sábado, 28 de dezembro de 2024

Fenômeno aerodinâmico: uma visão detalhada do "canto do caixão"

As explicações sobre o canto do caixão às vezes são vagas ou carentes de detalhes.


O canto do caixão é um daqueles fenômenos que se fala muito dentro e fora da indústria da aviação. No entanto, a maioria das explicações sobre o canto do caixão são muitas vezes vagas e não explicadas com tantos detalhes. Neste artigo, vamos aprofundar o tópico e discutir o que realmente é o canto do caixão.

Efeitos de voo e compressibilidade em alta velocidade


A maioria dos transportes a jato no mundo viaja na região transônica. Em média, um jato típico viaja a velocidades que variam de 78% a 85% da velocidade do som. Ou, em termos técnicos, 0,78 a 0,85 número Mach. Então, o que significa o número de Mach? Mach é a velocidade de um objeto em relação à velocidade do som.

Por exemplo, se um objeto está viajando a 0,1 Mach, isso significa simplesmente que o objeto tem uma velocidade que é 10% da velocidade do som. Se o mesmo objeto se move a Mach 1, isso implica que ele está viajando a 100% da velocidade do som, ou tem a mesma velocidade que a velocidade do som. Quando um objeto atinge Mach 1, diz-se que é supersônico, e quando a velocidade ultrapassa Mach 1, o objeto se move para o regime supersônico.

Cone de vapor do F-18 durante o voo supersônico (Foto: Kevin Dickert via Wikimedia)
Então, por que o número de Mach é tão importante? Para entender isso, visualize uma aeronave parada no solo. Se você bater no nariz dele com um martelo, você ouvirá um som. Este som é transportado por ondas de pressão que viajam à velocidade do som no solo, que é de cerca de 340 m/s. Agora imagine a aeronave se movendo a uma certa velocidade. Se você atingir a aeronave enquanto ela estiver em movimento, a onda de pressão ainda viajará na velocidade do som. No entanto, desta vez devido ao movimento da aeronave, a distância entre a onda de pressão principal e a aeronave diminui. À medida que a velocidade da aeronave aumenta cada vez mais, essa distância diminui ainda mais.

Como a aeronave se fecha em suas ondas de pressão com o aumento da velocidade
(Imagem: Chabacano via Wikimedia)
Na vida real, quando uma aeronave se aproxima de Mach 0,4, a compressibilidade do ar se torna um fator. Como mencionado anteriormente, à medida que a aeronave acelera, ela começa a acompanhar suas ondas de pressão. Abaixo de 0,4 Mach, a onda de pressão age como um carro de polícia que libera o trânsito para o Presidente. As ondas de pressão avisam as moléculas de ar à frente da aeronave para abrir caminho para ela.

Mas à medida que a aeronave se aproxima de sua onda de pressão, ela não pode mais avisar as partículas de ar. Como não há aviso, o ar é subitamente submetido a grandes mudanças que aumentam sua densidade, temperatura e pressão. Em algum momento, se a aeronave acelerar até Mach 1, ela finalmente alcançará suas ondas de pressão. Isso faz com que as ondas de pressão se acumulem, formando ondas de choque.

Durante uma subida, a True Air Speed ​​(TAS) de uma aeronave aumenta devido à redução da densidade. Juntamente com o TAS, a velocidade do som também diminui porque a velocidade do som é diretamente proporcional à temperatura. À medida que a temperatura diminui com a altitude , reduz a velocidade do som. O que isso significa é que, à medida que uma aeronave sobe cada vez mais alto, seu número Mach aumenta. A fórmula para o número de Mach é a seguinte:

Mach = TAS/LSS, onde TAS é a velocidade real do ar e LSS é a velocidade local do som.

À medida que uma aeronave sobe, seu TAS aumenta, o que aumenta seu número Mach
(Foto:  National Archives at College Park via Wikimedia Commons)
Isso é importante porque se uma aeronave que não foi projetada para ir acima da velocidade do som for acima dela, coisas indesejáveis ​​podem acontecer, como perda de controle. Em uma aeronave, a velocidade do fluxo é a mais alta nas asas e, portanto, é a parte mais provável que pode ir além da velocidade do som mais rapidamente.

Então, agora deixe-me introduzir um novo termo. O número de Mach Crítico. O número Critical Mach, ou Mcrit para abreviar, é a velocidade mostrada no indicador de velocidade da aeronave quando uma parte de uma aeronave se torna sônica. Em uma aeronave típica, a asa atingirá Mach 1 muito antes de qualquer outra parte da aeronave e, se a aeronave for projetada para voo subsônico, seu número de Mach crítico desempenha um papel importante na velocidade mais alta que pode atingir.

Assim, os designers criaram designs de asas que podem desacelerar o Mcrit, incluindo o uso de asas varridas e aerofólios supercríticos.

Parada de alta velocidade e parada de baixa velocidade


Um estol de alta velocidade é causado pela formação de ondas de choque. Por causa das mudanças drásticas que são trazidas ao fluxo de ar pela presença de uma onda de choque, ela causa a separação do fluxo logo atrás dela. Um choque que está preso à asa, consequentemente, faz com que o fluxo de ar se separe da asa, e isso leva à perda de sustentação. Isso é chamado de estol de alta velocidade. Com o aumento da altitude, a aeronave se aproxima de Mach 1 e, por esse motivo, com o aumento da altitude, a velocidade para estol em alta velocidade diminui.

As ondas de choque podem causar a separação do fluxo, o que pode levar a
um estol de alta velocidade (Foto: Oxford ATPL)
Por outro lado, o aumento da altitude faz com que o estol de baixa velocidade aumente. Consulte este artigo para obter uma explicação detalhada do fenômeno de estol em baixa velocidade. O estol de baixa velocidade aumenta com a altitude devido à compressibilidade. Conforme explicado anteriormente, à medida que a velocidade da aeronave aumenta, o fluxo de ar não é mais avisado. Devido a esta razão, à medida que a borda de ataque da asa atinge o fluxo de ar, ela é feita para se curvar sobre a asa em um ângulo mais acentuado.

Em velocidades normais, o fluxo de ar começa a divergir e subir muito à frente do bordo de ataque da asa. Devido ao ângulo de aproximação acentuado do fluxo de ar, a região de menor pressão na asa ocorre muito mais próxima do bordo de ataque, fazendo com que o gradiente de pressão adverso afete uma área maior da asa. Isso faz com que a asa estole em um ângulo de ataque mais baixo devido à separação precoce do fluxo.

Um aumento na altitude aumenta a velocidade de estol em baixa velocidade (Imagem: Oxford ATPL)
Agora, entende-se que com o aumento da altitude e da velocidade, o estol de alta e baixa velocidade se aproxima. Um aumenta enquanto o outro diminui. Em alguma altitude, essas duas velocidades se tornam uma única velocidade. Essa altitude é chamada de teto aerodinâmico da aeronave. Quando você chegar a esse teto, parabéns, você chegou oficialmente ao canto do caixão.

A que distância do canto do caixão os aviões voam?


Para aviões de passageiros, existem regulamentos que regem seus padrões de certificação. Uma delas é que, no teto mais alto, a aeronave deve poder manobrar com pelo menos 0,3 gs. Isso significa que a aeronave deve ter margem suficiente para manobras do piloto sem encontrar um bufê de alta velocidade ou um bufê de baixa velocidade. O buffet é o tremor da aeronave que é experimentado em um estol devido ao fluxo de ar separado atingindo as superfícies da cauda da aeronave.

A maioria dos fabricantes de aeronaves fornece gráficos de início de buffet nos manuais de voo, que os pilotos podem usar para determinar a altitude, velocidade e peso em que o buffet de baixa e alta velocidade pode ocorrer. Abaixo está o gráfico de início de buffet de um Airbus A320 com um exemplo trabalhado. Primeiro, vamos olhar para a linha amarela. Quando a linha de um fator de carga de 1,0 com um peso de aeronave de 60 Toneladas é estendida para uma altitude de 41.000 pés, pode-se observar que o buffet de baixa velocidade ocorre a Mach 0,65.

Gráfico de início de buffet do Airbus A320 (Foto: Airbus A320 AFM)
Para verificar o buffet de alta velocidade, cruzando a Mach 0,80, podemos ver que isso acontece com um fator de carga de cerca de 1,2 g. Agora, olhe para a linha vermelha, que está configurada para uma altitude de 37.000 pés. Da mesma forma que antes, com um fator de carga de 1,0 e um peso de 60 Toneladas, o buffet de baixa velocidade ocorre desta vez a uma velocidade de 0,62 Mach e na mesma velocidade de 0,80 Mach, o buffet de alta velocidade ocorre com um fator de carga de 1,4 g. Pode-se ver neste exemplo que com o aumento da altitude, a margem do buffet de baixa e alta velocidade diminui.

O cockpit do U2 é exibido enquanto voa a 70.000 pés. Quando a essa altitude, ele voa
muito perto do canto do caixão (Imagem: Christopher Michel via Wikimedia)
Afastando-se dos aviões de passageiros, os aviões militares de reconhecimento, o muito famoso U2 Dragonfly voa perto de seu canto de caixão. Quando em cruzeiro, a diferença entre seu bufê de estol de baixa velocidade e alta velocidade é de apenas 5 nós.

Edição de texto e imagens por Jorge Tadeu com informações do site Simple Flying

Nenhum comentário: