afetada, a asa não podia mais suportar o peso da aeronave, a lança inferior repentinamente se partiu em duas e a metade externa da asa direita se separou da metade interna.


A aposentadoria obrigatória da lança inferior na asa interna era de 11.400 voos. Um par de novas lanças internas inferiores foi instalado no VH-RMQ em 1964 e estava em serviço por apenas 8.090 voos. A investigação se concentrou em determinar por que o boom interno inferior falhou em 70% de sua vida de aposentadoria.

A rachadura de fadiga fatal na lança inferior interna havia começado em um orifício de parafuso na Estação 143, o último dos cinco orifícios de parafuso para fixação da nacela do motor interna à lança inferior. Esses orifícios tinham 2,22 cm de diâmetro e eram anodizados para resistir ao desgaste e à corrosão. 

Um casquilho de aço banhado a cádmio de comprimento 1 ⅝ polegada (4,13 cm), chanfrado em uma extremidade, foi pressionado em cada orifício. Cada bucha era um ajuste de interferência no orifício para melhorar a resistência à fadiga e aumentar substancialmente a vida útil de retirada da lança inferior interna.

A investigação determinou que alguns anos antes do acidente, a bucha na Estação 143 havia sido empurrada para cima, de forma que o chanfro e 0,055 polegadas (1,40 mm) da porção de lados paralelos se projetavam além da superfície superior da lança. 


A extremidade exposta da bucha foi então golpeada com uma ferramenta cônica aplicada ao furo. Esta ação alargou ligeiramente a extremidade exposta e deixou o diâmetro externo de 0,0038 polegada (0,097 mm) sobredimensionado.

A bucha foi então empurrada para cima, para fora do orifício e reinserida na superfície inferior. Conforme a bucha estava sendo reinserida, sua extremidade alargada foi tocadao material anodizado e uma pequena quantidade de alumínio da parede do orifício. 

Esta ação de brochamento marcou a parede do buraco e deixou seu diâmetro ligeiramente maior para que a bucha não fosse um ajuste de interferência em qualquer lugar, exceto em sua extremidade alargada. A marcação da parede do furo e a ausência de um ajuste de interferência deixaram a lança inferior interna vulnerável ao desenvolvimento de rachaduras por fadiga na Estação 143.

Apesar da investigação exaustiva, não foi possível determinar quando, por que ou por quem a bucha na Estação 143 foi alargada com uma ferramenta cônica, removida e reinserida no orifício do parafuso. Os investigadores não podiam imaginar as circunstâncias em que um comerciante responsável realizaria essas ações.

Aproximadamente 5.000 voos após a instalação de novas lanças inferiores internas em 1964, várias rachaduras por fadiga começaram a se desenvolver nas bordas dianteira e traseira do furo.


Essas rachaduras eventualmente se juntaram para formar uma única rachadura crescendo para a frente a partir da borda dianteira do buraco, e uma única rachadura crescendo para trás a partir da borda traseira do buraco. Essas duas rachaduras cresceram e afetaram 85% da área da seção transversal da lança inferior interna na Estação 143.

Sete semanas após o acidente, o ministro da Aviação Civil, Reg Swartz, anunciou que o acidente havia sido causado por fadiga do metal e não considerou necessário abrir um tribunal para investigar o acidente. Esta posição foi contestada pelo porta-voz da oposição para a aviação, Charlie Jones.

A British Aircraft Corporation realizou vários testes nos quais uma bucha foi ligeiramente alargada com uma ferramenta cônica e pressionada em um orifício em uma peça de teste da mesma liga de alumínio da lança inferior interna. Cada peça de teste foi então submetida a tensões alternadas. 

Esses testes mostraram que a eliminação do ajuste de interferência pela inserção de uma bucha alargada idêntica à encontrada nos destroços do VH-RMQ reduziu substancialmente a vida média até a falha da barreira - possivelmente em até 50%.

A investigação do Departamento Australiano de Aviação Civil foi concluída em setembro de 1969 e concluiu: "A causa deste acidente foi que a resistência à fadiga da lança inferior da longarina principal interna de estibordo foi substancialmente reduzida pela inserção de uma bucha alargada na Estação 143, quando a margem de segurança associada à vida de retirada especificada para tais barreiras não garantiu que isso boom alcançaria sua vida de aposentadoria na presença de tal defeito".

Quando o Ministro apresentou o relatório ao Parlamento em setembro de 1969, Jones novamente convocou um inquérito público.

Aeronave


A aeronave era um Vickers Viscount 720C fabricado em 1954 e recebeu o número de série 45. Foi imediatamente adquirido pela Trans Australia Airlines e entrou em serviço na Austrália como VH-TVB. Em 1959, ele apareceu no Farnborough Airshow daquele ano . Foi vendido para a Ansett-ANA em 1962 e registrado novamente como VH-RMQ. Em setembro de 1968 a aeronave foi transferida para a Austrália Ocidental e operada pela MacRobertson Miller Airlines, então subsidiária da Ansett-ANA. 

Clique aqui para ver 18 fotos da aeronave, incluindo uma tirada um mês antes do acidente.

Em 1958, a operadora, Trans Australia Airlines, substituiu as duas lanças inferiores internas. Em 1964, o novo proprietário, Ansett-ANA, substituiu novamente as duas lanças inferiores internas. Em fevereiro de 1968, a aeronave se tornou o primeiro visconde australiano a atingir 30.000 horas de voo. 

Ela foi inspecionada pela última vez pela Ansett-ANA em maio de 1968, quando fez 7.169 voos desde a substituição da lança inferior de 1964. Ela fez mais 922 voos antes do acidente. Em 31 de dezembro de 1968, a aeronave havia feito 25.336 voos e voou 31.746 horas. Desde sua revisão completa anterior, ele havia feito 6.429 voos e 7.188 horas de voo.

Gravadores 


A aeronave estava equipada com gravador de dados de voo e gravador de voz na cabine. O gravador de dados de voo funcionou durante todo o voo e registrou continuamente a altitude de pressão da aeronave, velocidade indicada, aceleração vertical e rumo magnético até o momento do impacto com o solo. 

O gravador de voz da cabine foi ligeiramente danificado com o impacto e incêndio subsequente, mas não houve danos ao registro das transmissões de rádio da aeronave durante os 30 minutos finais do voo. O registro do ruído no ambiente da cabine também foi preservado e revelou o momento preciso em que a frequência e o volume do ruído aumentaram repentinamente.

Projeto de vida segura 


Os destroços do avião perto de Port Hedland
A asa do Vickers Viscount usava uma única longarina principal composta por uma seção central na fuselagem, duas seções internas e duas externas. A longarina principal compreendia uma lança superior, uma teia de cisalhamento e uma lança inferior. 

A aeronave foi projetada e certificada de acordo com o princípio de vida segura. Antes que um componente alcance sua vida segura, ele deve ser removido da aeronave e retirado de uso. 

No momento do acidente, a vida útil de aposentadoria da lança inferior na seção central era de 20.500 voos; a lança inferior interna foi de 11.400 voos; e o boom externo inferior foi de 19.000 voos. A vida de aposentadoria das longarinas nos tailplanes horizontais e na barbatana vertical foi de 30.000 voos.


A vida útil de aposentadoria da longarina de um avião da categoria de transporte certificado pelo princípio de vida segura é baseada em um fator de segurança aplicado a dados obtidos de testes de vôo e informações sobre propriedades do material da longarina. 

A vida de 11.400 voos para a lança inferior interna Viscount foi baseada em fatores de segurança de 3,5 para o ciclo solo-ar-solo e 5,0 para danos por fadiga devido a rajadas atmosféricas. 

Esses fatores de segurança eram típicos para esta classe de avião. Uma redução de 50% do tempo médio até a falha não explica adequadamente por que a lança inferior interna no VH-RMQ deveria ter falhado antes de atingir sua vida útil de aposentadoria. 


Em antecipação de que o espectro de rajadas atmosféricas na Austrália pode ser mais severo no Visconde do que o espectro em algumas outras zonas climáticas, o espectro de rajadas foi medido durante 14.000 voos do Visconde na Austrália antes de 1961.

O Departamento de Aviação Civil aceitou a vida de aposentadoria do Visconde como compatível com o espectro de rajadas atmosféricas que essas aeronaves encontrariam durante as operações na Austrália.

Os requisitos de projeto de aeronavegabilidade aplicáveis ​​ao Vickers Viscount e outros aviões da categoria de transporte de vida segura não exigiam que a vida de aposentadoria fosse determinada levando em consideração um defeito grave imprevisível do tipo infligido na longarina do VH-RMQ pela inserção do arbusto queimado. Da mesma forma, os requisitos de manutenção de aeronavegabilidade não exigiam inspeção periódica para trincas por fadiga das longarinas das asas.

O VH-RMQ foi inspecionado pela Ansett-ANA em maio de 1968, 922 voos anteriores ao acidente, mas não era uma exigência dessa inspeção que a estrutura da asa fosse desmontada para permitir o acesso às lanças inferiores. Mesmo se a asa tivesse sido desmontada, é improvável que as rachaduras que irradiam do orifício do parafuso danificado pudessem ser detectadas.

No início da vida do tipo de aeronave Viscount, a renovação das lanças inferiores internas incluiu a instalação de novos acessórios de montagem para fixação da parte traseira das duas nacelas internas do motor às lanças inferiores. Novas conexões foram fornecidas sem orifícios pré-perfurados e os orifícios foram perfurados durante a instalação para alinhar corretamente a nacele do motor com a asa. 


No entanto, após considerável experiência em serviço do processo de renovação da lança, a British Aircraft Corporation alterou o procedimento para permitir a reutilização dos acessórios de montagem traseira da nacela do motor. A reutilização das conexões antigas dependia dos orifícios existentes alinhados com as buchas nas novas lanças inferiores internas. 

Quando novas lanças inferiores internas foram instaladas em VH-RMQ em 1958, novos acessórios de montagem traseira da nacela do motor também foram instalados, mas quando as novas lanças foram instaladas novamente em 1964, os acessórios instalados pela primeira vez em 1958 foram reutilizados. 

Nos destroços da asa direita do VH-RMQ, havia evidências de um problema inicial ao tentar alinhar os cinco orifícios no encaixe antigo com os arbustos na nova lança.

Os furos de três buchas foram marcados com uma broca , possivelmente enquanto o pessoal de manutenção tentava alinhar três dos furos o suficiente para poder inserir os parafusos de fixação. Executar uma broca na bucha na Estação 143 pode ter perturbado a bucha e iniciado uma sequência de ações que levam a danos fatais na parede do buraco.

Resultado 


Imediatamente após o acidente, o Departamento de Aviação Civil suspendeu temporariamente todas as aeronaves Viscount Tipo 700 registradas na Austrália. O encalhe temporário de Viscondes registrados na Austrália foi finalmente tornado permanente, enquanto as investigações pendentes sobre a causa do acidente.

A falha de fadiga da asa do VH-RMQ imediatamente levantou dúvidas sobre a validade da vida útil de aposentadoria da lança inferior interna do Tipo 700, então a British Aircraft Corporation e o UK Air Registration Board (ARB) tomaram o cuidado de reduzir a vida de 11.400 voos para 7.000.

Este relógio, com os ponteiros congelados às 11h35, foi encontrado no local do acidente 40 anos depois
Isso logo resultou na British Aircraft Corporation obtendo uma série de booms inferiores internos com tempo em serviço superior a 7.000 voos. Dezenove desses booms aposentados foram examinados em detalhes. Dezesseis continham pequenas rachaduras de fadiga em diferentes locais críticos. A rachadura mais longa foi de 0,054 polegadas (1,37 mm) em uma lança que estava em serviço por 8.194 voos. 

Esta evidência convenceu a British Aircraft Corporation e o UK Air Registration Board de que a lança inferior interna não possuía a resistência à fadiga originalmente planejada, então a vida de precaução de 7.000 voos tornou-se permanente.

Quando este acidente ocorreu, o número de mortos fez dele o terceiro pior acidente da aviação civil da Austrália, um status que mantém até hoje.Dois acidentes da aviação civil causaram 29 mortes cada - o acidente Douglas DC-4 da Australian National Airways em 1950 e o voo 538 da Trans Australia Airlines em 1960.

A placa memorial original foi movida para acomodar uma descoberta de ouro na área


Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia e ASN

Aconteceu em 31 de dezembro de 1961: Queda de avião da Aeroflot com 119 ocupantes deixa 32 vítimas fatais

Um Il-18V da Aeroflot similar ao avião acidentado
Em 31 de dezembro de 1961, o avião 
Ilyushin Il-18V, prefixo CCCP-75757, da Aeroflot / Armenia, operava um voo de passageiros de Moscou (Vnukovo) para Yerevan, na antiga União Soviética. 

No entanto, de 29 a 31 de dezembro, condições climáticas adversas prevaleceram na região do Cáucaso, levando ao fechamento de muitos aeroportos. O aeroporto de Yerevan também foi fechado, então o voo CCCP-75757 pousou em um aeroporto alternativo em Tbilisi . Devido ao prolongado fechamento dos aeroportos, muitos passageiros optaram por cancelar suas passagens e viajar por transporte terrestre. Em 31 de dezembro, cerca de 500 passageiros estavam reunidos no aeroporto de Tbilisi.

O Il-18V, com número de cauda CCCP-75757 (número de fábrica 181003202, número de série 032-02), foi fabricado pela MMZ "Znamya Truda" em 1961 e entregue à Diretoria Principal da Frota Aérea Civil. Foi então designado ao Grupo Aéreo Independente Armênio GVG. A cabine da aeronave tinha capacidade para 84 passageiros. No momento do acidente, o avião comercial tinha acumulado 593 horas de voo e era impulsionado por quatro motores Ivchenko AI-20.

Na noite de 31 de dezembro, o Aeroporto de Mineralnye Vody havia reaberto, levando a Direção Georgiana da CAF a contatar o Grupo Aéreo Independente da Armênia para solicitar o uso de duas aeronaves Il-18 armênias ociosas em Tbilisi para voos adicionais para Mineralnye Vody. Isso visava ajudar a aliviar o congestionamento no aeroporto de Tbilisi. A liderança armênia inicialmente recusou, mas acabou concordando quando percebeu que o aeroporto de Yerevan não reabriria em breve.

Uma das aeronaves selecionadas foi a CCCP-75757. Embora nenhum anúncio tenha sido feito sobre o embarque para o voo adicional, os passageiros se aglomeraram apressadamente na aeronave. No ambiente caótico, não havia controle de bilhetes e a rampa de embarque teve que ser removida enquanto ainda havia pessoas nela. Após a remoção da rampa, descobriu-se que dois membros da tripulação — um engenheiro de voo e uma das comissárias de bordo — ainda não haviam embarcado. Uma escada auxiliar foi então baixada, permitindo que mais alguns passageiros embarcassem.

Às 16h55, o Il-18 decolou do aeroporto de Tbilisi. O voo foi pilotado por uma tripulação composta pelo Capitão Akhdrin Bardzilivosovich Oganesyan, o Primeiro Oficial Asatur Nikolaevich Shabonyan, o Navegador Gurgen Vantshevik Shakhbazyan, o Engenheiro de Voo Grant Grigorievich Budurov, o Operador de Rádio Roland Agavartovich Mkhitaryan e o operador de rádio em treinamento GK Nikoghosyan. A tripulação de cabine incluía as Comissárias de Bordo AO Shahatuni, Aleksandra Mikhailovna Proskurina e Marieta Khasraevna Astatryan. 

A bordo da aeronave de 84 lugares estavam 110 passageiros, 26 dos quais em pé ou sentados nos corredores, alguns inclusive ocupando o guarda-roupas e a cozinha. A aeronave estava com o centro de gravidade para trás de 24,5% da MAC, excedendo o limite em 1%, enquanto a carta indicava uma MAC de 19%.

O Il-18 chegou a Mineralnye Vody sem incidentes. Naquele momento, o céu sobre o aeroporto estava completamente coberto por nuvens, com o limite inferior a 120 metros. A visibilidade era de 2.000 metros e caía neve fraca. 

Após completar a quarta curva (na aproximação final), a aeronave estava a 20 quilômetros do aeroporto e desviou-se 800-900 metros para a direita da linha central. Quando a distância até a pista diminuiu para 8 quilômetros, o controlador de radar de aproximação guiou a aeronave de volta para a trajetória de pouso, resultando na passagem da aeronave sobre o marcador externo (3.850 metros da pista) na trajetória de planeio, com um curso de 117° a uma altitude de 250 metros. O controlador então perguntou aos pilotos se eles conseguiam ver as luzes da pista. A resposta foi negativa, levando a tripulação a decidir arremeter.

Durante a arremetida, o Il-18 desviou-se significativamente para a direita. Às 17h58, enquanto voava no escuro a uma proa de 188° e a uma altitude de 90 metros em relação ao aeroporto, a aeronave colidiu com uma encosta arborizada a 3 quilômetros a sudoeste do aeroporto. 

O avião atravessou a floresta por cerca de 280 metros antes de girar para a esquerda e pegar fogo. O acidente resultou na morte do operador de rádio estagiário (Nikoghosyan), de uma comissária de bordo (Shahatuni) e de 30 passageiros.

A localização de Mineralnye Vody, o local da queda 
A causa do acidente foi a violação, por parte da tripulação, das instruções relativas à coordenação da tripulação durante aterragens noturnas em condições meteorológicas difíceis. Os pilotos desviaram significativamente para a direita, mantendo uma altitude de 90 metros, o que levou a aeronave a colidir com a encosta pouco depois. Isto foi agravado pela deterioração significativa das condições meteorológicas, cujo último relatório tinha sido transmitido meia hora antes, e pela distração causada pela consulta do controlador sobre a visibilidade da pista, que desviou a atenção da tripulação da monitorização dos instrumentos.

É também importante destacar a má organização do embarque de passageiros no aeroporto de Tbilisi, onde os passageiros embarcaram na aeronave de forma desorganizada, resultando numa sobrecarga de 26 pessoas. Dado o longo atraso antes da partida, isto contribuiu para um nervosismo significativo entre a tripulação.

Por Jorge Tadeu da Silva (Site Desastres Aéreos) com Wikipédia, ASN

Hoje na História: 31 de dezembro de 1938 - Primeiro voo do Boeing 307 Stratoliner

Boeing Model 307 Stratoliner com todos os motores funcionando, Boeing Field, Seattle, Washington, por volta de 1939 (Arquivos do Museu Aéreo e Espacial de San Diego)
Em 31 de dezembro de 1938, o Boeing modelo 307 Stratoliner, registro NX19901, fez seu primeiro voo em Boeing Field, Seattle, Washington. O piloto de teste foi Eddie Allen, com o copiloto Julius A. Barr.

Boeing 307 Stratoliner NX19901 com ambas as hélices na asa direita paradas (Boeing)
O Modelo 307 era um avião comercial de quatro motores que usava as asas, superfícies da cauda, ​​motores e trem de pouso do bombardeiro pesado B-17B Flying Fortress de produção. A fuselagem era circular em seção transversal para permitir a pressurização. Foi o primeiro avião comercial pressurizado e, devido à sua complexidade, também foi o primeiro avião a incluir um engenheiro de voo como membro da tripulação.

A agência de notícias Associated Press informou: "O primeiro avião do mundo, projetado para voar na subestratosfera, o novo Boeing “Stratoliner”, teve um desempenho “admiravelmente” em um primeiro voo de teste de 42 minutos na chuva hoje. O grande avião, com uma largura de asa de 107 pés, três polegadas, subiu para 4.000 pés, o teto, e cruzou entre aqui, Tacoma e Everett. A velocidade foi mantida em 175 milhas por hora. “O controle, a estabilidade e a maneira como ele conduziu foram muito bons”, disse Edmund T. Allen, piloto. "Ela teve um desempenho admirável." O avião de 33 passageiros foi construído para voar a altitudes de 20.000 pés. Não há mais testes planejados até a próxima semana. O equipamento de superalimentação para voos de alta altitude será instalado posteriormente.

Boeing Modelo 307 Stratoliner NX19901 decolando em Boeing Field, Seattle, Washington
(Arquivos do Museu Aéreo e Espacial de San Diego)
Em 18 de março de 1939, durante seu 19º voo de teste, o Stratoliner deu uma volta e depois mergulhou. Ele sofreu falha estrutural das asas e do estabilizador horizontal quando a tripulação tentou se recuperar. O NX19901 foi destruído e todas as dez pessoas a bordo foram mortas.

Boeing Modelo 307 Stratoliner NX19901 (Arquivo do Museu Aéreo e Espacial de San Diego)
O Boeing Modelo 307 era operado por uma tripulação de cinco pessoas e podia transportar 33 passageiros. Tinha 74 pés e 4 polegadas (22,657 metros) de comprimento, com envergadura de 107 pés e 3 polegadas (32,690 metros) e altura total de 20 pés e 9½ polegadas (6,337 metros). As asas tinham 4½° diédrico e 3½° de ângulo de incidência. O peso vazio era de 29.900 libras (13.562,4 quilogramas) e o peso carregado era de 45.000 libras (20.411,7 quilogramas).

Ilustração em corte de um Boeing modelo 307 Stratoliner (Boeing)
O avião era movido por quatro motores radiais de 9 cilindros Wright Cyclone 9 GR-1820-G102 refrigerados a ar, com engrenagens e sobrealimentados, 1.823,129 polegadas cúbicas (29,875 litros) com uma taxa de compressão de 6,7:1, avaliada em 900 potência a 2.200 rpm e 1.100 cavalos a 2.200 rpm para decolagem. 

Boeing Modelo 307 Stratoliner NX19901. As capotas do motor foram removidas. O motor interno direito está funcionando. A disposição das janelas do passageiro difere no lado direito e esquerdo da fuselagem
(Arquivos do Museu Aéreo e Espacial de San Diego)
Esses impulsionaram hélices Hydromatic padrão Hamilton de três pás por meio de uma redução de marcha de 0,6875: 1 para combinar a faixa de potência efetiva do motor com as hélices. O GR-1820-G102 tinha 4 pés, 0,12 polegadas (1.222 metros) de comprimento, 4 pés e 7,10 polegadas (1.400 metros) de diâmetro e pesava 1.275 libras (578 quilogramas).

 Boeing's Modelo 307 Stratoliner em fabricação (Boeing)
A velocidade máxima do Modelo 307 foi de 241 milhas por hora (388 quilômetros por hora) a 6.000 pés (1.828,8 metros). A velocidade do cruzeiro era de 215 milhas por hora (346 quilômetros por hora) a 10.000 pés (3.048 metros). O teto de serviço era de 23.300 pés (7.101,8 metros).

Boeing Modelo 307 Stratoliner NX19901 com todos os motores funcionando
(Arquivo do Museu Aéreo e Espacial de San Diego)
Durante a Segunda Guerra Mundial, a TWA vendeu seus Stratoliners ao governo dos Estados Unidos, que os designou C-75 e os colocou em serviço de passageiros transatlânticos.

Um Boeing 307 Stratoliner da Transcontinental and Western Airlines (TWA)
com atendentes de cabine (TWA)
Em 1944, os 307 foram devolvidos à TWA e foram enviados de volta à Boeing para modificação e revisão. 

Boeing Modelo 307 Stratoliner NX19903 após atualização, por volta de 1945 (Boeing)
As asas, motores e superfícies da cauda foram substituídos por aqueles do mais avançado B-17G Flying Fortress. O último em serviço foi aposentado em 1951.

Duas aeromoças da TWA com um Boeing 307 Stratoliner, por volta de 1944–1951

Boeing C-75 Stratoliner “Comanche”, número de série 42-88624 do US Army Air Corps, anteriormente TWA's NC19905 (Arquivos do Museu Aéreo e Espacial de San Diego)
Dos dez Stratoliners construídos para Pan Am e TWA, apenas um permanece. Totalmente restaurado pela Boeing, o NC19903 fica no Stephen F. Udvar-Hazy Center da Smithsonian Institution.

O único Boeing Model 307 Stratoliner existente, NC19903, Clipper Flying Cloud, no
Museu Nacional do Ar e Espaço da Instituição Smithsonian, Steven F. Udvar-Hazy Center
(Foto de Dane Penland, National Air and Space Museum, Smithsonian Institution)
Edição de texto e imagens por Jorge Tadeu

Porca de Jesus: peça de nome curioso derruba helicópteros se der problema

Helicóptero Bell 206B: Modelo conta com a porca de Jesus para prender o rotor principal
ao eixo do motor da aeronave (Imagem: Lance Andrewes)
Na aviação, nenhuma falha é desejável. Entretanto, algumas são mais ou menos graves do que outras.

Se um trem de pouso não baixar, por exemplo, é possível fazer um pouso de barriga em algumas situações. Se um instrumento no painel não está operante, é corriqueiro que haja outro redundante que possa ser utilizado em seu lugar.

Em alguns helicópteros, entretanto, uma peça em particular tem um apelido inusitado devido à sua importância: A porca de Jesus. Ela é de fundamental importância, pois é ela quem segura o rotor principal do helicóptero (a espécie de hélice que fica na parte de cima da aeronave).

Localização da porca de Jesus no helicóptero Bell 206
(Imagem: Intervenção sobre foto do Exército dos EUA)
Sem essa porca de retenção, ele se solta, e a aeronave perde sua sustentação e termina caindo, consequentemente. Nem todos os helicópteros possuem o mesmo tipo de fixação, e essa peça pode variar entre os vários modelos existentes. Devido à sua importância, antes de decolar, sempre é preciso checar se ela está no lugar.

Apelido


Porca de Jesus, que prende o rotor principal ao eixo vertical do helicóptero
(Imagem: Alan Radecki Akradecki/CC BY-SA 4.0)
Esse nome é uma brincadeira, com várias versões para sua origem: se houver alguma falha com ela, só rezando para Jesus para ser salvo. Também há quem diga que, quando essa porca se solta durante o voo, o piloto diz imediatamente: "Jesus".

Outro comentário comum entre mecânicos do setor é que, caso ela quebre, obrigatoriamente, a próxima figura que você irá encontrar será ele, Jesus.

Esse apelido também é dado a peças estruturais importantes em outras aeronaves. Geralmente, são itens que, quando falham, causam acidentes graves, com quedas.

Acidentes são fatais


A chance de sobrevivência em um acidente quando o rotor principal escapa é muito baixa. Caso ocorra em voo, o helicóptero irá cair.

Se estiver no solo, ainda é necessário levar em consideração se as pás não irão colidir com a cabine onde estão os tripulantes e passageiros.

Em abril de 2000, um helicóptero Bell 206 sofreu um acidente no Canadá pela ausência da porca de Jesus. Ele havia decolado e voado por alguns minutos com o piloto e um engenheiro de manutenção para fazer testes na aeronave. Após anunciarem que retornariam ao hangar onde estava sendo feito um procedimento de manutenção, o rotor principal do helicóptero se soltou, e as pás acertaram a cabine, matando os dois a bordo. Após a queda, ainda houve um incêndio, que destruiu a aeronave.

O relatório de investigação do acidente identificou que o helicóptero decolou sem a porca de Jesus. Ela foi encontrada no hangar junto com seus componentes de fixação, já que havia sido removida para ser pintada. Também se concluiu que o piloto não checou se a porca de fixação estava no lugar antes de decolar, assim como não havia nenhum recado na cabine para avisá-lo sobre isso. Nenhum documento da aeronave indicava a remoção da peça, e três funcionários que auxiliaram na retirada da porca de Jesus estavam presentes no momento da decolagem. Nenhum deles havia se lembrado de que a peça não estava no lugar, segundo o relatório.

Por Alexandre Saconi (UOL) - Fontes: Misak Reis, inspetor de manutenção da Helimarte, e Conselho de Segurança de Transporte do Canadá

Vídeo: Como as bagagens chegam até o avião?


Você comprou sua passagem, vai viajar e aí começa a arrumar a sua mala. Já se perguntou "qual será o caminho que essa mala faz até chegar no avião?". No vídeo de hoje Lito Sousa nos mostra como é o caminho que a sua mala percorre desde o momento em que você deixa ali na balança, até chegar na esteira lá do seu aeroporto de destino.

Por que as descargas dos banheiros das aeronaves são tão barulhentas?

Nem é preciso dizer que o som da descarga de uma descarga de um avião é ensurdecedor. Considerando que o sistema de ventilação da aeronave e os motores combinados já estão fornecendo ruído ambiente suficiente para abafar uma conversa normal de fala, o fato de que a descarga de um banheiro atravessa esses sons e pode ser ouvido no meio da cabine, é um eufemismo chamar isso ruído 'alto'. 

Mas por que a descarga do banheiro de um avião é muito mais alta do que a descarga de um banheiro doméstico comum?

O volume da descarga do vaso sanitário de uma aeronave é aproximadamente equivalente a estar a um ou dois metros de uma serra elétrica ou a ficar em uma plataforma e ser ultrapassado por um trem em movimento.

Foto: Getty Images

De acordo com o Wall Street Journal, o banheiro é essencialmente a parte mais barulhenta da experiência de voo, relatando que os anúncios da tripulação normalmente variam entre 92 e 95 decibéis. Em comparação, as descargas do vaso sanitário atingem 100 decibéis - junto com fortes batidas na porta do compartimento superior. Certamente há uma boa explicação para isso.

Então, por que a descarga do banheiro dos aviões faz um barulho tão alto?

Simplificando, o volume da descarga é devido a um vácuo parcial que suga o conteúdo do vaso sanitário para o tanque de dejetos da aeronave. Considerando que seu 'banheiro subterrâneo' padrão é drenado com a liberação de cinco a dez litros de água, não é tão viável dedicar tanto espaço e combustível para transportar tanta água para banheiros no céu. E então, é claro, haveria a complicada questão de derramamento durante a decolagem, pouso e turbulência!

Provavelmente não é necessário incluir um exemplo. Mesmo assim, caso você não saiba o som da descarga do vaso sanitário de uma aeronave (ou, mais provavelmente, tenha esquecido depois de ter passado tanto tempo no solo), aqui está um videoclipe para sua conveniência:

De acordo com o site The Points Guy, o banheiro moderno da aeronave foi inventado por James Kemper, que patenteou o banheiro a vácuo em 1975. Esta invenção foi então instalada nos aviões da Boeing em 1982. Em vez de usar a combinação convencional de água e gravidade, um vácuo é usado para mover água e resíduos em alta velocidade para o tanque de resíduos. De acordo com o CBC, o conteúdo liberado pode se mover a altas velocidades de até 150 metros por segundo - ou 300 milhas por hora!

Os banheiros da aeronave também são cobertos com um revestimento antiaderente para garantir que a bacia seja completamente esvaziada (Foto: Tiowiafuk)

Descendo para os tanques de resíduos

Como você deve saber, a cabine de passageiros de uma aeronave é pressurizada a uma altitude superior. O sistema sanitário da aeronave inclui uma válvula que mantém essa diferença de pressão. Na descarga, a válvula se abre e, em seguida, esse resíduo é sugado pelos tubos que enchem o tanque.

Dependendo do tamanho da aeronave, há um ou mais tanques localizados na parte traseira do avião, embaixo do piso. Os banheiros se conectam a esses tanques por meio de tubulações instaladas em toda a extensão da aeronave. Portanto, sempre que alguém da primeira classe ou classe executiva descarrega, esses conteúdos estão sendo movidos em alta velocidade para a parte traseira da aeronave.

Remoção de dejeto sanitário de aeronaves

Parte do tempo que uma aeronave passa no portão do aeroporto geralmente inclui o esvaziamento de seus tanques de resíduos (Foto: mnts)

Provavelmente também não ajuda o fato de você normalmente ter a porta do banheiro fechada quando você aperta o botão para dar descarga. Como as ondas sonoras têm poucos lugares para ir, isso inevitavelmente intensificaria o fluxo ao ricochetear no espaço confinado.

terça-feira, 30 de dezembro de 2025

O dia em que a Airbus destruiu um avião novo prestes a ser entregue ao cliente

curiosa e incomum ocorrência em que um avião recém-saído da fabricação, em vias a ser entregue ao cliente, foi severamente danificado pela própria fabricante, felizmente sem perdas de vidas, apesar de alguns feridos em estado grave.

Ocorrido na sede da Airbus, em Toulouse, França, e, portanto, investigado pelo Gabinete de Investigação e Análise para Segurança da Aviação Civil (BEA), o caso foi legalmente considerado pelo BEA como um evento que não constitui um acidente de aviação, pois nenhuma das pessoas a bordo tinha a intenção de realizar um voo.

O termo acidente é, entretanto, usado no relatório em seu sentido usual, tendo sido classificado como “incidente grave” na “classe de ocorrência” para manter a consistência estatística.

Como tudo aconteceu


Era 15 de novembro de 2007 quando o Airbus A340-600 registrado sob a matrícula provisória F-WWCJ estava passando por testes de potência dos motores no aeroporto Toulouse Blagnac. O jato de número de fabricação 856 seria destinado à companhia aérea Etihad Airways, dos Emirados Árabes Unidos.

O teste consistia em avaliar diferentes sistemas com técnicos da companhia aérea que encomendou a aeronave. Foi feito o funcionamento dos motores sem calços nas rodas na área específica para este fim e, após esses testes, houve uma parada para inspeção dos propulsores.

A posição do A340 na área de teste de motor, em edição feita pelo BEA
Na sequência, os técnicos religaram os motores para uma nova aceleração de alta potência, em busca da origem de um vazamento de óleo encontrado. Cerca de três minutos após o início do teste, a aeronave começou a se mover para a frente.

O técnico do assento esquerdo percebeu o movimento e informou o técnico de testes do assento direito. Este último atuou nos freios localizados nos pedais do leme e, em seguida, soltou o freio de estacionamento.

Como a aeronave continuou a se mover para a frente, ele tentou desviar de seu curso usando o controle de direção do trem de nariz, porém, não houve tempo suficiente.

O avião atingiu o plano inclinado da barreira de bloqueio de jato de ar de motor e subiu até seu topo. A seção dianteira da fuselagem se quebrou e caiu para o outro lado. Treze segundos se passaram entre o início do movimento do avião e a colisão com a barreira.


Das nove pessoas a bordo, quatro tiveram ferimentos graves e cinco ficaram levemente feridos. A aeronave foi descartada devido à extensão dos danos.

Informações sobre o pessoal a bordo


Os testes de solo durante a fase de aceitação do cliente foram realizados sob a responsabilidade de um único técnico de teste de solo, um funcionário da Airbus. Geralmente, este era acompanhado por uma ou mais pessoas que representavam o cliente e, às vezes, outros funcionários da Airbus.

A Airbus não tinha nenhum requisito de qualificação específico para representantes de clientes que participassem dos testes. Os representantes do cliente sentados na cabine normalmente teriam funções de observador, mas o técnico de teste de solo pode envolver um representante do cliente, por exemplo, permitindo que ele faça o taxiamento.


Durante a ocorrência, o técnico de teste de solo responsável estava sentado no assento direito, um técnico de aviação representando o cliente estava no assento esquerdo e um experimentador de teste de voo no assento de serviço.

O representante do cliente e o experimentador de voo de teste não tinham funções definidas para lidar com a aeronave. A função do representante do cliente era observar os parâmetros durante o teste para garantir que atendessem às expectativas do cliente.

Registro em vídeo


Havia uma câmera de vídeo que gravava continuamente a área de teste de motor. Ela permitiu ver o avião durante a ocorrência. Os investigadores descrevem que observaram uma lenta translação do avião para a frente, depois um movimento que repentinamente acelera.

Quando a trajetória começa a se curvar para a direita, a roda dianteira vira de lado e perde sua efetividade, e o avião continua seu caminho até a barreira. A parte frontal sobe até o trem dianteiro ultrapassar o topo e a fuselagem cair sobre a barreira.

Houve chamas nos motores um e dois (externo e interno da asa esquerda) e na parte traseira do avião.

Observando os vídeos gravados vários dias antes do acidente, os investigadores constataram que alguns testes foram realizados com a colocação de calços nas rodas e outros não.

Sistema de frenagem da aeronave


Quando os pedais do leme são pressionados para frenagem, os sistemas hidráulicos dos dois conjuntos de trem de pouso principais (rodas dos trens centrais e rodas dos externos) são pressurizados.

No entanto, a frenagem nas rodas do trem central é reduzida automaticamente assim que as rodas do trem dianteiro são giradas. A partir de uma ordem de direção de 20°, a frenagem do trem central é completamente inibida. Assim, a ação do técnico em tentar desviar a aeronave reduziu a capacidade de frenagem.

Análises da investigação


1 – Realizando testes

Embora os documentos de referência exijam a instalação de calços durante os testes de motor, a investigação mostrou que eles não foram usados ​​de forma sistemática.

Da mesma forma, ao testar se há vazamentos de óleo, muitas vezes parece que o procedimento de aplicar potência a apenas dois dos quatro motores do A340 não é seguido.

As questões industriais e comerciais associadas às atividades de entrega podem colocar pressão sobre os operadores responsáveis ​​pelos testes durante esta fase. A presença de representantes do cliente a bordo durante as fases de entrega pode criar pressão que incentiva as operadoras a irem além de seus procedimentos de referência.

2 – Reações na cabine de comando

As ações do técnico de teste de solo foram mobilizados por cerca de dez segundos no sistema de freios. Ele não pensou em fazer a redução dos controles de aceleração dos motores.

Isto pode ser explicado pelo enfoque no problema de frenagem, pela dinâmica da situação e pela falta de treino neste tipo de situação. O técnico aeronáutico e o experimentador do teste de voo estavam presentes apenas como observadores.

O técnico da aeronave sentado no assento esquerdo não interveio nos controles até o impacto. O experimentador de voo de teste interveio para reduzir os aceleradores, mas tardiamente. Isso pode ser explicado pelo seu status a bordo, com receio de interferir nas ações do técnico e também pela dinâmica da situação.

3 – Controle da atividade

Os regulamentos relativos aos testes e aceitação não preveem a necessidade de supervisão da autoridade regulatória nas atividades de teste e aceitação. Assim, o controle dessas atividades é implicitamente delegado ao fabricante.

Resumo dos fatos estabelecidos pela investigação

  • A aeronave e, em particular, seu sistema de frenagem estavam funcionando de acordo com as especificações;
  • O acidente ocorreu durante a fase de entrega durante um teste não programado;
  • O procedimento não estava de acordo com a tarefa “Teste de vazamento de combustível e óleo” listada no AMM (sigla em inglês para Manual de Manutenção da Aeronave). Em particular, foi executado com alto empuxo e todos os motores em operação sem o uso de calços;
  • Testemunhos e gravações de vídeo indicam que testes de motor sem calço são realizados regularmente;
  • O empuxo aplicado aos motores era da mesma ordem que a capacidade nominal de frenagem do freio de estacionamento;
  • Quando a aeronave começou a se mover para frente, o técnico de teste de solo pressionou os pedais do freio e soltou o freio de estacionamento;
  • O técnico de teste de solo girou o volante de controle do trem dianteiro para a direita. Essa direção, ao inibir a frenagem no trem central, limitava a eficácia da frenagem;
  • As ações do pedal de freio não foram contínuas no nível máximo;
  • O experimentador do teste de voo reduziu os controles de aceleração no momento em que a aeronave atingiu a barreira de proteção.

Causas do acidente


O relatório do BEA descreve que o acidente deveu-se à realização de um teste sem calços nas rodas e com os quatro motores acelerados ao mesmo tempo, durante o qual o empuxo ficou próximo da capacidade limite do freio de estacionamento do avião.

A inexistência de um sistema de detecção e correção de desvios na realização dos procedimentos de testes de solo, num contexto de permanente pressão industrial e comercial, incentivou a realização de um ensaio fora dos procedimentos estabelecidos.

A surpresa com a situação levou o técnico de teste de solo a se concentrar no sistema de freios, portanto, ele não pensou em reduzir o empuxo dos motores.

Medidas tomadas após o acidente

O Manual de Aceitação do Cliente (CAM na sigla em inglês) foi revisado (maio de 2008) para reforçar as instruções a serem seguidas na operação de um teste de aceleração de motor. O procedimento pergunta em particular se existe:
  • A instalação de calços na frente de todas as rodas dos trens de pouso principais (bem como as do trem de pouso central se aplicável); e
  • A presença de duas pessoas qualificadas nos comandos durante o teste estático e durante as fases de taxiamento.
Nesta mesma revisão do CAM, foram modificadas as condições para a realização de testes de alta potência de motores em aviões quadrijatos. Eles passaram a determinar que se faça a aceleração de apenas dois motores simétricos ao mesmo tempo.

Uma nota interna foi distribuída a todos os operadores de aeronaves em janeiro de 2008. Ela alerta que não deve haver mais nenhum reteste durante o teste estático do cliente (por exemplo, para procurar vazamentos de óleo, como era o caso no dia do acidente). Esses testes adicionais devem ser objeto de um novo teste estático posterior, somente após o problema ter sido resolvido no centro de entrega, e não no próprio local de teste.

A fraseologia de rádio com a Torre foi melhorada para garantir que os testes de motor não comecem até que os calços das rodas estejam no lugar: o operador da aeronave deve agora anunciar ao controlador de tráfego aéreo o início dos testes de motor após confirmado que os calços estão no lugar.

A Airbus indicou que criaria um novo documento dedicado aos testes de solo. Este documento seria intitulado “Manual de Operações em Solo”.


No que diz respeito à formação dos profissionais envolvidos, a sessão de “atualização” sobre os testes de motor realizados em simulador (uma vez a cada dois anos) foi complementada por uma auditoria realizada durante um teste estático por um técnico sênior, a fim de promover feedback. Além disso, a sessão de simulador foi enriquecida pelo processamento e análise de casos de falha que podem ocorrer durante os testes do tipo “teste estático do cliente”.

Por Murilo Basseto (Aeroin) - Com informações do BEA

Vídeo: TRISTAR - Um Fracasso Brilhante


Às vezes, uma máquina nasce perfeita — tão avançada que parece destinada a mudar a aviação para sempre. O Lockheed L-1011 TriStar foi exatamente isso: um avião silencioso, tecnológico e admirado por pilotos, mas que acabou se tornando um dos maiores fracassos comerciais da indústria. Neste vídeo, você vai conhecer a história do TriStar, o impacto do motor Rolls-Royce RB.211, a disputa com o DC-10 e como um acidente aparentemente banal acabou dando origem ao CRM, um dos pilares da segurança da aviação moderna.

Por que a Boeing construiu o 767 com trem de pouso basculante para frente?

(Crédito: Shutterstock)
O Boeing 767 é uma das aeronaves widebody mais reconhecidas da era moderna da aviação a jato. Entrou em serviço no início da década de 1980 e rapidamente se tornou a preferida das companhias aéreas para voos de médio e longo alcance. Sua combinação de eficiência de combustível, alcance e layout de cabine confortável ajudou a consolidá-lo como um pilar confiável das frotas globais. Mesmo com a entrada de aeronaves mais modernas no mercado, o 767 manteve uma forte presença tanto no transporte de passageiros quanto de carga.

O 767 tornou-se uma plataforma para a Boeing refinar sua abordagem às operações de longo curso com bimotores. Desempenhou um papel fundamental no desenvolvimento inicial das regras ETOPS, que posteriormente transformaram as viagens internacionais ao permitir que bimotores operassem rotas antes restritas a aeronaves quadrimotoras. A aeronave demonstrou que dois motores podiam suportar com confiabilidade voos transoceânicos de longa distância em uma época em que esse conceito ainda era novo para reguladores e companhias aéreas. Seu desempenho ajudou a pavimentar o caminho para os bimotores de fuselagem larga posteriores, que agora dominam os mercados de longo curso.

O primeiro protótipo do Boeing 767 voou no outono de 1981, e o primeiro 767-200 entrou em serviço com a United Airlines no ano seguinte. A Boeing expandiu a família ao longo do tempo com o 767-200ER, o 767-300 e o 767-300ER, versões alongadas, e eventualmente o 767-400ER. O 767-300F também se tornou um cargueiro dedicado popular e permanece em produção ativa para operadores de carga. Essas variantes permitiram que o programa atendesse a uma ampla gama de missões, tanto no mercado de passageiros quanto no de carga.

Por que o trem de pouso está inclinado para a frente?


Pouso de um 767 (Crédito: Shutterstock)
A principal razão pela qual o 767 utiliza trem de pouso basculante para a frente é para economizar espaço na fuselagem. Esse design que economiza espaço acomodou sistemas e características estruturais exclusivas do 767 e tornou o trem de pouso basculante para a frente necessário. Aeronaves de fuselagem larga posteriores, como o 777 e o 787, utilizam mecanismos de mudança de inclinação, que permitem que o trem de pouso mude de posição durante a extensão e a retração.

Outro fator também influenciou o projeto. Durante os testes iniciais, os engenheiros perceberam que o 767 tendia a inclinar-se bruscamente para baixo durante o pouso. A inclinação para a frente do trem de pouso ajudou a contrabalançar esse comportamento, permitindo que a roda dianteira tocasse o solo primeiro. Esse ajuste suavizou a mudança de inclinação no momento do pouso e contribuiu para uma aterrissagem mais estável.

O 767 não é o único avião de fuselagem larga com trem de pouso basculante para a frente. Aeronaves como o Airbus A350-900 e o Airbus A380 também utilizam trens de pouso principais com inclinação para a frente. O MD-11 também apresentava uma leve inclinação para a frente, entre outros aviões comerciais. Esses exemplos mostram que a inclinação para a frente não é incomum. Algumas aeronaves chegam a utilizar ambas as orientações na mesma fuselagem, como o Airbus A340-600 , em que o trem de pouso da asa inclina-se para trás enquanto o trem de pouso central inclina-se para a frente.

Outro aspecto único do 767


Porta 1L do 767 (Crédito: Shutterstock)
Outro aspecto singular do 767 são suas portas de passageiros , que abrem para dentro em vez de para fora. A maioria das aeronaves comerciais utiliza portas com abertura externa, mas a porta do 767 primeiro se move para dentro e depois se eleva em direção ao teto. Esse movimento é semelhante ao dos sistemas de portas utilizados no L-1011 e no DC-10, e posteriormente no MD-11.

O raciocínio exato por trás dessa característica não está totalmente documentado, mas o projeto provavelmente reflete a experiência de engenheiros da Boeing que trabalharam anteriormente na McDonnell Douglas. O DC-10 e o MD-11 utilizavam portas com abertura para dentro, e o 767 herdou aspectos desse sistema comprovado. Com base nessa experiência, a equipe de projeto adaptou mecanismos já conhecidos para a nova estrutura da aeronave. Isso também simplificou a integração de elementos estruturais e de vedação de pressão.


A porta do 767 funciona como uma porta de encaixe, o que significa que ela veda com mais firmeza à medida que a pressão na cabine aumenta durante o voo. Esse design reduz significativamente o risco de abertura da porta em voo, pois a diferença de pressão a força com mais firmeza contra sua estrutura. As portas de encaixe também oferecem uma barreira forte e confiável sem a necessidade de sistemas de travamento excessivamente complexos.

Com informações do Simple Flying

Aconteceu em 30 de dezembro de 2007: Voo Tarom 3107 Colisão em veículo de manutenção durante a decolagem


Em 30 de dezembro de 2007, o voo ROT3107, operado pelo Boeing 737-38J, prefixo YR-BGC, da Tarom (foto abaixo), estava programado para o voo entre Bucareste, na Romênia, e o Aeroporto Sharm el Sheik, no Egito. O voo 3107 era um voo fretado e levava a bordo 117 passageiros e seis tripulantes.

A aeronave envolvida do acidente
Pouco antes das 11h00 da manhã, uma equipe de manutenção entrou na pista 08R da OTP para fazer trabalhos de manutenção nas luzes centrais da pista. A equipe de manutenção era composta por quatro trabalhadores e duas viaturas. Dois dos trabalhadores trabalhavam a cerca de 600 metros da soleira e os outros dois trabalhavam a cerca de 1500 metros da soleira. A visibilidade na época era ruim devido ao nevoeiro espesso.

Às 10h49, a equipe de manutenção entrou em contato com a torre de controle para obter a aprovação para iniciar as operações de limpeza das luzes centrais. Pouco menos de dez minutos depois, a torre aprovou o início da obra. A certa altura, os trabalhadores foram obrigados a deixar a pista para permitir a decolagem de uma aeronave, mas foram liberados para retomar o trabalho logo em seguida.

Então, às 11h25m13s, o voo 3107 foi liberado para entrar na pista 08R para decolagem, e pouco mais de um minuto depois eles foram liberados para decolagem. 

Entre 11h26m40s e 11h26m50s a torre de controle perguntou aos funcionários da manutenção se a pista estava livre, mas não obteve resposta. 

Às 11h27min04s, acelerando para a decolagem, a uma velocidade de cerca de 90 nós, o Boeing 737 atingiu um carro a 600 metros da cabeceira da pista com o motor número 1 e com o trem de pouso esquerdo. 


A aeronave saiu do lado esquerdo da pista e parou 137 metros à esquerda da linha central e 950 metros da cabeceira. Os passageiros foram evacuados pelas rampas de emergência.

Nicolae Ghinescu, o piloto no comando do voo 3107, que tinha mais de vinte e dois anos de experiência de voo, disse aos jornalistas que "durante o procedimento de decolagem, após 400 ou 500 metros, encontramos um carro-obstáculo e não pudemos evitá-lo. Ele disse. “O carro estava sem sinalização nem com os faróis acesos, e duas pessoas tentaram mover o carro para desobstruir a pista, mas já era tarde”.


O Boeing 737 usado para o voo 3107 foi cancelado, sendo danificado além do reparo após colisão com o carro de manutenção e saindo da pista. O acidente foi a 17ª perda de um Boeing 737-300.

O erro para liberar a decolagem do voo ROT 3107, foi possível no contexto de uma longa interrupção da atividade do CTA EXE TWR, percepção incorreta do estado de liberação da pista juntamente com a falta de coordenação entre o CTA EXE TWR e o CTA GND/TAXI para liberar a pista. 


Os requisitos dos procedimentos RCASTA e LVO não foram totalmente aplicados pelos controladores de tráfego envolvidos. O responsável pela equipa, que tinha o dever de observar diretamente a aplicação deste procedimento, não reconheceu este facto e não tomou medidas corretivas.


As tiras de registro progressivo não estavam de acordo com os procedimentos e regulamentos válidos. As conclusões anteriores sublinham lacunas no processo de formação do pessoal ATC, ou seja, conhecimento e seguimento completo e correto dos procedimentos aplicáveis.


Gestão deficiente de recursos humanos na TWR OTP, que resultou em número insuficiente de ATCs na equipe de turno, bem como a ausência do supervisor da equipe da sala de operações na hora da ocorrência do acidente nas condições em que ele aceitou uma equipe com 4 ATCs.

O “Regulamento de Circulação de Veículos e Pessoas”, R – SIG 001, e do “Regulamento de Organização e Realização de Radiocomunicações em Sistemas Rádio de Acesso Múltiplo”, R – SIG – 007, e os “Procedimentos de Operações Locais de Baixa Visibilidade (LVO)” não foram rigorosamente observadas. Esses regulamentos incluem disposições não correlacionadas ou pouco claras que podem ser mal compreendidas e dificultar sua aplicação rigorosa.


Por Jorge Tadeu da Silva (Site Desastres Aéreos) com Wikipédia, ASN, baaa-acro e aviation-accidents.net