sábado, 10 de janeiro de 2026

Aconteceu em 10 de janeiro de 1954: Voo BOAC 781ㅤㅤㅤAs janelas retangulares e o desastre do Comet na Itália


No dia 10 de janeiro de 1954, o de Havilland DH-106 Comet 1, prefixo G-ALYP, operando o voo 781 da British Overseas Airways Corporation (BOAC) se desintegrou e caiu após a decolagem de Roma, a 16 km da Ilha de Elba, matando todos os 29 passageiros e seis tripulantes.


Três meses depois, um acidente idêntico de um De Havilland Comet com destino ao Cairo matou outras 21 pessoas. Os dois acidentes se tornaram um momento seminal no campo da investigação de acidentes aéreos, gerando práticas que se tornaram padrão e descobrindo princípios que hoje fazem parte da espinha dorsal do projeto de aeronaves.

O de Havilland Comet foi o primeiro jato comercial de passageiros do mundo. A partir de 1952, os elegantes jatos quadrimotores transportaram o público aos principais destinos ao redor do mundo, voando duas vezes mais alto e duas vezes mais rápido que qualquer outro avião. 

O voo inaugural do Comet
Eles também estavam entre os primeiros aviões de passageiros a ter uma cabine pressurizada, necessária para voar na altitude de cruzeiro do Comet de 10.000 m (32.800 pés). Isso exigia uma filosofia de projeto que tratava todo o avião como um vaso de pressão, um conceito relativamente novo em 1952. 

O primeiro avião pressurizado a entrar em serviço generalizado veio apenas seis anos antes, quando o Lockheed Constellation foi introduzido para voos civis. O Comet seria a entrada da Grã-Bretanha nesse mercado, com o prestígio adicional da propulsão a jato.

O vaso de pressão mais eficaz é uma esfera, porque a pressão interna é aplicada igualmente a todas as partes do vaso. No entanto, um avião precisa ser em forma de tubo com janelas e portas, criando pontos fracos na estrutura. 

Mas o Comet era especialmente vulnerável porque as portas e janelas eram retangulares. Isso teve o efeito de concentrar a tensão na estrutura do avião nos cantos das aberturas. 

Ponto vulnerável: as janelas retangulares do Comet
Embora os projetistas estivessem cientes disso, estavam confiantes de que a fuselagem era forte o suficiente para lidar com esse estresse adicional. Na verdade, eles calcularam mal a gravidade do efeito; o estresse aplicado aos cantos das janelas e portas foi, na verdade, o dobro do esperado.


Um outro problema veio da maneira como as janelas foram fixadas na fuselagem. Duas janelas no teto do avião para as antenas de navegação foram presas com rebites cravados diretamente no metal. O ato de perfurar os rebites pode causar a formação de pequenas rachaduras no metal. 

No avião que se tornaria o voo 781 do BOAC, um dos rebites ao redor da borda da janela aérea havia entrado em contato com um defeito microscópico de fabricação, gerando uma rachadura. Conforme a fuselagem era pressurizada repetidamente ao longo de milhares de voos, a rachadura aumentava gradativamente, ficando um pouco mais longa a cada vez.

O de Havilland DH-106 Comet 1, prefixo G-ALYP, da BOAC, envolvido no acidente
Em 10 de janeiro de 1954, o voo 781 da BOAC decolou de Roma e escalou o Mar Mediterrâneo com destino a Londres. Ninguém sabia que a rachadura em torno da janela aérea no telhado havia atingido o ponto de ruptura. 

Após decolar do aeroporto de Ciampino, o jato reportou às 10h50 a passagem no NDB de Ostia e, minutos depois, Orbetello, confirmando que cruzava 26.000 pés e que subia para a sua altitude de cruzeiro. 


Conforme o avião subia por 10.000 m, a pressurização da cabine o empurrou além de seus limites. O teto se abriu e o ar pressurizado explodiu para fora, arrancando os assentos de seus suportes e jogando os passageiros contra as paredes, o teto e uns contra os outros. 


Uma fração de segundo depois, o avião quebrou ao meio, cortando a empenagem da cabine dianteira. 


O corpo principal caiu, arrancando as pontas das asas e, finalmente, a cabine do piloto, enquanto os destroços despedaçados mergulhavam em direção ao mar lá embaixo.


No momento da separação, o capitão do voo 781 estava em contato com outro avião da BOAC voando vários milhares de pés abaixo. A transmissão foi cortada no meio da frase quando o Comet foi repentinamente destruído, deixando nada além de estática. 

Exatamente as 10h51, o comandante Gibson chamou pelo radio a tripulação de um Argonaut da BOAC, um DC-4 equipado com motores a pistão Rolls-Royce que, apesar de haver decolado de Roma com destino a Londres 10 minutos antes do Comet, já havia sido ultrapassado pelo G-ALYP. 

O piloto do Argonaut, de prefixo G-ALHJ, comandante J. Johnson, ouviu a transmissão vinda do Comet 1, na qual o comandante Gibson lhe perguntava, utilizando o alfabeto fonético empregado pela BOAC naquele tempo:

"George How Jig" (prefixo G-HJ), "de George Yoke Peter." (prefixo G-YP), "Você recebeu minha..."

Johnson aguardou alguns instantes antes de tentar contato, aguardando a mensagem ser completada. Mas ela nunca seria.

Bem abaixo, pescadores perto da ilha italiana de Elba testemunharam os destroços em chamas caindo do céu. Eles correram para o local do acidente em busca de sobreviventes, mas foram confrontados com uma carnificina total. 


Nas horas seguintes, uma flotilha de barcos saiu de Elba para dar cabo aos trabalhos de resgate. Um por um, eles transportaram os corpos dos passageiros de volta à costa. Eles logo confirmaram que nenhum dos 29 passageiros e 6 tripulantes havia sobrevivido ao acidente. 

Parentes dos passageiros esperaram no aeroporto de Londres, mas o avião simplesmente nunca chegou; horas depois, as autoridades confirmaram que ele havia caído no mar sem sobreviventes.


Uma investigação formal, supervisionada pelo primeiro-ministro Winston Churchill, foi lançada assim que a notícia do acidente chegou à Grã-Bretanha. 

Na época, não havia um protocolo estabelecido de como uma investigação de acidente aéreo deveria ser conduzida. Nos próximos meses, os investigadores escreveriam uma grande parte do livro de regras. 

Algo que nunca havia sido feito antes, a marinha britânica foi chamada a resgatar tanto quanto fosse possível dos destroços do G-ALYP, sepultados no leito do mar Mediterrâneo próximo à ilha de Elba. Nas semanas seguintes, uma flotilha recuperou das profundezas mais de 95% do peso da estrutura do Comet. 


Os mergulhadores, em volumosos trajes de mergulho de metal, desceram mais de 300m (1.000 pés) debaixo d'água para prender cabos aos destroços para que pudessem ser puxados para a superfície por um guindaste.

As peças foram lavadas, fotografadas e enviadas a Farnborough e gradativamente, montadas num esqueleto de madeira, reconstruindo a aeronave acidentada como se fosse uma miniatura de montar.


Uma inspeção dos destroços revelou que o avião não havia sido derrubado por uma bomba como se suspeitava inicialmente e, como resultado, todos os De Havilland Comets foram aterrados até que os investigadores pudessem garantir que o avião estava seguro.

Os patologistas também ficaram confusos com os ferimentos nos passageiros, que incluíam ossos quebrados sofridos após a morte, bem como lesões pulmonares e fraturas no crânio que ocorreram antes da morte. 

Esses foram os efeitos esperados de uma descompressão explosiva sem cintos de segurança ou assentos devidamente protegidos, seguida de um mergulho no mar. 


Mas uma descompressão explosiva em um avião de passageiros nunca havia ocorrido antes, e os investigadores só começaram a entender os processos em funcionamento depois de construir uma maquete, pressurizá-la e perfurar o lacre.

No entanto, quatro meses após o acidente e sob pressão para colocar o Comet no ar novamente, o chefe da investigação permitiu que o avião voltasse ao serviço. Isso provou ser um erro terrível. 

Apenas duas semanas após a proibição ter sido suspensa, um De Havilland Comet fretado da BOAC para a South African Airways se separou e caiu enquanto saía de Roma com destino ao Cairo. Todos os 21 passageiros e tripulantes morreram no acidente. O investigador principal admitiu publicamente que não deveria ter permitido que os aviões voassem, e todos os Cometas foram imediatamente aterrados novamente.

A construção do taque de água para os testes com o Comet
Para entender completamente como os aviões poderiam ter se quebrado, os pesquisadores decidiram testar quantos ciclos de pressurização uma fuselagem do Comet poderia realmente suportar. 

Eles retiraram um Comet e o transformaram em um tanque de água (vídeo acima), que seria enchido e esvaziado repetidamente para simular o processo de pressurização e despressurização que ocorria durante cada voo. 

O experimento gigantesco funcionou 24 horas por dia, 7 dias por semana, durante quase um mês, com as equipes reabastecendo e esvaziando o tanque mais de 3.000 vezes - aproximadamente o equivalente ao número de vezes que os dois Cometas acidentados voaram. Então, finalmente, a fuselagem quebrou bem no canto de uma das janelas, abrindo um grande buraco na lateral do avião. Eles haviam encontrado a arma fumegante.


Os investigadores puderam deduzir que os rebites perfurados causaram fissuras que foram exacerbadas pelo já elevado estresse nos cantos angulares das janelas e portas, levando ao enfraquecimento do revestimento da aeronave e à ruptura da fuselagem. 


Esta foi a primeira vez que a fadiga do metal foi identificada em um acidente de avião; antes dos desastres do Cometa, os efeitos da pressurização repetida nos componentes da aeronave eram mal compreendidos. 


Os pesquisadores conseguiram identificar corretamente a causa, apesar de terem pouco conhecimento prévio para trabalhar, ao invés disso, foram forçados a verificar, usando a tecnologia dos anos 1950, conceitos científicos amplamente conhecidos hoje. Tudo isso foi realizado sem gravadores de voo de caixa preta, dados de radar, microscópios sofisticados ou simulações de computador.


Após as colisões, o de Havilland Comet foi re-projetado e, eventualmente, voou novamente - desta vez com portas e janelas ovais ou oblongas e sem rebites perfurados. Ambos os recursos se tornariam padrão em todos os futuros modelos de jato de passageiros. 

Mas o Comet nunca recuperou sua antiga glória, e o de Havilland acabou sendo derrotado por rivais americanos como Boeing e McDonnell-Douglas. No entanto, podemos agradecer aos acidentes do voo 781 da BOAC e do voo 201 da South African Airways por ajudar a descobrir os princípios de engenharia que permanecem fundamentais hoje. 

Todos estes anos depois, podemos dizer com confiança que as 56 pessoas que morreram nos acidentes do Comet não morreram em vão.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

(Com Admiral_Cloudberg, ASN, Wikipedia e baaa-acro.com)

Aconteceu em 10 de janeiro de 1945: Acidente com o voo American Airlines 6001 - Névoa fatal


O voo 6001 da American Airlines foi um voo transcontinental do Aeroporto LaGuardia, em Nova York, para o Aeroporto Hollywood Burbank. Na manhã de 10 de janeiro de 1945, durante uma aproximação perdida ao aeroporto de Hollywood Burbank, o American Airlines Douglas DC-3-277B que operava o voo caiu nas proximidades de Verdugo Hills. Todos os 21 passageiros e 3 tripulantes morreram no acidente.

Um Douglas DC-3 da American Airlines, semelhante à aeronave do acidente
A aeronave envolvida no acidente era o Douglas DC-3-277B, prefixo NC25684da American Airlines, que foi fabricado em maio de 1940 e entregue à empresa aérea no mesmo mês. Ela teve 14.888 horas de voo e passou na última inspeção em 6 de janeiro de 1945.

O voo 6001 da American Airlines decolou de Nova York-LaGuardia às 19h23 EST do dia 9 de janeiro de 1945. Uma mudança de tripulação ocorreu em El Paso às 1h46 CST da manhã de 10 de janeiro. 

A tripulação então era composta por três integrantes: o capitão Joseph Russell McCauley (33), que acumulava 6.315 horas de voo, 4.660 das quais no DC-3. Ele trabalhava na American Airlines desde março de 1940; o primeiro oficial Robert Gaylord Eitner (25), que tinha 2.143 horas de voo, 1.729 das quais no DC-3. Ele trabalhava na American Airlines desde setembro de 1942; e a aeromoça Lila Agnes Docken (22), que trabalhava para a American Airlines desde abril de 1944.

A tripulação do voo American Airlines 6001
Após partir de Phoenix, o voo foi liberado para Newhall, na Califórnia, devido às condições climáticas desfavoráveis em Burbank. Às 3 da manhã PST, o boletim meteorológico mostrava um teto de 700 pés, nublado, visibilidade de três quilômetros e leve neblina.

Às 3h06, o voo foi autorizado pelo Controle de Tráfego Aéreo de Los Angeles para seguir para Burbank conforme planejado originalmente, levando os três tripulantes e 21 passageiros a bordo da aeronave.

Às 3h42, o piloto recebeu o boletim meteorológico das 3h30 de Burbank. O voo foi então liberado para uma aproximação padrão por instrumentos para Burbank. O avião iniciou sua aproximação inicial às 3h55. Às 4h06, o avião foi visto voando pelo aeroporto, iniciando uma curva à esquerda e depois desaparecendo de vista. 

Às 4h07, o capitão comunicou por rádio ao Controle de Tráfego Aéreo que não conseguia manter contato e estava seguindo para Palmdale. Todas as tentativas subsequentes de contatar o avião a partir da torre, da American Airlines e de outras estações de rádio foram infrutíferas.

Aproximadamente às 9h30, a torre de controle avistou os destroços em uma encosta a cerca de 4,4 quilômetros a nordeste do aeroporto. Todos os 21 passageiros e três tripulantes morreram na destruição da aeronave por impacto e fogo.


Os investigadores apuraram que depois de fazer a aproximação padrão de descida por instrumentos para o aeroporto de Burbank, o avião foi observado cruzando o aeroporto na base irregular das nuvens e iniciando uma curva à esquerda como se estivesse circulando para pousar. Logo após fazer a curva, o capitão comunicou por rádio à torre de controle que não conseguia manter contato visual com o solo e seguiu para seu substituto, Palmdale. 


As observações do United States Weather Bureau revelaram que estavam abaixo do mínimo se as condições existiam em Burbank no momento. O piloto não foi devidamente informado sobre os últimos boletins meteorológicos. O avião não foi ouvido ou visto novamente até depois do amanhecer, quando os destroços foram avistados no sopé próximo, aproximadamente 2-3/4 milhas a nordeste do aeroporto.


É evidente que depois de fazer esta curva à esquerda o piloto decidiu executar o procedimento padrão de “aproximação falhada”, mas ao fazê-lo não conseguiu modificar o procedimento de acordo com a sua posição e rumo. Como resultado, ele fez uma curva ascendente em direção aos contrafortes próximos, em vez de qualquer um deles, como teria sido o caso se o procedimento padrão de "aproximação perdida" tivesse sido executado a partir da posição normal.

A possibilidade de acidente tornou-se uma potencialidade quando o pessoal de terra da empresa não conseguiu obter e transmitir informações meteorológicas importantes ao piloto. A não obtenção e transmissão desta informação ao piloto constitui negligência por parte da empresa. Isto, no entanto, não eximiu o piloto da sua responsabilidade de conduzir um voo seguro, embora o tenha colocado numa posição de desvantagem. Se o procedimento de “aproximação perdida” tivesse sido executado corretamente, é improvável que o acidente tivesse ocorrido.


De acordo com o relatório do Conselho de Aeronáutica Civil, a causa provável foi: "o Conselho, portanto, determina que a causa provável deste acidente foi "a tentativa do piloto de usar o procedimento padrão de 'aproximação falhada' depois de ter seguido outro curso até um ponto em que foi impossível aplicar este procedimento com segurança".

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro

Aconteceu em 10 de janeiro de 1938: A queda do Super Electra no voo Northwest Airlines 2


Em 10 de janeiro de 1938, o avião Lockheed 14-H Super Electra, prefixo NC17388, da Northwest Airlines (foto abaixo), realizava o voo 2, uma rota de Seattle, no estado de Washington, para Chicago, em Illinois, com paradas intermediárias em Spokane, Butte e Billings, em Montana.


O voo da tarde daquela segunda-feira havia acabado de sair de Butte e sobrevoava Belgrado quando desviou para o norte para evitar uma tempestade de poeira sobre Bozeman Pass.A bordo estavam oito passageiros e dois tripulantes. 


O voo 2 foi pilotado por Nick Mamer (foto acima), um conhecido pioneiro da aviação no noroeste do Pacífico que voou mais de um milhão de milhas (1,6 milhão de km). O primeiro oficial (copiloto) era Fred West, e dois dos passageiros eram funcionários da companhia aérea.

O primeiro oficial contatou o operador de rádio da Northwest Airlines às 15h05 MST para informar que o voo 2 havia atingido a altitude de cruzeiro de 9.000 pés (2.740 m) às 14h53. 

Testemunhas terrestres relataram que, ao passar sobre a cordilheira Bridger (que no momento a aeronave passou por uma elevação de aproximadamente 8.500 pés (2.590 m) acima do nível do mar), a aeronave caiu imediatamente, entrou em estol, deslizou por um curto período de tempo e depois girou no solo a nordeste de Bozeman. Os destroços pegaram fogo e todos os dez ocupantes a bordo morreram imediatamente.

Jornal Spokane Daily Chronicle - 11.01.1938
A edição do dia seguinte do The New York Times trouxe a história no topo de sua primeira página e relatou em parte: "BOZEMAN, Mont., 10 de janeiro - Um avião de transporte da Northwest Airlines caiu em um pico coberto de neve no alto do Bridger Montanhas quatorze milhas a nordeste daqui na noite de hoje, levando para a morte dez pessoas listadas como estando a bordo. Xerife Lovitt I. Westlake de Bozeman, que liderou um grupo em trenós para a cena do acidente, disse que contou nove corpos e eles foram carbonizados além do reconhecimento. Funcionários da Northwest Airlines relataram que oito passageiros e uma tripulação de dois estavam a bordo. A fuselagem do avião foi queimada em uma massa retorcida de aço. O xerife Westlake disse que o avião parecia ter mergulhado de nariz na encosta da montanha em uma pequena clareira. Dois fazendeiros, cortando madeira na encosta acidentada da montanha, disseram ter visto o avião explodir em chamas ao atingir o solo."

Jornal The Bulletin - 11.01.1938
Investigadores da Civil Aeronautics Authority (CAA), uma organização predecessora da Federal Aviation Administration (FAA) e do National Transportation Safety Board (NTSB), determinaram que ambas as aletas verticais e ambos os lemes estavam faltando na aeronave de cauda dupla. Eles acreditavam que a empenagem havia falhado devido à vibração . Relatórios meteorológicos de comunidades vizinhas, bem como a existência da tempestade de poeira em Bozeman Pass, levaram os investigadores a acreditar que a aeronave provavelmente encontrou turbulência severa a extrema que pode ter iniciado a vibração.

No intervalo de 24 horas após o acidente, o Departamento de Comércio (autoridade governamental da CAA) ordenou que todos os Lockheed Super Electras fossem imediatamente aterrados e que testes fossem realizados para confirmar que os valores obtidos nos testes de vibração originais da aeronave eram precisos. 

Descobriu-se que a máquina usada pela Lockheed (e autorizada pelo Departamento de Comércio) para medir os períodos de vibração natural dos componentes da aeronave deu aos engenheiros da Lockheed resultados enganosos. O Departamento ordenou que os lemes de todos os Super Electras fossem modificados para eliminar a possibilidade de que a vibração pudesse causar uma ruptura em voo.


A Northwest foi a primeira companhia aérea dos Estados Unidos a receber o Super Electra, mas vendeu a maior parte de sua frota Electra restante em 1939, após três acidentes subsequentes que colocaram em questão a aeronavegabilidade e o potencial comercial da aeronave. 

Este foi o primeiro acidente fatal de uma aeronave Lockheed Super Electra da Northwest Airlines. Um Electra caiu no sul da Califórnia enquanto estava sendo entregue à companhia aérea em Minnesota, e os outros dois no leste de Montana. O segundo, o voo 4, caiu em Billings depois que o piloto parou a aeronave na decolagem. O terceiro, Flight 1, caiu logo após a decolagem de Miles City depois que um erro de projeto e fabricação permitiu que um incêndio intenso se desenvolvesse na cabine.


Em 1939, uma grande torre do relógio Moderne foi erguida em Felts Field em Spokane, Washington (foto acima), como um memorial às vítimas do acidente do Voo 2 em Bozeman. A área de esqui de Bridger Bowl fica ao sul do local do acidente.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, baaa-acro e ASN

Hoje na História: 10 de janeiro de 1935 - Primeiro voo do hidroavião Latécoère 521

Em 10 de janeiro de 1935, em Biscarosse, na costa atlântica da França, o Latécoère 521 fez seu primeiro voo. Os testes de voo foram supervisionados pelo Capitaine de Corvette Jean Marie Henry Roger Bonnot, que havia estabelecido um recorde mundial de distância em outro hidroavião Latécoère, o Croix-du-Sud, no ano anterior. Os pilotos foram Pierre Crespy e Jean Gonord.

O hidroavião Latécoère 521 (NYT/Revue & Bulletin Technique de la Société Française Hispano-Suiza)
Projetado pelo engenheiro aeronáutico Marcel Moine, o avião foi construído em seções na fábrica da Société industrielle d'aviation Latécoère em Montaudran, Toulouse, e depois transportado por terra para a base de hidroaviões em Biscarosse para montagem final e teste. O avião havia sido nomeado "Tenente de Vaisseau Paris" em homenagem a um piloto francês recordista, Paulin Louis Gérôme Paris.

O barco voador foi projetado para transportar 72 passageiros em serviço trans-mediterrâneo. Tinha um comandante de aeronave (capitaine-du-bord), dois pilotos, um navegador, operador de rádio e três mecânicos. (Os motores podiam ser acessados ​​em voo). O convés principal incluía a cabine do capitão, um salão para 20 pessoas; seis cabines para 2 passageiros; e uma cabine de passageiros na popa para 22 passageiros. O convés superior incluía convés de voo, uma cozinha e bar e uma cabine de passageiros para 18.

O arranjo do casco (National Advisory Committee for Aeronautics)
O Latécoère 521 era um barco voador sesquiplano de seis motores, principalmente de construção metálica. O casco de duas etapas foi construído de duralumínio, uma liga de alumínio endurecido pelo tempo; e a folha de alumínio laminada e ligada resistente à corrosão Alclad (conhecida como Verdal na França). Os painéis externos das asas eram cobertos por tecido. O casco tinha dois conveses, com sete compartimentos estanques.

O 521 tinha 31,62 metros (103,74 pés) de comprimento, envergadura de 49,30 metros (161,75 pés) e altura de 9,07 metros (29,76 pés). As asas foram varridas para trás 5° 20′ e tinham 5° diédrico. A área era de 330 metros quadrados (3.552 pés quadrados). Uma série de escoras em V prendia a asa ao casco e às asas do toco, que tinham um vão de 14,70 metros (48,23 pés) e área de 48 metros quadrados (517 pés quadrados). Cada ponta de asa carregava 11.000 litros (2.906 galões americanos) de gasolina. Com um peso bruto de 37.409 kg (82.473 libras), o barco voador tinha um calado de 1,20 metros (3,94 pés).

O hidroavião Latécoère 521 (Revue & Bulletin Technique de la Société Française Hispano-Suiza)
O Latécoère 521 era movido por seis motores Hispano-Suiza 12 Ydrs1 com árvore de cames única 60° V-12, resfriados a líquido, supercharged, 36,050 litros (2.199,892 polegadas cúbicas). Quatro motores foram colocados nas idades principais das asas na configuração de trator, com mais dois como empurradores. Esses V-12s voltados para a esquerda tinham uma taxa de compressão de 5,8:1 e acionavam hélices de três pás por meio de uma redução de engrenagem de 3:2. Eles foram avaliados em 880 cheval vapeur a 2400 rpm e 890 cv para decolagem. O 12 Ydrs1 pesava 470 kg (1.036 libras).

Com um peso bruto de 40 toneladas, o Latécoère 521 atingiu 256 quilômetros por hora (159 milhas por hora) a 3.100 metros (10.171 pés). Sua velocidade de cruzeiro era de 210 quilômetros por hora (130 milhas por hora) e seu teto era de 5.800 metros (19.029 pés).

O hidroavião Latécoère 521 (AP/ Revue & Bulletin Technique de la Société Française Hispano-Suiza)
Em Biscarosse, 27 de dezembro de 1937, o Latécoère 521, pilotado por Henri Guillaumet com os Messieurs LeClaire, Le Duff, Le Morvan e Chapaton, estabeleceu um recorde mundial da Fédération Aéronautique Internationale (FAI) para velocidade acima de 1.000 quilômetros (621,37 milhas estatutárias) com 15.000 quilograma (33.069 libras) de carga útil de 211,00 quilômetros por hora (131,109 milhas por hora).

Dois dias depois, 29 de dezembro de 1937, Guillaumet e sua tripulação voaram o 521 em um circuito fechado de 1.000 quilômetros entre Luçon e Aurelihan com uma carga útil de 15.000 quilogramas, para uma velocidade média de 189,74 quilômetros por hora (117,899 milhas por hora).

Em 30 de dezembro de 1937, Guillaumet e sua tripulação estabeleceram mais dois recordes mundiais FAI quando transportaram uma carga útil de 18.040 kg (39.771 libras) a uma altura de 2.000 metros (6.562 pés); e 15.000 kg (33.069 libras) a uma altitude de 3.508 metros (11.509 pés).

Latécoère 521 F-NORD (Rudy Arnold Photographic Collection)
O 521, com registro civil F-NORD, fez uma série de voos cruzando o Atlântico para a cidade de Nova York. Em um deles, o barco voador foi danificado por uma tempestade. Foi desmontado e devolvido à França a bordo de um navio.

Depois dos reparos, o Latécoère 521 continuou no serviço aéreo. Com o início da Segunda Guerra Mundial, foi modificado para uma aeronave de patrulha marítima. Quando a França se rendeu à Alemanha, o barco voador foi armazenado perto de Marselha. Quando a Alemanha recuou em 1944, eles destruíram o avião recorde.

Edição de texto e imagens por Jorge Tadeu (com thisdayinaviation.com)

Por que nenhum avião voa sobre o Polo Sul?


O Polo Sul sempre teve uma reputação formidável. Gelado, montanhoso e geralmente não muito acolhedor para os seres humanos. Mas quando você está voando alto em um avião, geralmente não percebe o que está acontecendo no nível do solo. No entanto, aeronaves raramente, sobrevoam a região.

Historicamente, voar perto ou sobre a Antártida era proibido pelas regras dos Padrões Operacionais de Desempenho Bimotor de Alcance Estendido, ou para abreviar, ETOPS.

O ETOPS determina a distância com que os aviões bimotores podem voar para longe de um aeroporto em que podem pousar, ou seja, se um dos motores falha, o avião tem que estar a uma distância máxima de algum aeroporto para que ele possa chegar a tempo. Normalmente, eles não podem se afastar mais do que 2 ou 3 horas de um local adequado para pouso.

Sobre a terra há muitos, e isso não é problema. Mesmo sobre os mares, várias ilhas estruturadas com longas pistas permitem uma travessia transoceânica.

No entanto, as coisas se tornam complicadas sobre a Antártida. Hoje, existem 50 pistas de pouso no continente gelado, mas nenhum aeroporto estruturado capaz de receber um voo comercial. Para colocar as coisas em perspectiva, o aeroporto de desvio potencial mais próximo do Polo Sul é o Ushuaia, na Argentina, porém ainda está a cerca 4 mil quilômetros de distância.

Mas essa não é a única razão, e não, não estamos falando sobre uma muralha de gelo que impede a travessia de aviões. Em primeiro lugar, há uma falta de qualquer necessidade real de sobrevoar a Antártida. Há muito menos tráfego aéreo nos confins do hemisfério sul do que no hemisfério norte.

Por exemplo, ali não há o equivalente àquelas rotas subpolares tipicamente movimentadas entre a América do Norte e a Ásia. E embora nenhum avião sobrevoe exatamente o Polo Sul, algumas rotas seguem pela costa do continente gelado, como os voos entre Sydney e Santiago ou Joanesburgo.

E recentemente, a companhia aérea portuguesa Hi Fly fez história ao pousar pela primeira vez um Airbus A340 em uma pista de gelo na Antártida.

O voo, que durou mais de 5 horas em novembro de 2021, partiu da Cidade do Cabo, na África do Sul, transportando 23 passageiros e vários equipamentos para um acampamento onde um pequeno grupo de turistas e cientistas estavam alojados.

Vídeo: B-1 Lancer: O bombardeiro supersônico americano que mudou o jogo


Neste vídeo, você vai conhecer todos os detalhes do B-1 Lancer, o único bombardeiro supersônico em operação pelos EUA! Vamos explorar sua história, tecnologias, e como ele se tornou um dos pilares da Força Aérea Americana. Descubra por que ele é uma peça essencial até hoje e como sua versatilidade mudou o conceito de bombardeios estratégicos.

Por que a Airbus foi criada para construir o A300?

O A300 fez seu primeiro voo em 1972, marcando o início da linha de aeronaves
de sucesso da Airbus (Foto: Getty Images)
A Airbus foi formada em 18 de dezembro de 1970 por duas empresas aeroespaciais europeias apoiadas pela França, Alemanha e Reino Unido. O novo fabricante há muito tinha planos para uma nova aeronave de corpo largo, conhecida como A300. Então, por que fazer uma nova aeronave exigiu a formação do Airbus?

Concorrente


A Airbus foi formada como uma resposta direta ao domínio das empresas aeroespaciais dos EUA no espaço da aviação comercial pós-Segunda Guerra Mundial. Empresas como Boeing, Lockheed Martin e McDonnell Douglas lideravam em termos de vendas e novos tipos de aeronaves, com as empresas europeias ficando para trás.

No entanto, alguns países europeus decidiram que seria melhor fundir seus principais fabricantes em um. Dada a formação da Comunidade Econômica Europeia (predecessora da UE), uma fusão era viável e uma boa forma de garantir que o continente tivesse seu próprio ecossistema de aviação robusto.

Henri Ziegler foi um dos fundadores da Airbus e foi o primeiro presidente da empresa (Foto: Getty Images)
O negócio entre França, Alemanha e Reino Unido viu a formação da Airbus, criada pela fusão da Aérospatiale e da Deutsche Airbus em 1970. No entanto, o A300 tem suas raízes alguns anos antes disso.

Um projeto político


Antes mesmo de as negociações para formar uma empresa europeia conjunta estarem concluídas, os ministros dos três principais países já estavam trabalhando na fabricação de uma nova aeronave. Em particular, a Alemanha, a França e o Reino Unido identificaram um mercado para uma aeronave de corpo largo bimotor, com cerca de 250 lugares sentados.

Em setembro de 1967, o trio concordou em colaborar nessa aeronave, que ficou conhecida como o programa A300 . Henri Zeigler era o gerente geral do programa, enquanto Roger Béteille liderava o desenvolvimento técnico. A dupla se tornou os fundadores da Airbus alguns anos depois. Em 1969, o A300 foi formalmente apresentado pela França e Alemanha.

A Air France foi uma das primeiras a adotar o A300, o que não é surpreendente,
dada a política antes da formação do avião (Foto: Getty Images)
Após meses de trabalho no projeto, ficou claro que reunir as empresas europeias era a maneira mais econômica de desenvolver o A300 e competir com os gigantes americanos. No entanto, convencer as três nações não foi fácil. O governo do Reino Unido retirou-se em 1969 devido ao medo de grandes perdas, enquanto a França ameaçou retirar-se devido à sua maior parte do investimento.

Veio junto


Apesar de todas as tensões políticas, França e Alemanha decidiram formar a 'Airbus', com a empresa de cada país possuindo 50% da empresa. O carro-chefe da nova empresa era o A300, uma aeronave de corpo largo que foi criada para ser uma das tecnologias mais avançadas do mundo.

O A300 ainda está em operação hoje com algumas operadoras e por dezenas de operadores
de carga como o A300-600 (Foto: Airbus)
O A300 foi criado para ser uma aeronave inovadora e tinha novos recursos, como materiais compostos. A partir de então, o resto é história, com a Airbus passando a se tornar uma das maiores fabricantes de jatos do mundo.

Por Jorge Tadeu com informações do Simple Flying

sexta-feira, 9 de janeiro de 2026

O futuro da aeronave russa que nunca voou

Em maio de 1992, a Popular Mechanics relatou o futuro brilhante das naves com asas no solo, conhecidas no ekranoplane russo. Esse futuro nunca veio.


Na edição de maio de 1992, a Popular Mechanics relatou o futuro brilhante da nave asa-no-solo (WIG), conhecida em russo como ekranoplane. Surgido de um projeto secreto da União Soviética, o Orlyonok representava o que esse futuro poderia ser. Nesta visão ambiciosa de viagens, frotas de navios pairando cruzariam os oceanos transportando passageiros e carga. É um futuro que nunca chegou, e hoje os ekranoplanos são encontrados principalmente em museus .

Em meio às ruínas de um império desgastado pelo longo impasse latente da Guerra Fria, estão espalhadas joias de tecnologia. Nascidos de décadas de trabalho secreto das melhores mentes que esta vasta nação conseguiu reunir, muitos são diferentes de tudo que o Mundo Livre já viu.

Uma dessas joias é chamada Orlyonok, ou Little Eagle. meio avião, meio embarcação, seu protótipo emergiu silenciosamente de um estaleiroao longo das margens do rio Volga, na Rússia, há mais de uma década. É a realização de um conceito com o qual os engenheiros ocidentais apenas brincaram.

Capaz de deslizar alguns metros sobre as ondas a 250 mph e pousar 30 toneladas de tropas, mísseis e suprimentos em uma cabeça de praia em guerra, Orlyonok foi projetado para lutar contra umguerra que nunca veio. Agora, desesperados para fazer seu vasto investimento valer a pena, os construtores de Orlyonok estão procurando novos mercados e começando a compartilhar seus segredos.

As linhas de comunicação entre o Oriente e o Ocidente ainda são instáveis. Mas as entrevistas com fontes russas e aerodinamicistas ocidentais estão começando a produzir uma visão detalhada de uma tecnologia que poderia, se devidamente alimentada, proporcionar o primeiro grande avanço no transporte de alta velocidade desde que a Boeing trouxe o voo a jato para as massas.

Orlyonok


Uma ilustração do Orlyonok

O Orlyonok é uma máquina enorme e complexa. Com um comprimento de 190 pés e um peso máximo de decolagem de 275.000 libras, está na escala de um avião largo de tamanho médio como o Boeing 767. O que diferencia Orlyonok, no entanto, é que, junto com um punhado de aviões russos semelhantes embarcação, é a primeira máquina voadora prática em grande escala construída para aproveitar um poderoso fenômeno aerodinâmico conhecido como efeito solo.

Familiar desde os primórdios da aviação, o efeito solo é o que explica o simples fato de as naves aladas voarem com mais eficiência quando estão próximas ao solo. Ele funciona alterando os padrões de fluxo de ar para aumentar a sustentação e reduzir o arrasto.

Em voo normal, o ar de alta pressão que sobe por baixo de cada ponta de asa agita correntes semelhantes a tornados, chamadas de vórtices nas pontas das asas. Eles voltam da asa e desviam a corrente de ar que passa para baixo. Isso dá à direção geral do fluxo de ar uma ligeira inclinação para baixo. E como a sustentação é perpendicular à corrente de ar, a asa tende a puxar o avião ligeiramente para trás e também para cima.

Os aerodinamicistas desenvolveram uma série de maneiras de lidar com isso, incluindo os winglets agora comuns nas pontas das asas dos aviões. Mas nada disso se compara à eficácia de voar tão baixo que o solo bloqueie os vórtices em espiral.

Embora qualquer avião possa se beneficiar do efeito solo simplesmente ficando a cerca de meia envergadura da superfície, é necessário um tipo diferente de veículo aéreo para tirar o máximo proveito disso. 

A recompensa é substancial, entretanto. Um veículo de efeito solo especialmente construído - conhecido como nave asa no solo (WIG) ou ekranoplane em russo - pode voar com cerca de um quinto da potência de um avião de tamanho semelhante voando sem efeito solo. Isso significa cinco vezes a eficiência de combustível.

Flarecraft


O Flarecraft

Ao longo dos anos, vários pequenos protótipos foram construídos para testar todos os tipos de configurações de WIG. Um dos mais avançados é o Flarecraft de 2 lugares, que apareceu em nossa capa de julho de 1989 (acima) e recentemente entrou em produção. Mas todos esses são brinquedos aerodinâmicos em comparação com o que os russos construíram.

“Eles estão, sem dúvida, 30 anos à frente do Ocidente”, diz Stephan Hooker, um importante especialista em efeitos de solo dos EUA que visitou vários escritórios de design russos.

Essa sofisticação é baseada não apenas em análises teóricas sólidas e testes completos, mas em décadas de experiência prática. Onde outros esboçaram, os russos construíram. Uma amostra do know-how resultante pode ser encontrada em Orlyonok. Embora os russos sejam rápidos em apontar que este não é seu design mais avançado, é de longe a WIG mais avançada a que os ocidentais têm acesso.


Um recurso-chave originado pelos russos, e embutido em todos os seus grandes WIGs, é a capacidade de usar algo chamado de efeito Power-Augmented Ram (PAR). No caso de Orlyonok , isso é criado por um par de turbofans Kuznetsov NK-8 montados dentro do nariz. Bicos giratórios direcionam a exaustão de volta para baixo das asas, onde fica presa por flaps da borda de fuga e placas finais das pontas das asas. O resultado é uma almofada de ar que levanta a nave da superfície e permite que ela se mova facilmente em baixas velocidades, como um hovercraft.

O PAR resolve um problema que sempre perseguiu os projetistas de hidroaviões. Ou seja, essa água é cerca de 800 vezes mais densa que o ar. Isso significa que é necessária uma enorme quantidade de energia para fazer um avião se mover na água rápido o suficiente para decolar. Historicamente, a solução tem sido sacrificar o desempenho de vôo ao dominar a nave e dar a ela uma grande área de asa para que possa voar em baixa velocidade. PAR reduz a necessidade de tais compromissos.

Filho de um monstro do mar


O design de Orlyonok foi desenvolvido pelo falecido Rostislav Evgenyevich Alekseev, uma figura reverenciada na aerodinâmica soviética. Um esforço anterior dele, conhecido no Ocidente como o "Marinheiro Cáspio", é a fonte da forma básica de Orlyonok . Construído no início dos anos 1960, aquele navio único era movido por 10 motores de turbina e era cerca de 300 pés de comprimento, tornando-se uma das maiores aeronaves já construídas.

Nos designs de Alekseev, a sustentação vem de uma asa atarracada e de baixa relação de aspecto montada na meia nau e uma grande superfície de cauda horizontal montada no topo da nadadeira vertical. Esta configuração de asa dupla supera a instabilidade longitudinal que tem afetado outros veículos de efeito solo. O problema surge de uma tendência do centro de pressão que suporta a nave se mover para frente e para trás com as mudanças de altitude. Alekseev localiza as superfícies da cauda altas o suficiente fora do efeito de solo e as modela de modo que essas dinâmicas complexas não sejam um problema.


No caso de Orlyonok, a cauda vertical alta também fornece o poleiro para um motor turboélice Kuznetsov NK-12, bem conhecido da OTAN por seu uso no bombardeiro estratégico Bear. Equipado com duas hélices contra-rotativas, ele libera 15.000 cavalos de potência para conduzir Orlyonok em vôo de cruzeiro, durante o qual os motores PAR dianteiros são normalmente desligados. Não apenas o turboélice é mais eficiente do que um jato, mas seu passo variável oferece notável capacidade de manobra em baixa velocidade no modo PAR.

Como é pilotar uma nave tão pouco ortodoxa? Valentin Vassilyevich Nazarov, designer-chefe do bureau de design Ekolen e um dos pilotos de teste de Orlyonok , falou conosco sobre isso por telefone de São Petersburgo, Rússia.

“O procedimento é semelhante ao de qualquer aparelho voador”, diz ele. “É preciso ligar os motores, colocar toda a tripulação em seus lugares, verificar todo o equipamento, aquecer os motores de decolagem e o motor principal. Em seguida, os motores de decolagem começam a bombear o ar sob a asa e o movimento horizontal começa. A embarcação começa a se erguer da água. Ele ganha velocidade de até 150 km/h (93 mph). Depois disso, o piloto pode usar todas as superfícies aerodinâmicas para voar a nave.” A altitude de cruzeiro normal é entre 25 e 40 pés, dependendo da altura da onda.

Parte da tensão de manter a altitude com tanta precisão é aliviada por um sistema de controle de voo computadorizado, que usa dados de Doppler de varredura de superfície e radares convencionais. Para evitar obstáculos, altitudes de até 5000 pés são atingíveis, mas com um alto custo de eficiência.

Uma ilustração de um ekranoplano comercial operado pela American Airlines

Embora notável em muitos aspectos, Orlyonok representa o passado, e não o futuro, do voo com efeito asa no solo. "Orlyonok já é história", diz Nazarov. Sem dinheiro, mas cheio de ideias, Ekolen já projetou uma série de novos ekranoplanos civis para substituí-lo.

De acordo com o presidente da agência, Ilya Lvovich Gerlozin, isso representa uma abordagem totalmente diferente. “Eu usaria apenas uma palavra para descrevê-lo: conforto. Em Orlyonok , não havia conforto porque costumava ser um veículo militar. ”Nem Nazarov nem Gerlozin discutiam detalhes da nova nave, cujos elementos dizem que agora estão sendo patenteados.

Os esforços de Ekolen representam apenas uma pequena parte da atividade dos ekranoplanos que agora emergem do sigilo na ex-União Soviética. Outro consórcio muito maior também é conhecido por realizar o trabalho de Alekseev. Além disso, uma abordagem substancialmente diferente, mas igualmente refinada, está supostamente sendo seguida pelos seguidores do designer italiano/soviético Roberto di Bartini. Seus esforços poderiam levar a veículos adequados para viajar pela tundra árida da Sibéria, bem como sobre a água.

No entanto, nenhuma empresa russa tem recursos para empreender um grande programa de construção por conta própria. Todos procuram parceiros estrangeiros.

A próxima onda


Um ekranoplano abandonado no Mar Cáspio, em foto de 6 de outubro de 2020

Um americano muito interessado em manter esse relacionamento é Stephan Hooker. Sua empresa de engenharia, Aerocon, foi contratada pela Agência de Projetos de Pesquisa Avançada de Defesa (DARPA) do Pentágono para explorar o potencial do voo de efeito asa no solo. A esperança é que se torne uma tecnologia de considerável valor militar e econômico para os Estados Unidos.

O resultado do pensamento de Hooker é que, se os WIGs devem ser práticos como transportes de longo alcance, eles terão que ser grandes - muito grandes. Típico dos primeiros estudos de design conceitual com que ele está trabalhando é uma nave de 150 metros de comprimento, pesando 4,5 milhões de quilos. Ele chama essa classe de veículo de "nave-asa".

Inicialmente, a ideia de construir uma máquina voadora com aproximadamente 10 vezes o tamanho do maior avião da Terra parece estranha - mas os argumentos de Hooker são lógicos. Eles começam com economia. “Se você é um projetista de aviões comerciais da Boeing, centavos por assento-milha é o seu grande diferencial”, diz ele. Essa consideração manteve a pressão para construir aeronaves cada vez maiores.


Conforme a progressão continua, no entanto, as demandas de aerodinâmica e integridade estrutural começam a se chocar. A aerodinâmica exige que as asas cresçam cada vez mais e mais finas para que a velocidade e a eficiência sejam mantidas. Eventualmente, torna-se impossível torná-los fortes o suficiente para resistir à flexão.

A solução de Hooker é integrar a asa com a fuselagem. "Você tem que trazer a estrutura de volta. Faça com que pareça uma caixa de lenços de papel", diz ele. "Você constrói navios que se parecem com isso e são muito mais pesados ​​do que 10 milhões de libras." Isso resolve o problema estrutural, mas leva para uma forma que carece de eficiência aerodinâmica. A menos que você voe com efeito de solo.

Isso introduz a questão da navegabilidade. Como diz Hooker, "O avião de tamanho padrão não pode competir com a onda do mar de tamanho padrão". Portanto, em condições típicas de oceano aberto, você teria que voar alto demais para usar o efeito de solo. a única maneira de contornar isso é construir uma aeronave maior. Não só ela será capaz de sobreviver ao impacto de uma onda ocasional, mas também terá uma envergadura maior e, portanto, será capaz de permanecer no efeito solo até altitudes mais elevadas. Em outras palavras , diz Hooker, “Para construir uma aeronave grande, tenho que construir uma aeronave enorme”.

Inquestionavelmente, construir uma nave espacial seria um empreendimento gigantesco. Mas não seria sem precedentes. Harvey Chaplin, diretor de tecnologia da Divisão Carderock do Naval Service Weapons Center, compara isso ao esforço que levou ao jato de transporte C-5 Galaxy da Força Aérea. “Você realmente precisa estar motivado para fazer isso”, diz ele. “Mas, se alguém desse esse passo, teria uma recompensa comercial”.


Hooker estima que as asas podem reduzir o custo da viagem entre aqui e a Europa para algo entre US $ 75 e US $ 100 por pessoa, e torná-lo muito mais confortável. "Eles são um pouco como os antigos navios oceânicos em termos de disponibilidade de espaço", disse Wayne Thiessen, um colega de Hooker na Aerocon.

Além do mais, os tempos de travessia não sofreriam significativamente. Os conceitos atuais de Hooker seriam capazes de cerca de 500 nós, apenas um pouco mais lento do que um jato. E, como a atual frota de aviões a jato, as asas poderiam ser chamadas para servir como transportes militares, quando necessário. Mas sua tremenda carga útil e alcance de 10.000 milhas os tornariam muito mais adequados para essa função.

Em última análise, a visão de Hooker é de um mundo mais próximo. "Como engenheiros, nossas raízes estão na construção de pontes", explica ele. E com as barreiras políticas entre os países agora desmoronando, os engenheiros podem finalmente continuar com a tarefa de transpor as barreiras geográficas que permanecem.

Até 2020, o ecranoplano Lun definhou numa base naval russa. Nesse ano de 2022, ele começou a ser transportado para um museu militar em Derbent (Rússia). Transportar a máquina de 385 toneladas pelo mar não foi uma tarefa simples. No caminho, o monstro ameaçou afundar após um vazamento e foi abandonado em uma praia, a alguns quilômetros do seu destino final. Virou atração turística.

Via Popular Mechanics e Extra

Vídeo: Avião SEM FREIO em CONGONHAS! O QUE ACONTECE?


Gravamos na madrugada, com acesso exclusivo à pista do Aeroporto de Congonhas, para mostrar em detalhes como funciona o novo sistema EMAS, desenvolvido para prevenir excursões de pista e aumentar a segurança operacional em um dos aeroportos mais movimentados do Brasil.

No vídeo, acompanhamos desde a fase de construção até como o EMAS está atualmente, explicando de forma clara como ele é capaz de desacelerar uma aeronave em situação de emergência.

Além disso, registramos a iluminação noturna, procedimentos de segurança e diversos detalhes que garantem a operação segura em Congonhas. Um conteúdo raro, com imagens inéditas da pista fechada e bastidores que o público normalmente não vê, revelando como a aviação brasileira segue evoluindo para proteger passageiros e tripulações.

Avião monomotor cai e piloto é socorrido em Tambaú, no interior de SP

Acidente aconteceu em Tambaú (SP) nesta quinta-feira (8) e piloto foi resgatado com ferimentos. Segundo a Defesa Civil, a aeronave fazia pulverização de cana-de-açúcar.


Um avião monomotor caiu na área rural de Tambaú (SP), na manhã desta quinta-feira (8). O piloto Leandro Braidotti, de 45 anos, sofreu escoriações leves e foi socorrido.

De acordo com a Defesa Civil, a aeronave Embraer EMB-202 Ipanema, de prefixo PT-VVE, fazia pulverização de cana-de-açúcar.

O piloto conseguiu sair a tempo, antes que o monomotor pegasse fogo após colidir com árvores. Socorrido, ele foi encaminhado ao Pronto-Socorro de Tambaú para receber cuidados médicos. Ele passa bem.

O dono do avião, Arnaud Araújo, disse que uma pane mecânica obrigou o piloto a fazer um pouso forçado. Ele afirmou à EPTV, afiliada da TV Globo, que o piloto é experiente e trabalha com ele há cerca de 3 anos.


O Corpo de Bombeiros de Casa Branca chegou a ser acionado, porém a Defesa Civil já havia prestado a assistência necessária.

Segundo a secretaria de Saúde, Claudia Lincoln, o piloto realizou exames médicos e não sofreu nenhuma fratura. Ele ficou em observação no hospital e recebeu alta nesta tarde.

"Paciente está em bom estado geral, consciente, comunicativo e não ocorreu nenhuma fratura", disse.

A empresa proprietária da aeronave, Agrossol, informou que já comunicou a Força Aérea Brasileira (FAB).

Avião monomotor ficou destruído após cair e pegar fogo em Tambaú, SP
(Foto: Esdras Pereira/EPTV)


Via g1

Aconteceu em 9 de janeiro de 2025: Cessna Citation 525 ultrapassa a pista em Ubatuba (SP) e explode em chamas


Em 9 de janeiro de 2024, a aeronave Cessna 525 CitationJet CJ1+, prefixo PR-GFS (foto abaixo), operava um voo particular do Aeroporto de Mineiros, em Goiás, para o Aeroporto de Ubatuba, no litoral norte de São Paulo, levando a bordo o piloto e quatro passageiros.

(Foto: Radioactivity/JetPhotos)
O Cessna Citation 525 CJ1 é um jato executivo bimotor a jato, projetado para viagens curtas, com capacidade para até nove pessoas. A aeronave acidentada foi fabricada em 2008. Tinha capacidade para sete ocupantes e estava com a situação de aeronavegabilidade considerada normal pela Agência Nacional de Aviação Civil (Anac), embora não possuísse autorização para operar como táxi aéreo.

Durante a tentativa de pouso no Aeroporto Estadual Gastão Madeira, em Ubatuba, sob condições meteorológicas adversas, incluindo chuva e pista molhada, a aeronave ultrapassou a pista 09, atravessou o alambrado e atingiu a praia do Cruzeiro, explodindo em seguida.


O piloto não resistiu aos ferimentos e faleceu no local. Os quatro passageiros sobreviveram e foram encaminhados para a Santa Casa de Ubatuba; Mireylle Fries passou por uma cirurgia de emergência.


Além dos ocupantes da aeronave, uma mulher e uma criança que estavam na rua foram atingidas e socorridas com vida. Testemunhas relataram que o avião não deixou marcas de frenagem na pista, sugerindo que não chegou a tocar o solo antes de ultrapassar os limites do aeroporto.


Inicialmente, a Prefeitura de Ubatuba havia informado que duas pessoas haviam morrido no acidente. Às 11h23, a administração municipal corrigiu a informação para apenas a morte do piloto.

Cinco pessoas estavam na aeronave: o piloto, Paulo Seghetto, de 55 anos, morreu depois de ser retirado das ferragens em parada cardiorrespiratória e passar por tentativa de reanimação.

Paulo Seghetto, piloto de avião que morreu em acidente em Ubatuba (SP) (Foto: Reprodução/Redes Sociais)
O casal Mireylle Fries, de 41 anos, e Bruno Almeida, de 45, além dos dois filhos deles – de seis e quatro anos, foram resgatados com vida. 

Três pessoas que estavam numa pista de skate que fica perto do local também foram socorridas. A Defesa Civil informou que cinco viaturas e 12 bombeiros atuam no local. A vítima grave foi a professora Rosana Maria Alves Vieira, de 59 anos. Ela chegou a ficar internada por causa de uma fratura no pé, mas recebeu alta.


Segundo o Grupamento de Bombeiros Marítimo (GBMar), a aeronave passou por uma excursão de pista, que é caracterizada quando o avião sai da pista no momento de pouso ou de decolagem.

Bruno Almeida Souza, de 41 anos, um dos sobreviventes da explosão do avião no início do ano em Ubatuba, contou em depoimento que achou a pista de pouso curta ao sobrevoar o aeroporto e que se assustou quando notou que o piloto iria tentar arremeter.

"Eu vi a pista acabando, eu falei 'nossa, não vai dar'. Aí meio que meu cérebro bloqueou, eu não lembro de mais nada", disse Bruno.


O sobrevivente contou também que percebeu que o piloto precisou fazer uma curva fechada por conta de um morro da região e que também percebeu que o avião demorou a tocar na pista.

Ainda durante a oitiva, Bruno afirmou à polícia que sentiu o avião freando, mas que, em seguida, percebeu que o piloto tentou arremeter, por achar que não daria tempo suficiente para frear.

Mireylle Fries, de 41 anos, o marido dela, Bruno Almeida Souza, de 41, e os dois filhos,
de 4 e 6 anos, sobreviveram ao acidente (Foto: Reprodução)
O passageiro relatou que a última lembrança que tem é da pista acabando. Ele afirmou à polícia que, depois disso, só se lembra de já estar internado no hospital.

"Quando ele entrou para fazer a cabeceira eu achei que ele fez uma curva muito fechada. Assim que ele tocou (no chão) ele já imediatamente acionou os freios, acionou o reverso da turbina e foi tentando parar o avião. De repente ele deu motor no avião. E aí eu falei: 'nossa, ele vai arremeter'. A pista é curta e não vai dar tempo de de parar. Fiquei, como se diz, de orelha em pé. Eu vi a pista acabando e falei: ''Nossa, a pista tá acabando'. A minha primeira lembrança depois é no hospital. E já acamado", contou Bruno para a polícia.

(Imagem: RadarBox)
Em nota, a Força Aérea Brasileira (FAB) disse que o Centro de Investigação e Prevenção de Acidentes Aeronáuticos (Cenipa) foi acionado para a ocorrência e que, na ação inicial, são utilizadas técnicas específicas para realização de coleta e confirmação de dados, preservação dos elementos, verificação inicial de danos na aeronave, entre outras informações.


As autoridades competentes, incluindo o Serviço Regional de Investigação e Prevenção de Acidentes Aeronáuticos (SERIPA), foram acionadas e estão conduzindo investigações para determinar as causas do acidente. Fatores como as condições climáticas adversas e a extensão da pista do aeroporto de Ubatuba, que possui 940 metros de comprimento, estão sendo considerados nas análises iniciais. O Cessna 525 precisa de 789 m para pouso, segundo o site da fabricante. 

(Foto: João Mota/TV Vanguarda)
Por Jorge Tadeu da Silva (Site Desastres Aéreos) com Wikipédia, g1, UOL, Aeroin e ASN

Vídeo: Mayday Desastres Aéreos - Voo Sriwijaya Air 182 Luta por potência


Ative a legenda em português nas configurações do vídeo