sexta-feira, 17 de outubro de 2025

Aconteceu em 17 de outubro de 1999: VooFedEx Express 87 sai da pista e mergulha em baia nas Filipinas


Em 17 de outubro de 1999, o avião McDonnell Douglas MD-11F, prefixo N581FE, da FedEx Express (foto abaixo), operava o voo de 087, um voo de carga do Aeroporto Internacional de Xangai Hongqiao, na China, para o Aeroporto Internacional de Subic Bay, nas Filipinas, levando a bordo dois tripulantes.

A aeronave possuia nove anos de idade, com número de série 48419. Ela registrava 30.278 horas de voo em 5.817 ciclos de voo. Era equipada com três motores General Electric CF6.


A bordo da aeronave estavam apenas dois pilotos: 
No comando estava o Capitão Michael Rooney, de 53 anos. Ele tinha um total de 14.000 horas de voo e 1.430 horas de experiência no MD-11. O capitão foi contratado pela Flying Tiger Line na década de 1980 como copiloto no Douglas DC-8 e no Boeing 747. Desde a fusão da empresa com a FedEx, ele era capitão do Boeing 727 e, em abril de 1996, começou a pilotar o MD-11 como capitão. 

A copiloto era a primeira oficial Cynthia Hubbard, de 43 anos. Ela voou um total de 5.700 horas e tinha 2.300 horas de experiência no MD-11. Antes de ingressar na FedEx, ela serviu na Força Aérea dos Estados Unidos (USAF) por oito anos como capitã do Boeing 737 e do Lockheed C-5 Galaxy. Depois de ingressar na FedEx, ela trabalhou como engenheira de voo no Boeing 727 e no McDonnell Douglas DC-10, antes de se qualificar como copiloto no MD-11.

A Zona Econômica Especial e Franca de Subic era anteriormente o local da Base Naval de Subic, e um pequeno aeroporto era um dos centros da FedEx.

Aeroporto Internacional da Baía de Subic em 1990
Por volta das 13h UTC, a aeronave decolou do Aeroporto Internacional de Xangai Hongqiao, na China.

Às 15h24, o gravador de voz da cabine (CVR) ouviu a mensagem do comandante: "A velocidade retornou, não há problema. Não tenho problemas de velocidade". 

Às 15h32, o CVR gravou os pilotos discutindo novamente a velocidade. Um minuto depois, o alerta de excesso de velocidade e o alarme de desacoplamento do piloto automático foram ativados. 

Às 15h53, o comandante instruiu o primeiro oficial a ajustar os flaps para 50 graus, e o primeiro oficial moveu as alavancas dos flaps para a posição de 50 graus. No entanto, os flaps não se estenderam a 50 graus, então o primeiro oficial moveu as alavancas dos flaps de volta para a posição de 35 graus. 

Às 15h54, a uma altitude de 150 m (500 pés), o alerta de razão de descida e o sistema de alerta de proximidade do solo (GPWS) foram ativados. 

Às 15h55:04, a aeronave pousou na pista 07 do Aeroporto Internacional de Subic Bay. A aeronave não parou na pista, mas entrou em contato com a antena do localizador e as luzes de aproximação. 

A aeronave mergulhou na Baía de Subic e ficou submersa, exceto a cabine. O nariz da aeronave se partiu e a carga caiu do porão. A asa e o nariz da aeronave foram danificados. A aeronave afundou 32 pés (10 m) da costa do aeroporto. Antes, A aeronave havia atingido um poste de concreto e uma cerca de arame.

Os pilotos escaparam pelas janelas da cabine e esperaram o resgate na asa. Eles sofreram ferimentos leves. Os pilotos foram posteriormente tratados no Hospital Legend, em Cubi Point, uma instalação aérea da Marinha dos Estados Unidos localizada na borda da Base Naval da Baía de Subic e adjacente à Península de Bataan, nas Filipinas.


A FedEx posteriormente divulgou um comunicado dizendo que estava "grata" que a tripulação estivesse segura. A aeronave estava vazando combustível na água, o que levou as autoridades do aeroporto a cercar a aeronave com uma barreira para evitar que o combustível se espalhasse. A maior parte da carga foi destruída.

Durante uma entrevista com os pilotos, o capitão disse que não houve problema com o indicador de velocidade do ar desde a decolagem até o momento da subida para a altitude de cruzeiro. Após a aeronave encontrar nuvens durante o cruzeiro, o piloto automático foi desativado várias vezes e um aviso de velocidade do ar (IAS) apareceu no display primário de voo (PFD) no assento do capitão. 


O capitão comparou o indicador de velocidade do ar com o indicador de velocidade do ar do primeiro oficial e, quando um erro foi observado, a fonte do indicador de velocidade do ar no lado do primeiro oficial mudou para o computador de dados aéreos (ADC) no lado do capitão. O capitão testemunhou que não notou nenhuma anormalidade, exceto que sentiu que o leme do elevador estava operando de forma ligeiramente diferente durante a aproximação para pouso. 

Na aproximação final, os flaps não puderam ser estendidos para 50 graus, então a aproximação permaneceu em 35 graus, mas o capitão não estava particularmente preocupado. O capitão disse que estava ciente da existência de uma lista de verificação para problemas de velocidade do ar, mas nunca havia sido treinado para usá-la. 

A primeira oficial também testemunhou que não houve problemas com o indicador de velocidade do ar, da decolagem à altitude de cruzeiro. A primeira oficial afirmou estar ciente da existência de uma lista de verificação para problemas de velocidade do ar, mas não a mencionou porque o problema foi resolvido com a unificação do ADC. Ela também afirmou que nunca havia se deparado com uma situação em que o PFD recebesse um aviso IAS e que não havia sido treinada para tal situação.

Três tubos pitot são instalados no nariz dos MD-11, logo abaixo da cabine
A velocidade do ar e a altitude foram calculadas com base na pressão do ar externo medida por um tubo pitot. O MD-11 foi equipado com três tubos pitot, cada um medindo dados para o lado do capitão do instrumento, o lado do copiloto do instrumento e o instrumento de backup. Além disso, havia dois furos de drenagem no tubo pitot. 

Uma inspeção do dreno no tubo pitot do lado do copiloto revelou que um dos dois tubos estava bloqueado por partículas cristalinas transparentes. Além disso, a ponta do tubo pitot também estava bloqueada por partículas cristalinas brancas e insetos mortos. O dreno do tubo pitot do lado do capitão estava bloqueado por resíduos brancos e marrons, respectivamente, e a ponta também estava bloqueada pelas mesmas partículas do lado do copiloto. 

A Honeywell e a Boeing conduziram o experimento sob a supervisão da Administração Federal de Aviação (FAA). No experimento, uma certa quantidade de água foi colocada no tubo pitot. Como resultado, constatou-se que havia um erro nos dados medidos, e a velocidade do ar foi exibida como 12 nós (22 km/h) mais lenta do que realmente era. Isso era consistente com o erro inicial da aeronave. 


Outros experimentos foram conduzidos para testar a extensão do erro entre a descida e o pouso. Houve relatos anteriores de velocidade anormal na aeronave acidentada. A FedEx tomou várias medidas, mas não inspecionou o dreno, que "talvez" fosse a raiz do problema. 

De acordo com o gravador de voz da cabine e as gravações do Digital Flight Data Recorder (DFDR), a discrepância de velocidade começou a ocorrer 43 minutos antes do pouso. Noventa segundos depois, o piloto automático foi liberado enquanto a aeronave estava a 37.000 pés (11.000 m). 

De acordo com a Boeing, o piloto automático foi projetado para desengatar automaticamente se houvesse um erro de mais de 12 nós (22 km/h) no valor da velocidade do ar. Um erro de 12 nós (22 km/h) foi inicialmente introduzido no sistema de instrumentos do capitão e, em seguida, aumentou conforme o voo descia, resultando em uma diferença de 45 nós (83 km/h). Isso foi semelhante aos dados obtidos no experimento.

O relatório final atribuiu o acidente à falha do piloto em responder adequadamente à indicação incorreta da velocidade do ar e em reconhecer a velocidade correta. Além disso, o dreno do tubo pitot estava bloqueado, o sistema de alarme que alertou sobre a anormalidade da velocidade do ar era insuficiente e o procedimento da lista de verificação não incluía referência aos instrumentos de backup.

O relatório recomendou que todos os operadores do DC-10, MD-11 e MD-10 fizessem uma inspeção detalhada dos tubos de Pitot em intervalos frequentes e mudassem o treinamento para enfatizar a correção de indicações errôneas de velocidade do ar.

Como resultado deste acidente e de outros relatos de anomalias de velocidade por outros operadores do McDonnell Douglas MD-11, o Manual de Operação da Tripulação de Voo do MD-11 foi revisado pela Boeing em 15 de junho de 2000. O manual foi revisado para fornecer orientação adicional às tripulações de voo. 

O manual afirma que, se os alertas "SEL FADEC ALTN", "SEL ELEV FEEL MAN" e "SEL FLAP LIM OVRD" forem exibidos simultaneamente, qualquer tripulação deve usar esses alertas como indicações para seguir a lista de verificação "Velocidade Perdida, Suspeita ou Errática".

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia e ASN

Aconteceu em 17 de outubro de 1988 - Voo Uganda Airlines 775 - Queda em Roma na 3ª tentativa de pouso

Na segunda-feira, 17 de outubro de 1988, o voo 775 da Uganda Airlines, operado pelo Boeing 707-338C, prefixo 5X-UBS (foto acima), decolou do aeroporto de Londres-Gatwick, no Reino Unido, às 21h10, hora local, em direção ao aeroporto Roma-Fiumicino, na Itália e, posteriormente, a Entebbe, em Uganda.

A bordo do 707 estavam sete tripulantes e 45 passageiros, entre eles um ex-embaixador de Uganda no Vaticano.

Durante a aproximação a Roma, foi recebida autorização para uma descida a 4.000 pés em preparação para uma aproximação ILS para a pista 16L. A visibilidade estava se deteriorando com valores de RVR de 400 m (ponto Alfa), 1000 m (ponto Bravo) e 350 m (ponto Charlie). 

Um procedimento de aproximação abortada foi realizado às 00h05. Uma segunda abordagem foi tentada, desta vez para a pista 25. Esta também foi abandonada devido à pouca visibilidade. 

Exatamente às 12h31, o Boeing 707, que havia tentado pousar duas vezes, mas falhou, fez a terceira tentativa que mais tarde se tornaria a última.

Já a oeste da pista do aeroporto, com o Reverendo Anthony Zziwa, que era um dos passageiros, orando alto “Lord Have Mercy”, o avião partiu para a terceira tentativa de pouso. 

Os valores RVR para a pista 34L (1600 m, 2000 me 150 m respectivamente na Alfa, Bravo e Charlie) fizeram a tripulação solicitar a vetorização do radar para a pista 34L. A aeronave foi estabelecida no localizador às 00h28. 

A aeronave continuou a descer abaixo do MDA de 420 pés, embora as marcações visuais da pista não tenham sido localizadas. Como a tripulação de voo falhou em usar as chamadas de altitude, o GPWS soou inesperadamente.

A aeronave colidiu com o telhado de uma casa a 1300 m da pista, 100 m à direita da linha central estendida, continuou e impactou outro prédio 85 m mais adiante. O Boeing então se separou e explodiu em chamas. Dentro do avião, muitos gritaram por socorro, enquanto pelo menos 33 deles estavam em silêncio eterno. 

Trinta e três ocupantes do avião morreram, entre eles sete membros da tripulação, e 19 sobreviveram ao acidente, incluindo o Reverendo Anthony Zziwa e o empresário e ex-embaixador de Uganda no Vaticano John HarigyeEste último disse que escapou com ferimentos leves porque estava sentado ao lado de uma saída de emergência.


Oito horas após o acidente, a equipe de resgate recuperou o que parecia ser os restos mortais de pelo menos 23 das 30 pessoas que se acreditava mortas. A polícia disse que outras duas pessoas morreram no hospital e que os corpos restantes provavelmente ficaram presos sob os destroços retorcidos e fumegantes.


Enquanto os bombeiros vasculhavam os escombros ao amanhecer, o casco carbonizado do avião fumegava. Dois corpos cobertos com lençóis estavam perto da aeronave destruída. Almofadas de assento, caixas, um estojo de maquiagem e uma boneca torcida estavam espalhados na lama nas proximidades.

Renato Ubasi, um oficial da autoridade da aviação, disse que os investigadores encontraram o gravador de voz da cabine. Já a polícia recuperou o gravador de dados de voo.

Quase todos os que estavam a bordo eram homens de negócios ou turistas de Uganda que voltavam de Londres para a república da África Oriental. Uma lista das 52 pessoas a bordo do avião emitida pelo quartel-general da polícia de Roma mostrava apenas quatro nomes que não pareciam ser de Uganda.

A polícia disse que os sobreviventes fugiram ou foram resgatados da fuselagem antes que ela explodisse em chamas. A força do acidente lançou a seção que consistia da cabine e a outra asa a 300 metros de distância.

A falta de tripulação de uma preparação adequada no processo de uma abordagem não precisa na pista 34L do aeroporto de Fiumicino, especialmente em matéria de tripulação de coordenação e altitude textos explicativos e sua descida contínuo para além MDA sem ter localizado as marcas visuais da pista.

Além disso, os seguintes fatores podem ter contribuído para a causa do acidente:

1) Fadiga mental e física presumida, acumulada pela tripulação durante as duas abordagens de pouso anteriores, que também foram realizadas em uma situação ambiental extremamente desfavorável e operacionalmente exigente. ;

2) Uma configuração dos Instrumentos de Altitude, que embora suficiente para as aproximações realizadas, consistia em um único rádio altímetro com o aviso acústico do cruzamento do MDA inoperante;

3) A atenção da tripulação estava excessivamente concentrada nas fontes luminosas ao longo da pista 34L, em vez de nas leituras dos instrumentos.

Além disso (...) parte da Junta de Inquérito, bem como o representante do CA de Uganda, se desvincularam da maioria, na fase de identificação dos fatores que podem ter contribuído para causar o acidente”.

Por Jorge Tadeu (Site Desastres Aéreos) com UPI, AP, nilepost.co.ug, ASN e baaa-acro.com

Aconteceu em 17 de outubro de 1958: Queda de Tupolev da Aeroflot em Kanash, na Rússia, deixa 80 mortos

Ative a legenda em português nas configurações do vídeo

Em 17 de outubro de 1958, o Tupolev Tu-104A, prefixo CCCP-42362, operado pela Aeroflot, realizava a rota internacional de Pequim (China) a Moscou (Rússia).

Um Aeroflot Tu-104A, semelhante ao envolvido no acidente
No total, estavam a bordo nove tripulantes e 71 passageiros. Além de três comissários de bordo e uma tripulação da cabine composta por: Capitão Garold Dmitrievich Kuznetsov, Capitão Anton Filimonovich Artemov, Copiloto Igor Alexandrovich Rogozin, Engenheiro de voo Ivan Vladimirovich Veselov, Navegador Yevgeny Andreevich Mumrienko e Operador de rádio Alexander Sergeevich Fedorov.

A tripulação do Tupolev Tu-104A
Os passageiros a bordo do voo consistiam em grande parte de delegações diplomáticas de várias nações estrangeiras, a maioria delas aliadas soviéticas, que estavam a caminho de Moscou para um evento oficial. 

O maior grupo de passageiros a bordo da aeronave eram cidadãos soviéticos, no entanto, uma delegação comunista chinesa de dezesseis pessoas , liderada pelo proeminente escritor e acadêmico Cheng Chen-to (Zheng Zhenduo) e Tsai Sha-fan, formava o maior grupo de cidadãos estrangeiros no voo. O único cidadão cambojano no voo era o embaixador do Camboja na China.

O CCCP-42362 decolou de Pequim a caminho de Moscou em 17 de outubro de 1958. Ele pousou em sua escala em Omsk, na Rússia, antes de continuar a oeste até seu destino final. 

Ao se aproximar do aeroporto Moscou-Vnukovo, a autorização para pousar foi negada pelos controladores devido ao forte nevoeiro. Os pilotos desviaram para seu alternativo, o Aeroporto de Gorky, antes de prosseguir para Sverdlovsk depois que o tempo em Gorky também foi considerado inadequado para o pouso. 

Neste ponto, a aeronave estava voando a uma altitude de 10.000 metros (33.000 pés) quando repentinamente voou para uma área de alta turbulência, fazendo com que a aeronave experimentasse um aumento repentino e drástico dearremesso.

Apanhada por uma poderosa corrente ascendente, a aeronave atingiu abruptamente uma altitude de 12.000 metros (39.000 pés). De acordo com a gravação de voz de um dos pilotos na cabine de comando, a aeronave estava "em pé sobre as patas traseiras" e logo depois entrou em um mergulho quase vertical seguido de um giro.

Apesar dos esforços da tripulação, a força nos estabilizadores horizontais da aeronave era muito grande para os pilotos superarem e um impacto com o solo tornou-se inevitável. 

O piloto em comando do voo, Harold Kuznetsov, instruiu o operador de rádio a transmitir detalhes sobre a situação da aeronave aos controladores de solo antes de gritar "...estamos morrendo! Adeus!". 

Às 21h30, o Tu-104A caiu perto da estação ferroviária de Apnerka, a oeste da cidade de Kanash, quatrocentas milhas a leste de Moscou, matando todas as 80 pessoas a bordo.


A investigação sobre o acidente foi liderada pelo Ministro de Produção de Aeronaves Mikhail Khrunichev e o Chefe do Marechal da Força Aérea Pavel Zhigarev, chefe da Aeroflot. 

A causa do acidente foi determinada como uma perda de controle como resultado do voo da aeronave em uma área de forte turbulência que a fez exceder os ângulos de ataque críticos. 

Esta conclusão foi alcançada comparando a experiência de outros pilotos do Tu-104 que relataram casos semelhantes após voar em altitudes de 8.000 metros (26.000 pés)) e superiores, e exame das gravações de voz da cabine. 

Como resultado do acidente, as autoridades limitaram o nível máximo de voo do Tu-104 a 9.000 metros (29.500 pés) e um redesenho dos estabilizadores da aeronave foi realizado.

Monumento às vítimas do acidente de Kanash Tu-104 no Cemitério Revolucionário Babaoshan
Este foi apenas o segundo acidente fatal envolvendo o Tu-104 que havia sido introduzido no inventário da Aeroflot dois anos antes, e o mais mortal na história da aeronave até a queda do voo 902 da Aeroflot em 1962.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e kanashen.ru

Hoje na História: 17 de outubro de 1935 - Voo inaugural do Muniz M-7, o primeiro avião fabricado em série no Brasil


Há 85 anos, no dia 17 de outubro de 1935, aconteceu o voo inaugural do Muniz M-7, fabricado pela Companhia Nacional de Navegação Aérea (CNNA). O modelo era um o monomotor utilizado para treinamento de pilotos e atingia a velocidade de 190 Km/h. A aeronave possuía dois assentos apenas e tinha capacidade para executar acrobacias. 

O Muniz M-7 foi a primeira aeronave produzida em série no Brasil, projetada pelo Major do Exército Brasileiro Antônio Guedes Muniz.

Guedes Muniz (à esquerda) e o protótipo da aeronave M-7
O protótipo foi construído no Parque Central de Aeronáutica (Campo dos Afonsos) e os aparelhos seguintes, por iniciativa do industrial Henrique Lage, tiveram sua fabricação seriada foi feita pela  Fábrica Brasileira de Aviões, na Ilha do Viana (Rio de Janeiro). 

A Escola de Aviação Militar, que funcionava no Campo dos Afonsos, utilizou 11 aviões M-7 de um total de 28 produzidos de 1937 à 1941, ficando os outros 17 para aeroclubes. O exemplar em exposição, número de matrícula “13” (fabricado em 1938), voou em aeroclubes com a matrícula “PP-TEN”, de 1941 à 1967.

O M-7 PP-TEN (Foto: Canal do Piloto)
Denominada Muniz M-7, a aeronave contava com um motor inglês Gipsy Major, de 130 cavalos de força. O avião tinha 7,24 metros de comprimento e 9 metros de envergadura, voava a uma velocidade de cruzeiro de 150 km/h e  atingia uma velocidade máxima de 190 km/h, com um alcance de 450 km e teto de 4.000 metros; seu peso completo era de 860 kg.

Durante a construção, Guedes Muniz pode testar várias de suas ideias sobre a produção seriada de aviões no Brasil. A Usina Santa Luzia construiu as bequilhas e as rodas fundidas de liga de metal leve para o trem de aterrissagem, a Companhia Nacional de Navegação Aérea construiu os lemes de aço soldado, a tela de algodão para o recobrimento da asa também foi encomendada à indústria têxtil nacional. Muitos outros itens, utilizados nos protótipos e mesmo nos modelos produzidos em série, foram fabricados pela indústria nacional.

Por conta do voo inaugural do Muniz M-7, no dia 17 de outubro é celebrado o Dia da Indústria Aeronáutica Brasileira.

Um Muniz M-7 em exposição no Museu Aeroespacial da FAB, no Rio de Janeiro

Por Jorge Tadeu (Fontes: Musal / Canal do Piloto / Wikipedia)

Hoje na História: 17 de outubro de 1922 - A primeira decolagem de um porta-aviões da Marinha dos EUA

Um Vought VE-7 decolando do USS Langley, 1922. O segundo avião é uma aeronave de treinamento Aeromarine 39 (Foto: Marinha dos Estados Unidos)

Em 17 de outubro de 1922, o Tenente Comandante Virgil Childers ("Squash") Griffin, Jr., da Marinha dos Estados Unidos, fez a primeira decolagem de um porta-aviões da Marinha dos EUA, quando decolou em um caça Chance Vought Corporation VE-7 do convés do USS Langley (CV-1) enquanto o navio estava ancorado no Rio York, ao longo do lado oeste da Baía de Chesapeake, em Maryland.

Um Vought VE-7 decola do USS Langley (CV-1) (Foto: Museu Nacional da Aviação Naval)

Vought VE-7

O Vought VE-7 foi originalmente encomendado como uma aeronave de treinamento de dois lugares, mas seu desempenho e qualidades de manuseio eram tão bons que foi amplamente utilizado como caça. O VE-7SF era um biplano monomotor construído para a Marinha dos Estados Unidos.

O Vought VE-7SF 2-F-16 (Foto: Chance Vought)

O VE-7 tinha 22 pés e 5-3/8 polegadas (6,842 metros) de comprimento, uma envergadura de 34 pés, 4 polegadas (10,465 metros) e altura de 8 pés e 7½ polegadas (2.629 metros). As asas de duas baias foram separadas por uma lacuna vertical de 4 pés e 8 polegadas (1.422 metros) e a borda dianteira da asa inferior foi escalonada 11 polegadas (27,9 centímetros) atrás da asa superior. Ambas as asas tinham 1,25° diédrico. 

A asa superior teve incidência de + 1,75°, a asa inferior teve + 2,25°. O VE-7 pesava 1.392 libras (631 kg) vazio e tinha peso bruto de 1.937 libras (879 kg).

USS Langley

O USS Langley foi o primeiro porta-aviões da Marinha dos Estados Unidos. O navio foi batizado em homenagem a um cientista americano, Samuel Pierpont Langley. Era um ex-mineiro,  USS Jupiter (AC-3), que foi convertido no Estaleiro da Marinha de Norfolk, 1921-1922. Como porta-aviões, Langley tinha um complemento de 468 homens, incluindo a ala aérea. O navio tinha 542 pés e 2,5 polegadas (165,27 metros) de comprimento, no geral, com um feixe de 65 pés e 6 polegadas (19,96 metros) e calado de 22 pés e 1 polegada (6,73 metros). O porta-aviões teve um deslocamento de carga total de 15.150 toneladas longas (15.393 toneladas métricas).

O USS Langley (CV-1) com caças Vought VE-7SF no convés de voo, fundeado na Ilha Culebra, em Porto Rico, em 18 de março de 1926. Ao fundo, estão o USS Tennessee e o navio de guerra USS New Mexico 
(Foto: Marinha dos Estados Unidos)

Langley era movido por um motor turboelétrico General Electric, com um total de 6.500 cavalos de potência. Ela poderia fazer 15,5 nós (17,8 milhas por hora; 28,7 quilômetros por hora). O porta-aviões tinha um alcance máximo de 4.000 milhas (6.437 quilômetros).

Além de seu grupo aéreo de até 36 aviões, Langley era defendida por quatro canhões de 5 polegadas/51 calibre (127 mm x 6,477 metros). Esta arma poderia disparar um projétil de 50 libras (22,7 quilogramas) a uma distância de 15.850 jardas (14.493 metros) quando elevada a 20 °. Sua cadência máxima de tiro foi de 9 tiros por minuto.

Conforme os porta-aviões mais modernos Lexington e Saratoga  entraram em serviço, Langley foi mais uma vez convertido, desta vez em um leilão de hidroaviões, e reclassificado como AV-3, em 21 de abril de 1937.

USS Langley (CV-1), em 1922 (Foto: Marinha dos EUA)

O USS Langley foi seriamente danificado por bombardeiros de mergulho japoneses durante a Batalha do Mar de Java, em 27 de fevereiro de 1942, tendo sido atingido por cinco bombas. O navio foi afundado cerca de 75 milhas ao sul de Tjilatjap, em Java, para evitar a captura, quando seus destruidores de escolta dispararam dois torpedos contra ele.

O contra-almirante Jackson R. Tate, da Marinha dos EUA (aposentado) descreveu a primeira decolagem: “Estávamos operando ao norte do Tongue of the Shoe, em direção ao mar do canal principal de Norfolk, Virgínia. Uma calha de cerca de 6 pés de comprimento, montada em cavaletes foi montada na extremidade traseira do convés de voo. Quando o patim da cauda do VE-7 usado no teste foi colocado na depressão, ela estava na atitude de voo.

“Não tínhamos freios, então o avião foi segurado no convés por um cabo com o lançamento de uma bomba no final. Este foi preso a um anel no trem de pouso. 'Squash' Griffin subiu, ligou o motor Hispano Suiza para 180 cv e deu o sinal de “vai”. O lançamento da bomba foi interrompido e o Vought rolou pelo convés. Quase antes de alcançar o elevador do centro do convés, já estava no ar. Assim, a primeira decolagem de um porta-aviões americano.”

O piloto Virgil Childers Griffin, Jr.


Virgil Childers Griffin, Jr. nasceu em Montgomery, Alabama, em 18 de abril de 1891. Ele foi o primeiro de três filhos de Virgil Childers Griffin, secretário da Comissão Ferroviária do Alabama, e Mary Lee Besson Griffin.

O então aspirante Virgil C. Griffin, Jr. (Foto: USNA)

O capitão Virgil Childers Griffin, Jr., aposentou-se da Marinha dos Estados Unidos em 1º de janeiro de 1947. Ele morreu em San Diego, Califórnia, em 27 de março de 1957, aos 66 anos de idade. Ele foi enterrado no Cemitério Nacional Fort Rosecrans.

Nota


Eugene Ely foi o primeiro piloto a decolar de um navio estacionado em 14 de novembro de 1910. O navio era o cruzador USS Birmingham, estacionado em Hampton Roads na Virginia, e a aterrissagem deu-se em Willoughby Spit após um voo de 5 minutos. A 18 de Janeiro de 1911 tornou-se o primeiro piloto a aterrissar num navio estacionado. Decolou da pista de corridas de Tanforan e aterrissou no USS Pennsylvania ancorado em São Francisco (Califórnia).

O comandante da Marinha Real Charles Samson tornou-se o primeiro piloto a decolar de um navio em movimento a 2 de Maio de 1912. Decolou do navio de guerra HMS Hibernia num Shorts S27, com o navio a uma velocidade de 10,5 nós (19 km/h) durante a Inspecção da Frota Real, em Weymouth.

Por Jorge Tadeu (com thisdayinaviation.com)

A rota de um avião precisa considerar a rotação da Terra?

Na maior parte das vezes, não. Mas há alguns instrumentos de voo que precisam ser corrigidos pela rotação terrestre.


Não, porque a atmosfera se move junto com a Terra. Quando o planeta gira, ele carrega a massa de ar que está em seu entorno. E como é o ar que sustenta o avião, ele é carregado junto. O piloto não precisa se preocupar se está indo contra ou a favor da rotação terrestre. Caso contrário, uma viagem para o Oeste seria mais rápida que uma para o Leste.

Dá para fazer o experimento sozinho: você pula para cima e cai no mesmo lugar. Se o ar não estivesse se movendo com a Terra, bastaria pular por tempo suficiente e esperar que o Chile chegasse até você. A cada segundo no ar, seu corpo avançaria 465 m. Um avião comercial atinge algo entre 11 e 12 mil m do solo, mas ainda é como se ele estivesse dando um longo pulinho.

Segundo Jorge ​​Bidinotto, professor de engenharia aeronáutica da USP, esse problema só começa a aparecer em altitudes muito elevadas, superiores a 15 mil metros, em que o ar é bem mais rarefeito. Os aviões costumam usar pontos de referência na superfície terrestre para se guiar, chamados waypoints. Essas referências estão em repouso em relação à atmosfera, então não precisam levar em conta o movimento terrestre.

A única parte do avião que se preocupa com a rotação da Terra é o chamado Sistema de Navegação Inercial, um conjunto de instrumentos que indicam a direção da aeronave com auxílio de um giroscópio – um dispositivo que é imune até ao movimento do planeta, e por isso precisa ser reajustado para compensá-lo. Nesse caso, deve ser aplicada uma correção de 15 graus por hora na direção leste-oeste, para compensar a rotação terrestre. Na maior parte das vezes, essa correção é automática.

Por Maria Clara Rossini (super.abril.com.br)

Airbus A330-200 x A330-300: Quais são as principais diferenças?

As duas variantes entraram em serviço com quatro anos de diferença.


O Airbus A330 chegou aos céus pouco mais de duas décadas após o inovador A300 da empresa, e o fabricante europeu faria duas versões da aeronave. Estes foram designados como A330-200 e A330-300, mas quais são as diferenças entre eles? Vamos dar uma olhada e descobrir.

Como tudo começou


A Airbus reconheceu uma demanda por aeronaves widebody capazes de operar rotas troncais transcontinentais de alta capacidade e alcance médio. Voos como Paris para Istambul eram populares o suficiente para um avião maior que o A300, mas não justificavam os Boeing 747 quadrimotores . A Airbus também queria uma aeronave para substituir os projetos de fuselagem larga de três motores, como o McDonnell Douglas DC-10 e o Lockheed L-1011 TriStar.

Isso levou a Airbus a projetar o Airbus A330 e o A340 simultaneamente, sobre os quais você pode ler aqui . O primeiro a chegar ao mercado foi o A330-300. No entanto, quando a Boeing lançou o 767-300ER, as vendas do Airbus A330-300 caíram, com a fabricante europeia reconhecendo que a indústria precisava de uma versão menor e de maior alcance. Isso resultou na produção do modelo A330-200.

A transportadora francesa Air Inter foi a operadora de lançamento do A330
(Foto: JetPix via Wikimedia Commons)
Ambas as versões foram bem sucedidas, e a Airbus acabou desenvolvendo uma nova geração da série A330 conhecida como A330neo como resultado. Mas quão diferente é o A330-200 menor em comparação com o modelo A330-300 original e maior?

Capacidade de passageiros


Os números divulgados pela Airbus mostram que o menor A330-200, que mede 58,82 metros de comprimento, tem uma capacidade típica de 220 a 260 passageiros. Enquanto isso, com o A330-300 sendo quase cinco metros mais longo (63,66 metros), esta versão do jato duplo tem uma capacidade típica maior de 250-290 assentos.

É claro que as companhias aéreas alteram ou configuram rotineiramente a aeronave ao seu gosto, por isso é importante levar esses números com cautela. Em termos de capacidade máxima possível, o A330-200 tem um limite de saída de 405 passageiros. Para o A330-300 maior, esse número é um pouco maior, chegando a aconchegantes 440 assentos.

Os limites de saída são determinados por quantos passageiros podem estar sentados em uma aeronave e ainda sair com segurança a tempo em uma situação de emergência. Esse número depende de fatores como corredores, configuração de assentos e, como o nome sugere, quantas saídas o avião tem. Simplificando, quanto mais saídas houver, maior será a capacidade.

Canada 3000 foi um dos primeiros operadores do A330-200 (Foto: John Davies via Wikimedia Commons)
A Airbus também ofereceu uma versão 'regional' do A330-300, com assentos para cerca de 400 passageiros a um alcance reduzido de 5.000 km (2.700 milhas náuticas). A Saudia recebeu o primeiro desses jatos duplos modificados em agosto de 2016.

Variando


O menor A330-200 tem um alcance maior do que o maior A330-300, com 13.450 km (7.262 milhas náuticas). Enquanto isso, o A330-300 tem um alcance de 11.750 km 6.344 milhas náuticas. Um aspecto fundamental nessa diferença é o fato de que o A330-200 possui os mesmos motores do A330-300 (ou mais recente), mas é uma aeronave mais leve.

O A330-200 tinha um design tão bom que a Airbus o usaria como modelo para a versão de carga do A330, bem como para a versão VIP corporativa do A330 (que pode transportar 50 passageiros por 15.400 km, ou 8.300 milhas náuticas).

Vendas


As duas principais variantes do A330 têm números de vendas bastante semelhantes (Foto: Airbus)
Quando se trata do sucesso comercial das duas variantes, não há muito entre elas. De fato, em julho de 2022, a Airbus havia recebido 784 pedidos para o A330-300, em comparação com 684 para o A330-200. No entanto, suas contrapartes A330neo de próxima geração têm uma diferença muito maior. De fato, o menor A330-800 acumulou apenas 11 pedidos, em comparação com um número muito mais saudável de 262 para o A330-900.

Via Simple Flying e Airbus

quinta-feira, 16 de outubro de 2025

O incrível Boeing 747 trijet e por que ele falhou


Muitas pessoas consideram o icônico Boeing 747 de quatro motores a 'Rainha dos Céus'. A Boeing fechou oficialmente o programa depois de entregar seu último 747 em janeiro de 2023. No entanto, houve um tempo em que o fabricante americano também estava trabalhando em uma variante reduzida com três motores.

Embora o projeto tenha sido descartado logo no início de seu desenvolvimento, ele cria uma história interessante. Vamos conferir a história por trás do fracassado trijato Boeing 747 abaixo.

O Boeing 747


O Boeing 747 dispensa apresentações. É uma das aeronaves de maior sucesso da empresa, servindo os céus há mais de 50 anos e continua aumentando. Desde então, a Boeing lançou várias iterações diferentes da aeronave. A fabricante de aviões construiu e entregou 1.571 jatos jumbo, com a Atlas Air recebendo os últimos 747 já construídos em janeiro de 2023.

31 de janeiro de 2023 — A Boeing e a Atlas Air juntaram-se a milhares de pessoas para comemorar
a entrega do último 747 à Atlas, encerrando mais de meio século de produção
O modelo mais recente do tipo é o 747-8, e seu equivalente de carga é o 747-8F. Em uma configuração de três classes, os exemplares da aeronave da Korean Air comportam 368 passageiros (314 na economia, 48 na executiva, seis na primeira). A Lufthansa lançou a aeronave comercialmente em junho de 2012, e sua configuração de quatro classes no 747-8 acomoda 364 passageiros (244 econômicas, 32 econômicas premium, 80 executivas, 8 primeiras).

Boeing 747-8
O Boeing 747-8 também é o avião comercial mais longo do mundo, superando o Airbus A340-600 em apenas 1,5 m (5 pés). A Boeing também está atualmente trabalhando em dois novos B747 do Air Force One para o governo dos EUA, originalmente programados para entrega em 2024, mas agora programados para estarem prontos em 2026, no mínimo.

A variante tri-jato proposta


Hoje em dia, é difícil imaginar o 747 senão como um ícone de quatro motores. No entanto, nas décadas de 1960 e 1970, a Boeing estava considerando construir uma variante de três motores do tipo, com o habitual motor em cada asa, com um motor adicional montado na cauda. Este projeto teria sido semelhante ao Boeing 727 de fuselagem estreita, embora obviamente muito maior.

DC 10 da Finnair (Foto: Ted Quackenbush via Wikimedia Commons)
O Boeing 747 Tri-jet teria sido significativamente mais curto do que o 747 base. Ele foi projetado para competir com aviões tri-jato de fuselagem larga contemporâneos, nomeadamente o Lockheed L1011 e o McDonnell Douglas DC-10. A aeronave teria maior capacidade de passageiros, carga útil e alcance do que ambos os concorrentes em potencial.

Por que o projeto falhou?


A proposta acabou por não ser bem sucedida devido a dois fatores principais. A primeira foi a engenharia necessária para esta nova aeronave. Para torná-la estruturalmente sólida, a aeronave exigiria o projeto de uma asa totalmente nova. Isso ocorre porque o design contemporâneo da asa foi feito para dois motores de cada lado. Dados os custos e as dificuldades de engenharia envolvidas, a Boeing sentiu claramente que um trijet era inviável e o programa Boeing 767 – o primeiro widebody bimotor da empresa – viria a revelar-se um sucesso.

O treinamento de pilotos foi o segundo fator para o fracasso do projeto. A Boeing pretendia criar um produto que fosse quase idêntico ao seu produto regular 747, pelo que os pilotos sabiam. Querendo exigir treinamento mínimo para a conversão para a variante de três motores, a Boeing pretendia manter as características de manuseio existentes. Isso foi difícil para a empresa conseguir com dois motores principais nas asas e um terceiro montado na cauda.

O que aconteceu com o tri-jato Boeing 747?


A Boeing não abandonou completamente a variante tri-jato do 747. Em vez de continuar o desenvolvimento com três motores, o fabricante criou um 747 mais curto com os quatro motores convencionais. Este foi denominado 747SP, com o sufixo significando 'Desempenho Especial'. Entrando em serviço em 1976 com a Pan Am, a Boeing construiu um total de 45 aeronaves 747SP. De acordo com Planespotters.net, quatro dessas aeronaves ainda estão ativas hoje.

Voo turístico de despedida do B747-SP da Iran Air
Indiscutivelmente, o 747SP mais interessante ainda em operação é conhecido como SOFIA, que significa “Observatório Estratosférico para Astronomia Infravermelha”. Com uma enorme porta na parte traseira da aeronave que se abre durante o voo, esta aeronave abriga um telescópio voador. Esta aeronave, construída em 1977 e atualmente registrada como N747NA, já estava em operação com a Pan Am e a United Airlines antes de a NASA a adquirir em 1997. Ela leva o nome de 'Clipper Lindbergh'.

Um tri-jato de segunda geração com mais sucesso


A variante tri-jato do 747 da Boeing não teve sucesso na competição com o Lockheed L1011 e o McDonnell Douglas DC10. No entanto, no final do século 20, a McDonnell Douglas lançou um avião comercial tri-jato de segunda geração: o MD-11.


O MD-11 fez sua estreia comercial com a Finnair em dezembro de 1990 e foi projetado para competir com o Boeing 777 e o Airbus A340. Sua configuração básica era semelhante à do antigo DC-10; no entanto, beneficiou de motores atualizados. O MD-11 também ostentava uma fuselagem mais longa e asas mais largas que seu antecessor.

No entanto, de acordo com Planespotters.net, a McDonnell Douglas acabou construindo apenas 200 desse tipo, com vários pedidos não atendidos. O tipo agora atende apenas em companhias aéreas de carga.


Como seria um trijet hoje?


Aeronaves modernas de longo curso com apenas dois motores são agora capazes de voar longas distâncias com menor consumo de combustível, o que as torna o investimento preferido.

Talvez se possa dizer que a Boeing se esquivou de uma bala ao não produzir o tri-jet 747. No entanto, sem dúvida teria sido uma visão curiosa nos céus de todo o mundo se tivesse se concretizado.

Com informações de Sam Chui

Vídeo: PH RADAR 65 - Acontecimentos da Aviação


Via Canal Porta de Hangar de Ricardo Beccari

O ângulo de ataque de uma aeronave: tudo o que você precisa saber

O ângulo de ataque tem um efeito significativo no desempenho aerodinâmico da aeronave.

Um Boeing 777-300ER da Cathay (Foto: Vincenzo Pace)
O ângulo de ataque da aeronave (AOA) é definido como o ângulo do vento contrário em relação à linha de referência da aeronave. Em outras palavras, o ângulo que o ar que se aproxima forma com o centro da fuselagem ou com um ponto médio projetado na asa é denominado AOA da aeronave.

O ângulo de ataque não deve ser confundido com o ângulo de inclinação da aeronave, que se refere ao ângulo da aeronave com o horizonte. O indicador de altitude ou a exibição do horizonte artificial na cabine indicam o ângulo de inclinação da aeronave. O AOA da aeronave às vezes pode ser confundido com o ângulo da trajetória de voo, que é o ângulo do vetor da trajetória de voo em relação ao horizonte.

Um diagrama do ângulo de ataque de uma aeronave (Imagem: Boeing)
O ângulo da trajetória de voo também pode ser chamado de ângulo de subida ou descida. Este artigo explora o AOA da aeronave e sua relação com quantidades aerodinâmicas críticas, como sustentação e arrasto.

O AOA e o elevador aerodinâmico


Na maioria dos aviões comerciais, a linha de referência projetada está em algum ponto médio da asa da aeronave. Os fabricantes referem-se a um ponto entre as bordas dianteira e traseira da asa como a linha ou ponto central da aeronave. O AOA é usado para determinar o desempenho da asa da aeronave.

O coeficiente de sustentação aerodinâmica é uma função do AOA da aeronave. A sustentação é produzida pela diferença de pressão na parte superior e inferior da asa. O ar de alta pressão sob a asa a empurra para cima, gerando sustentação.

Um gráfico dos coeficientes de sustentação em vários ângulos de ataque (Imagem: pgfinnote.com)
À medida que o AOA aumenta, o coeficiente de sustentação aumenta, resultando em uma força de sustentação mais significativa. O coeficiente de sustentação é máximo no AOA crítico, além do qual diminui. O AOA crítico, também chamado de AOA de estol, é acima do qual o fluxo que se aproxima se separa completamente da superfície da asa, resultando em uma diminuição abrupta na sustentação.

A velocidade de estol de uma aeronave varia de acordo com seu peso, centro de gravidade (CG) e fatores de carga. O AOA da aeronave pode ser calculado pela diferença entre o ângulo da trajetória de voo e o ângulo de inclinação, visto que o ângulo da trajetória de voo é referenciado com o horizonte.

O AOA e o arrasto aerodinâmico


O AOA de uma aeronave afeta significativamente o arrasto aerodinâmico que ela gera durante o voo. À medida que o bordo de ataque da asa é elevado (aumento no AOA), o fluxo de ar na superfície superior da asa acelera e faz a transição do fluxo laminar para o fluxo turbulento . Como resultado, o arrasto total das aeronaves aumenta.

Um Boeing 777 da Alitalia (Foto: Vincenzo Pace)
O arrasto total é uma combinação de arrasto parasita (forma, fricção da pele e interferência) e arrasto induzido por sustentação. O arrasto induzido pela sustentação é gerado como um subproduto do downwash dos vórtices das pontas das asas. Os vórtices nas pontas das asas são espirais de bolsas de ar criadas pelo fluxo de ar que envolve as pontas das asas.

À medida que o AOA aumenta, a força dos vórtices nas pontas das asas aumenta, aumentando assim o arrasto induzido pela sustentação. O arrasto devido à sustentação pode chegar a 70% do arrasto total durante a subida e tão baixo quanto menos de 5% durante o voo nivelado em alta altitude.


Com informações do Simple Flying

Vídeo: Entrevista - Iberê Thenório | Lito Lounge EP. 02


Nesse programa Lito entrevista Iberê Thenório, criador do Manual do Mundo, 
o maior canal de divulgação científica e curiosidades do Brasil.

Aconteceu em 16 de outubro de 2013: Voo 301 da Lao Airlines - Erro catastrófico na queda no rio Mekong


Antes de um avião da AirAsia despencar no mar perto de Bornéu e a Malaysia Airlines perder dois de seus aviões, 49 pessoas embarcaram em um voo doméstico de rotina no país mais pobre do Sudeste Asiático. 

Com destino a Pakse vindo da capital, Vientiane, o voo QV301 da Lao Airlines se tornou o primeiro de uma série de acidentes aéreos devastadores que concentraram o escrutínio nas viagens aéreas nesta parte do mundo.

O voo QV301 teve origem em Vientiane, no Laos, às 14h45 e operava um serviço doméstico para Pakse, também no Laos, levando a bordo cinco tripulantes e 44 passageiros. O tempo na área estava ruim como resultado de um tufão que havia passado.


Na quarta-feira, 16 de outubro de 2013, por volta das 15h50, o capitão Yong Som, um ex-piloto da força aérea cambojana de 57 anos, apontou o nariz do ATR 72-212A (ATR 72-600), prefixo RDPL-34233, da Lao Airlines (foto acima), em direção ao aeroporto de Pakse e começou a descida em meio a uma tempestade. 

Seu copiloto era um laosiano de 22 anos com cerca de 400 horas de voo. O gravador de voz da cabine revelou que eles não conversaram muito, mesmo quando o avião estava caindo.

Em algum ponto antes da descida, Yong cometeu um grave erro. Os pilotos que chegam ao aeroporto de Pakse devem programar o avião para voar até 990 pés, ponto em que devem ser capazes de ver a pista - é chamada de "altura de decisão" - e, se a pista não estiver visível, os pilotos precisam abortar o pouso, arremeter e tentar novamente. 

Yong ou seu copiloto ajustaram o avião para descer a 600 pés durante esta última fase de descida, provavelmente porque um mapa de navegação naquele dia indicava uma altitude de aproximação imprecisa de 645 pés. Não está claro por que a altura estava incorreta. Mas isso significava que quando Yong puxou os controles, eles já estavam 390 pés além do “ponto de aproximação falhada”, o último momento em que um piloto pode abortar com segurança um pouso.

O que se seguiu foi uma série de manobras incompreensíveis e aterrorizantes. Yong ergueu o avião, mas não direto para o céu, como seria de se esperar. Em vez disso, ele virou para a direita, o que fez com que o avião caísse ainda mais. Sempre se perde altitude em uma curva. 


Eles desceram a apenas 18 metros do solo, o que deve ter sido tão alarmante para os passageiros quanto para Yong, que puxou os controles para trás em uma subida acentuada. Eles subiram tão abruptamente que o display conhecido como o diretor de voo (aquele mostrador metade marrom, metade azul, que informa aos pilotos para onde se dirigir) foi desligado. Yong os levou a 1.750 pés. Então, de repente, ele apontou o nariz para baixo.

No relatório do acidente, as autoridades do Laos observam que Yong pode ter tido ilusões somatográvicas. Quando um avião subindo subitamente nivela, o corpo pode perceber que está caindo para trás, não para frente. Pilotos experientes, voando com visibilidade zero de uma tempestade, não estão imunes à sensação. 

Enquanto isso, o copiloto parece ter se preocupado principalmente com a configuração dos flaps, e não com a altitude e a atitude da aeronave. Eles continuaram descendo até chegarem ao rio. Às 15h55, o avião havia desaparecido sob a superfície marrom-lama.

No último minuto, o piloto abandonou a abordagem. Mas quando ele tentou subir, em vez disso cortou árvores, colidindo com força contras as águas próximo a margem do rio Mekong, a 8 km (5 mls) a NW do aeroporto de Pakse, destruindo o avião e matando todos os 49 ocupantes instantaneamente.


Por que o avião não subia era um mistério até o mês passado, quando o governo do Laos divulgou o relatório do acidente . Esse relatório, porém, nunca poderia ter sido feito, exceto por uma equipe de 11 técnicos de uma hidrelétrica que arriscou a vida para encontrar a caixa-preta.


Embora o Laos tenha feito um pedido de apoio internacional após o acidente, nenhum mergulhador de resgate apareceu. Assim, nas duas semanas seguintes, a turbulenta equipe de eletricistas, soldadores e mecânicos vasculhou o fundo escuro e desorientador do rio. Eles poderiam ter sido presos e afogados sob os destroços ou esmagados por destroços que caíram rio abaixo. Mas nenhum ficou ferido. Eles localizaram a fuselagem e a cauda, ​​onde a caixa preta é mantida, e carregaram dezenas de corpos.


Desde que foi publicado “Os homens que conquistaram o Mekong” na edição inaugural da revista Latterly, algumas pessoas questionaram por que o Laos arriscou a vida de homens não treinados para recuperar os destroços do voo QV301. Além da recuperação e entrega dos cadáveres - principalmente do Laos, da França e da Austrália - às famílias, havia outra questão importante: encontrar a  caixa preta pode impedir futuros novos funerais.

Encontrar a caixa preta não garante respostas, mas muitas vezes é impossível para os investigadores de acidentes determinarem a causa sem ela. O dispositivo laranja brilhante consiste na verdade de dois dispositivos: um, o gravador de dados de voo, registra números como velocidade e altitude, e outro, o gravador de voz da cabine, captura os ruídos da cabine. Cada um foi essencial nas recomendações dos investigadores de acidentes do Laos.


“A causa provável deste acidente foi a mudança repentina das condições meteorológicas e a falha da tripulação em executar adequadamente a abordagem por instrumentos publicada”, escreveram os investigadores. Entre suas recomendações de segurança, eles sugerem mais treinamento para pilotos em ATR 72-600s, em efeitos somatogravic e em comunicação cockpit. Aconselhava as companhias aéreas a preencher lacunas que levassem a cartas de navegação errôneas.

Quando a Voice of America conversou com um consultor de aviação chamado Hugh Ritchie sobre o relatório, ele disse que não estava otimista sobre os padrões de segurança aérea da Ásia-Pacífico. “Meu problema com a segurança aérea nesta parte do mundo é que eles estão crescendo exponencialmente”, disse ele. “Eles estão tentando construir sistemas que sejam padrões internacionais. Por fora, parece que eles estão fazendo isso, mas se você for aos bastidores e olhar para muitas das funcionalidades, não acho que eles estão atingindo esses níveis.”

Por Jorge Tadeu (Site Desastres Aéreos) com ASN, medium.com, baaa-acro.com