sábado, 3 de fevereiro de 2024

Aconteceu em 3 de fevereiro de 1959: Tragédia no voo American Airlines 320 - Queda no East River, em Nova York


Em 3 de fevereiro de 1959, o Lockheed L-188 Electra que realizava o voo 320  da American Airlines, entre o Aeroporto Internacional de Chicago Midway e o Aeroporto LaGuardia, em Nova York, caiu no East River, matando 65 das 73 pessoas a bordo. 


O voo 320 da American Airlines era um voo regular entre Chicago e Nova York usando a aeronaves Lockheed L-188A Electra, prefixo N6101A, da American Airlines (foto acima). A companhia aérea havia começado a voar com a nova aeronave em 23 de janeiro de 1959 e oferecia seis voos diários de ida e volta em suas rotas entre Nova York e Chicago, com planos de expansão para outras rotas, uma vez que as novas aeronaves fossem entregues.

Na noite de 3 de fevereiro de 1959, o voo estava programado para deixar o aeroporto Midway de Chicago, mas a neve trazida pelo vento atrasou a partida. 

O voo acabou no ar às 21h54 (horário do leste), com 54 minutos de atraso e foi um dos últimos voos a partir de Chicago naquela noite, antes de o aeroporto ser fechado devido à tempestade.

Levando 68 passageiros e 5 tripulantes a bordo, a viagem deveria durar uma hora e quarenta e dois minutos. A escalada de Chicago e o voo para a área da cidade de Nova York foram tranquilos, operando com piloto automático a uma altitude de cruzeiro de 21.000 pés.

Às 23h34, o voo se aproximou da área de Nova York. Os controladores de tráfego aéreo do aeroporto LaGuardia informaram aos pilotos que as condições climáticas daquele momento no aeroporto incluíam céu nublado com teto de 120 m (400 pés) e visibilidade de 2.000 m (1,25 milhas).

O controlador da torre instruiu o voo a prosseguir para o norte do aeroporto e a se preparar para realizar uma abordagem direta sobre o East River para pousar na pista 22.

Às 23h55, enquanto a aeronave estava a 4,5 km do aeroporto, os controladores deram ao voo sua autorização de pouso final para a pista 22. A tripulação de voo reconheceu a autorização com um simples reconhecimento de "320" e não houve mais comunicação de rádio.

Momentos depois, a aeronave atingiu a superfície do East River a cerca de 4.900 pés (1.500 m) antes da pista, a uma velocidade de 140 nós (160 mph; 260 km/h).

Uma testemunha a bordo de um rebocador próximo relatou ter visto a aeronave voando muito baixo sobre o rio antes de atingir a água com um barulho tremendo. 


Outro membro da tripulação no mesmo rebocador afirmou que viu a aeronave atingir a água e que pensou que a aeronave atingiu o ângulo do nariz para baixo. 

Uma testemunha em um carro se aproximando da ponte Whitestone descreveu ter visto a aeronave passar sobre sua cabeça a uma altitude de cerca de 100 pés (30 m). Ele não percebeu se o trem de pouso estava abaixado, mas disse que podia ver toda a barriga e as luzes da aeronave.

Os passageiros sobreviventes e membros da tripulação na cabine principal disseram que a descida antes do acidente parecia ser rotineira e sem intercorrências. Entrevistas com vários residentes na área revelaram que muitos relataram ter ouvido o Electra voar acima e que parecia que estava voando mais baixo do que o normal.

O acidente foi o primeiro acidente envolvendo a aeronave Lockheed L-188 Electra, que havia entrado em serviço comercial na American Airlines nas semanas anteriores. 

Foi o primeiro acidente significativo envolvendo uma aeronave da American Airlines desde a queda do voo 327 da American Airlines em 6 de janeiro de 1957.


Um rebocador de propriedade privada da Nova Inglaterra estava no rio perto do local do acidente quando a tripulação do barco ouviu o impacto. Soltou as barcaças que vinha rebocando e foi o primeiro a chegar ao local, iluminando a área com o holofote do barco.

Todos os oito sobreviventes do acidente foram salvos pela tripulação, incluindo um homem que foi puxado de 1,2 m abaixo da superfície da água.

Pelo menos uma dúzia de barcos da Guarda Costeira e da polícia, e dois helicópteros da polícia chegaram minutos depois. 

No nevoeiro escuro, os resgatadores podiam ouvir os gritos dos sobreviventes, mas a pouca visibilidade e as correntes rápidas do rio tornaram a recuperação das vítimas e sobreviventes extremamente difícil. Os resgatadores e os residentes próximos na área relataram ter ouvido gritos de ajuda em locais consideravelmente distantes do local do acidente.

Agências de segurança pública instalaram quatro estações de resgate ao longo do rio para evacuar os sobreviventes, mas as ambulâncias que levavam sobreviventes feridos para hospitais tiveram dificuldade em navegar nas estradas geladas.



Os sobreviventes foram levados ao Flushing Hospital e ao Queens General Hospital, onde alguns dos sobreviventes iniciais morreram devido aos ferimentos. Dois necrotérios temporários também foram montados em lados opostos do rio para receber as vítimas.

Às 5h da manhã seguinte, pelo menos 9 sobreviventes foram recuperados, 22 corpos foram localizados e 39 outras vítimas ainda estavam desaparecidas.

Ventos fortes e chuva forte levaram os pesquisadores a suspender a operação de resgate. A Cruz Vermelha de Nova York forneceu suprimentos de tipos de sangue raros para ajudar as vítimas do acidente. 

Corpos que foram recuperados foram levados ao Queens General Hospital para identificação com a assistência de agentes do Federal Bureau of Investigation e 25 detetives da cidade. Os agentes usaram registros de impressão digital de seus arquivos de imigração, identificação pessoal e serviço de guerra para identificar as vítimas.

Após o impacto, o corpo da aeronave se partiu em vários pedaços, sendo uma seção de seis metros da fuselagem a maior seção intacta. 

Depois de duas horas, apenas 3 pés (1 m) da cauda da aeronave era visível acima da superfície da água. Pesquisadores em barcos e na costa recolheram destroços de aviões, pertences pessoais e correspondência que estavam a bordo da aeronave.


Em Washington DC, o Civil Aeronautics Board (CAB) despachou imediatamente dois investigadores assim que as autoridades tomaram conhecimento do acidente e ordenou que os registros da companhia aérea fossem apreendidos.

Uma equipe adicional de 25 investigadores foi montada e enviada no dia seguinte. A equipe recebeu a tarefa de investigar todos os aspectos do voo, incluindo o clima, operações de voo, motores e hélices, instrumentos de voo e estruturas da aeronave.

O promotor distrital de Queens County, Frank O'Connor, também iniciou um inquérito, com o objetivo de estabelecer um sistema de barcos de resgate para servir os dois aeroportos da cidade.

O Comitê de Comércio Exterior e Interestadual da Câmara ligou o chefe da Agência Federal de Aviação para relatar o acidente em uma sessão fechada dias após o acidente. Após a reunião de duas horas e meia, um subcomitê especial da Câmara foi nomeado para investigar o acidente e as questões gerais de segurança levantadas pela transição para aeronaves a jato e turboélice.

Dias depois do acidente, fontes de notícias começaram a relatar que havia sistemas de segurança que não existiam no aeroporto e que poderiam ter ajudado a prevenir o acidente.
 

Um representante da Air Line Pilots Association disse que um sistema de luzes intermitentes conhecido como Electronic Flash Approach System poderia ter ajudado o piloto a avaliar sua altitude, se tivesse sido instalado. 

A associação também pediu a instalação de um sistema de pouso por instrumentos mais abrangente que teria fornecido orientação de altitude para as tripulações de voo que pousavam na pista 22, além do sistema existente que fornecia orientação horizontal. 

Tal sistema já estava instalado no extremo oposto da pista que o voo estava se aproximando. Na época, havia apenas dois aeroportos nos Estados Unidos que tinham esse sistema instalado nas duas pontas de uma pista. 

Em uma reunião em 5 de fevereiro, comissários da Autoridade Portuária de Nova York explicaram que a instalação de tal sistema na pista 22 foi considerada muito difícil porque o sistema de iluminação de aproximação bloquearia a hidrovia usada pelos navios para chegar às docas no Queens.

A recuperação dos destroços da aeronave começou assim que as condições meteorológicas permitiram, com 25 por cento do avião recuperado até 5 de fevereiro e cinquenta por cento no dia seguinte.

No dia seguinte ao acidente, guindastes de salvamento tentaram elevar a fuselagem da aeronave até a superfície da água, mas tiveram sucesso apenas por um breve período antes que ela se partisse e a maior parte voltasse para a água.


A cauda foi levantada pelas tripulações na noite de 5 de fevereiro, e artigos de jornais relataram que os danos a essa seção sugeriram que a aeronave pode ter caído na posição "nariz para cima", como se o piloto tivesse notou no último minuto que ele estava bem longe da pista. 


Mergulhadores foram trazidos para localizar seções perdidas da aeronave abaixo da superfície da água, mas os esforços de recuperação foram impedidos por ventos fortes, fortes correntes de rio e águas turvas. 


Alguns pedaços do avião foram varridos por correntes e foram encontrados tão longe quanto Northport, Long Island, mais de trinta milhas de distância. Cada peça foi identificada, etiquetada e limpa e realocada para o Hangar 9 do Terminal Marítimo do Aeroporto LaGuardia. 


A seção do nariz e a cabine do piloto foram recuperadas no final de 7 de fevereiro. A cabine foi recuperada em boas condições, com o relógio de mola no painel de instrumentos ainda funcionando quando a seção foi recuperada do rio.


A aeronave era uma aeronave com hélice de turbina Lockheed L-188 Electra, número de série 1015, registrada como cauda número N6101A. Ela havia sido fabricado pela Lockheed Aircraft Corporation em 27 de novembro de 1958. No momento do acidente, a aeronave havia voado por um total de 302 horas. Ele era equipado com quatro motores Allison 501-D13.

Promovido como uma aeronave eficiente, rápida e lucrativa, o Electra foi a primeira aeronave com turbina a ser produzida nos Estados Unidos. O primeiro avião foi entregue à Eastern Air Lines em outubro de 1958, que começou a operar voos comerciais com a aeronave em 1º de janeiro de 1959. A American Airlines recebeu seu primeiro Electra em dezembro de 1958 e seu primeiro o voo comercial foi doze dias antes do acidente. 

A aeronave envolvida em foto tomada antes do acidente
Após a queda do voo 320 da American Airlines, mais dois Electras caíram nos meses seguintes após sofrer falhas estruturais catastróficas: o voo 542 da Braniff caiu em setembro de 1959 e o voo 710 da Northwest Orient Airlines caiu em março de 1960. Ambos os acidentes resultaram na perda de todos a bordo. 

Após extensa pesquisa, a Lockheed identificou e corrigiu uma falha nos suportes do motor que havia sido a causa das falhas estruturais dos outros dois acidentes, mas a publicidade negativa em torno de todos os acidentes envolvendo o avião em um curto período de tempo levou à perda de confiança do público na segurança da aeronave, e apenas 174 foram produzidos.

O voo transportou 68 passageiros e 5 tripulantes, todos residentes nos Estados Unidos. Dos 68 passageiros, 5 sobreviveram; os corpos de duas das vítimas nunca foram recuperados. 

Um dos dois comissários de bordo e o capitão do voo morreram no acidente. incluído entre os passageiros que morreram no acidente estava Beulah Zachary, o produtor executivo da série de televisão 'Kukla, Fran and Ollie' que foi transmitida de 1947 a 1957

Também a bordo do avião estava Robert Emerson, um professor pesquisador da Universidade de Illinois que era conhecido internacionalmente por sua pesquisa em fotossíntese de plantas e Herbert Greenwald, um incorporador imobiliário de Chicago.


O piloto do voo, Capitão Albert Hunt DeWitt, tinha 59 anos. Ele começou sua carreira na American Airlines em 1929 voando para a Thompson Aeronautical Corporation de Cleveland, que mais tarde foi adquirida pela American. Residente de Decatur, Michigan, ele estava qualificado para voar todas as aeronaves que haviam sido operadas pela American Airlines e foi considerado um dos pilotos comerciais mais experientes do mundo, com sete milhões de milhas voadas.

Ele tinha um total de 28.135 horas de experiência de voo, incluindo 48 horas no Lockheed Electra e 2.500 horas de tempo por instrumentos, e já havia atuado como um dos principais pilotos da American na área de Nova York. Ele aprendeu a pilotar aviões quando tinha 24 anos. Em 1930, ele se envolveu em um acidente enquanto pilotava um avião do correio sobre Mishawaka, Indiana, a caminho de Chicago. 

Pego em uma forte tempestade de neve, sua aeronave estagnou e entrou em parafuso, mas ele foi capaz de pular do avião antes que ele caísse e pousasse em uma árvore de 75 pés de altura. Antes de ingressar na American Airlines, ele era um novato em Indiana e Michigan, e foi instrutor de várias escolas e clubes de aviação na década de 1920. 

Ele serviu em ambas as Guerras Mundiais; na Primeira Guerra Mundial, ele foi um motoboy e, durante a Segunda Guerra Mundial, serviu como instrutor em escolas de aviação em Nova York e Chicago. Ele planejava se aposentar em maio daquele ano, mas não sobreviveu à queda do voo 320. Sua causa de morte foi listada como afogamento, mas o legista afirmou que ele também havia sofrido gravemente ferimentos internos que provavelmente teriam sido fatais se ele não tivesse se afogado.

O primeiro oficial, Frank Hlavacek, de 33 anos, morava em Wilmette, Illinois, e trabalhava na empresa há oito anos. Ele teve um total de 10.192 horas registradas, das quais 36 horas foram no Electra. Ele voava desde os 14 anos de idade e serviu nas Forças Aéreas do Exército dos Estados Unidos na Segunda Guerra Mundial. 

Antes de ingressar na American Airlines, ele possuía seu próprio serviço aéreo com base em La Jolla, Califórnia. Após o acidente, ele ajudou dois dos sobreviventes a alcançar os restos da asa do avião, onde foram resgatados. Ele quebrou a mandíbula e a pélvis, duas pernas quebradas no acidente e também ferimentos internos, mas acabou se recuperando e voltou a trabalhar na American Airlines.

O engenheiro de voo, Warren Cook, tinha 36 anos e trabalhava para a American Airlines há onze. Ele teve um total de 8.700 horas de voo, das quais 81 foram no Electra. Ele serviu no United States Army Air Corps de 1940 a 1945. No acidente, ele sofreu uma forte torção nas costas, cortes e hematomas. Depois de se recuperar de seus ferimentos, ele voltou a trabalhar na American Airlines.

Duas horas após o acidente, os investigadores entrevistaram o engenheiro de voo Warren Cook, na qual ele afirmou que a descida do voo foi completamente rotineira até o ponto em que a aeronave inesperadamente atingiu a água. 

Eles não puderam entrevistar imediatamente o primeiro oficial Frank Hlavacek por causa de sua condição médica, mas quando entrevistado vários dias depois, ele disse aos investigadores que havia chamado as altitudes indicadas para o capitão DeWitt durante a descida em incrementos de trinta metros conforme eles se aproximavam da pista.

Ele disse que mal tinha pronunciado as palavras por quinhentos pés quando o avião atingiu o rio. A declaração de Cook aos investigadores, feita independentemente em um hospital separado, confirmou que eles atingiram o rio no momento em que Hlavacek dizia "quinhentos pés".

Os investigadores previram que levaria pelo menos duas semanas para verificar todos os instrumentos para determinar se eles estavam funcionando corretamente no momento do acidente. Os primeiros relatórios da investigação revelaram que as condições das superfícies de controle de voo revelaram que no momento do impacto, a aeronave não havia feito uma curva violenta ou mergulhado quando atingiu a água.

Em 9 de fevereiro, a Agência Federal de Aviação anunciou que as restrições de voo seriam aplicadas em pousos em mau tempo por aeronaves Lockheed Electra. As restrições aumentaram as condições mínimas de visibilidade exigidas para o pouso em más condições. 

Em comunicações com as tripulações de voo, tanto a American Airlines quanto a Eastern Airlines descreveram as restrições como apenas temporárias, provavelmente durando apenas alguns dias. 

A Lockheed Aircraft Corporation expressou desapontamento com as novas restrições, mas concordou em cooperar com a investigação em toda a extensão. No dia seguinte, a Agência mudou de curso e disse que os aviões Electra poderiam retomar a operação normal se substituíssem os novos altímetros por altímetros de estilo antigo.

Ambas as companhias aéreas concordaram em substituir imediatamente os altímetros como medida de precaução. A Agência também estendeu a ordem para incluir a exigência de que os altímetros de novo estilo que haviam sido instalados nas aeronaves Boeing 707 precisassem ser substituídos.

Os altímetros usados ​​na aeronave foram o foco inicial da investigação. As unidades que a Lockheed havia usado em seus turboélices Electra eram de um estilo diferente do que era usado em aeronaves mais antigas do tipo pistão.

Uma ilustração do antigo altímetro de três ponteiros mostrando uma altitude de 10.180 pés
O tipo mais antigo usava três ponteiros de comprimentos diferentes para indicar a altitude da aeronave, mas o novo design combinava uma agulha que exibia centenas de pés e uma tela retangular com números impressos em tambores giratórios que indicavam os milhares de pés. 

A Kollman Instrument Corporation, que construiu os dois tipos, descreveu o novo estilo como um "altímetro de tambor de precisão" e disse que ele foi "desenvolvido como resultado de um estudo de engenharia humana feito pelo Aero Medical Laboratory, por um órgão governamental não identificado, e por instigação da Força Aérea, principalmente para atender às necessidades de voos mais rápidos."

Uma ilustração de um altímetro de novo estilo, com uma única agulha e tambores
 giratórios para mostrar uma altitude de 6.000 pés
A Força Aérea experimentou vários problemas com os altímetros de estilo antigo, onde seus pilotos cometeram erros de 10.000 pés. Pilotos treinando na nova aeronave relataram vários casos em que eles interpretaram incorretamente a altitude nos novos altímetros, fazendo com que eles interpretassem incorretamente a altitude da aeronave em até 1.000 pés.

Por causa da confusão, os primeiros relatórios diziam que a companhia aérea havia feito planos para instalar um terceiro altímetro adicional do tipo antigo no centro do painel do piloto, enquanto continuava a usar os altímetros de estilo mais recentes.

Os pilotos da Eastern Airlines que voavam na aeronave Electra também reclamaram do novo estilo de altímetro, afirmando que não apenas eram fáceis de interpretar erroneamente, mas tendiam a ficar para trás em relação ao estilo antigo. Essa companhia aérea instalou um terceiro altímetro, de estilo antigo, em seus cockpits.

A American Airlines defendeu o novo estilo de altímetro como "um altímetro novo e muito superior com gradações mais finas" e negou ter recebido reclamações com os instrumentos. Ela reconheceu que planejou instalar um terceiro altímetro nas cabines, mas disse que a terceira unidade foi planejada para ser um modelo de novo estilo. No momento do acidente, a aeronave do voo 320 ainda tinha apenas os dois altímetros originais.

Uma audiência investigativa do CAB começou na cidade de Nova York em 18 de março de 1959. Em depoimento perante o conselho, o primeiro oficial Hlavacek confirmou a informação que havia dado em suas entrevistas anteriores e afirmou que ele e os outros membros da tripulação tinham checaram seus altímetros várias vezes durante o voo, inclusive quando passaram por Newark, New Jersey, dizendo que o seu altímetro e o do piloto estavam muito próximos.

Ele disse que no momento do acidente, o piloto estava usando o piloto automático com controle manual parcial durante a aproximação, e também disse que algum gelo se formou na parte superior do para-brisa, mas não foi considerado grave. Ele disse que não viu nenhum sinal da pista através do para-brisa à frente, mas que avistou algumas luzes avermelhadas passando por suas janelas laterais pouco antes do impacto.

O conselho de investigação confrontou o engenheiro de voo Cook com as transcrições de uma entrevista que ele deu imediatamente após o acidente, na qual ele afirmou que o altímetro da aeronave tinha mostrado menos de trinta metros no momento do impacto, mas ele posteriormente testemunhou que mostrava quinhentos pés.

Cook afirmou que, na época, ele estava em estado de choque e que em sua mente ele havia confundido o do tambor com 30 metros em vez de 300 metros. Ele confirmou que ligou o equipamento de descongelamento antes de o avião iniciar a descida e confirmou que o piloto estava usando o piloto automático para pilotar o avião durante a descida.

Ele disse que voava com o capitão Dewitt desde 1951, que o conhecia bem, e que era costume do piloto usar o piloto automático para descer até cerca de 400 pés acima da pista, quando ele mudaria para manual ao controle. Ele também testemunhou que não tinha visto nada além de escuridão através do para-brisa até o momento do acidente.

Os investigadores do acidente levaram os altímetros que foram recuperados do acidente para a loja de instrumentos no aeroporto de La Guardia para um exame detalhado. 

Em 26 de fevereiro, um artigo no Chicago Tribune relatou que depois que os altímetros foram limpos de corrosão, água e sujeira, eles foram testados em uma câmara de pressão. De acordo com o artigo, ambos os dispositivos funcionaram normalmente até 1000 pés acima do nível de pressão do solo, mas abaixo de 1.000 pés eles travaram ou se atrasaram consideravelmente. 

No entanto, em depoimento oficial perante o conselho, o fabricante dos altímetros apresentou um relatório ao conselho que dizia que sua investigação concluiu que os instrumentos não apresentavam qualquer falha mecânica ou mau funcionamento antes do acidente.

Quando eles foram resgatados da água, os instrumentos do piloto e do copiloto indicaram menos 1.500 pés e menos 1.640 pés, respectivamente, refletindo danos a partes dos instrumentos causados ​​pela pressão de imersão. Quando questionado, o investigador reconheceu que não havia meios de determinar o que os altímetros mostraram no momento do impacto. 

Em depoimento perante o CAB, o diretor de voo da American Airlines disse que o mau funcionamento idêntico de dois altímetros ao mesmo tempo era "quase matematicamente impossível". 

O CAB ouviu especialistas da Lockheed Aircraft Corporation que tentaram reproduzir um erro de 500 pés na altitude relatada, causado pelo acúmulo de gelo nas linhas de pressão do ar. 

Eles voaram em um avião Electra atrás de um navio-tanque da Força Aérea que estava pulverizando água para produção de gelo para ver se eles poderiam causar o entupimento da linha de pressão. 

Em outros testes, eles tamparam artificialmente a linha, afetaram a abertura de vários equipamentos e até fizeram um mecânico borrifar um jato de água diretamente na porta de pressão. Nenhum dos testes produziu o erro de 500 pés relatado pelos pilotos e produziu um erro apenas de quarenta ou cinquenta pés.

Na tentativa de determinar por que a tripulação do Electra não tinha visto a pista à frente deles, o CAB ouviu dois pilotos de um DC-3 da Northeast Airlines que pousou no aeroporto de La Guardia um ou dois minutos na frente do Electra. 

Eles testemunharam que não tiveram problemas em entrar sob o teto de nuvens de 120 metros e que podiam ver toda a pista de quilômetros à frente deles. No entanto, entrevistas com sobreviventes do acidente e membros da tripulação do rebocador de resgate sugeriram que um pedaço isolado de nuvens baixas e névoa pairava sobre o rio no momento do acidente.

O CAB divulgou um relatório final sobre o acidente em 10 de janeiro de 1960. Os investigadores concluíram que a tripulação estava preocupada com os aspectos do voo e havia negligenciado o monitoramento dos instrumentos de voo essenciais durante a descida, levando a uma descida prematura abaixo dos mínimos de pouso.

Contribuindo para o acidente estavam fatores, incluindo a experiência limitada da tripulação com o tipo de aeronave, uma técnica de abordagem defeituosa em que o piloto automático foi usado para ou quase à superfície, uma configuração errada do altímetro do piloto, tempo marginal no área de abordagem, possível interpretação errônea do altímetro e dos indicadores de taxa de descida da aeronave e a ilusão sensorial da tripulação com relação à altura e altitude resultante da falta de referências visuais.

O conselho foi crítico em relação à falta de treinamento adequado no simulador da aeronave antes de colocá-la em serviço de passageiros, e fez recomendações à FAA para que todas as aeronaves de grande turbina usadas no transporte aéreo fossem equipadas com um gravador de voo.


Mais de 90 por cento dos componentes estruturais primários da aeronave e a maioria dos componentes do sistema foram recuperados pelos investigadores. Eles descobriram que, no momento do impacto, os flaps estavam aproximadamente na posição de aproximação, o trem de pouso foi estendido e os ângulos das pás da hélice eram relativamente uniformes e consistentes com as leituras de potência obtidas a partir dos instrumentos da aeronave recuperados e consistentes com o depoimento da tripulação sobre a potência utilizada durante a abordagem.

Nenhum dos dois mecanismos indicadores de velocidade vertical foi recuperado. Ambos os altímetros foram recuperados, mas como os diafragmas de ambos foram sobrecarregados devido à submersão, foi impossível estabelecer a calibração ou precisão de qualquer um dos altímetros antes da queda.

Os investigadores obtiveram todos os registros de manutenção, incluindo reclamações dos pilotos de todos os operadores, civis e militares, do tipo de altímetro usado no voo. Nenhum dos incidentes relatados envolveu mais de um dos altímetros instalados ao mesmo tempo, e após revisar a possibilidade de uma falha simultânea de ambos os altímetros, o CAB concluiu que envolveria uma improbabilidade matemática tão extrema que escolheu rejeitar essa teoria, bem como rejeitar partes do testemunho dos membros sobreviventes da tripulação.

Também concluiu que, após consideração de todos os cenários possíveis, era improvável que ocorresse uma falha de apenas um dos altímetros. Com base no depoimento de uma testemunha ocular e na análise do ponto de impacto, o CAB concluiu que era provável que um ou mais pilotos tivessem interpretado mal o altímetro por não estar familiarizado com o novo estilo.

Também concluiu que havia a possibilidade de que a tripulação tivesse interpretado incorretamente os indicadores de velocidade vertical, que também usavam uma escala diferente daquela usada em aeronaves mais antigas ou no treinamento recebido pelo capitão.

O CAB concluiu que todas as luzes exigidas do aeroporto, limite e pista estavam acesas e funcionando no momento do acidente. No entanto, porque as luzes estavam inclinadas para cima entre três e cinco graus, e por causa de um dique localizado entre o final da pista 22 e a água, o CAB concluiu que elas não seriam visíveis para a tripulação porque da descida prematura da aeronave abaixo do nível das nuvens.

As conclusões do CAB foram fortemente criticadas pelo presidente da Associação de Pilotos de Linha Aérea, que classificou o relatório como "grosseiramente impreciso em vários aspectos", e que o relatório não explicou satisfatoriamente o motivo do acidente e presumiu fatores que não foram estabelecido pelo fato.

Ele disse que os pilotos da American Airlines se uniram em protesto contra o relatório, dizendo que "caluniava e acusava injustamente" os membros da tripulação do avião, e tinha como objetivo "convenientemente escrever o acidente fora dos livros", em vez de determinar com precisão uma causa.

Ele disse que, no julgamento da associação, o acidente foi resultado de condições meteorológicas marginais e abordagem inadequada e recursos de iluminação no aeroporto. O primeiro oficial Frank Hlavacek disse que estava "furioso" com o relatório do CAB, dizendo que o conselho tentou pegar o caminho mais fácil culpando um capitão morto. Ele disse que esperava que a American Airlines protestasse contra o relatório.

Em 6 de fevereiro de 1959, um subcomitê especial da Câmara foi nomeado para investigar o acidente e as questões gerais de segurança que a indústria da aviação estava enfrentando durante a transição de aeronaves a pistão para aeronaves a jato e turboélice.

O subcomitê foi chefiado pelo Representante John Bell Williams do Mississippi, um ex-piloto de bombardeiro da Segunda Guerra Mundial. O representante Oren Harris, do Arkansas, disse que o subcomitê examinaria o equipamento que estava sendo usado na nova aeronave, bem como o treinamento de suas tripulações. 

Os cinco membros do subcomitê visitaram o Campo de LaGuardia em 12 de fevereiro e inspecionaram a pista onde o voo 320 estava tentando chegar, mas se recusaram a discutir publicamente os resultados de sua investigação. 

Em março, o comitê anunciou que estava investigando a Agência Federal de Aviação por suprimir informações que o comitê havia solicitado sobre as dificuldades encontradas com o novo tipo de altímetro usado nas aeronaves Lockheed Electra e Boeing 707.

Durante as audiências do subcomitê de aviação do Comitê de Comércio do Senado em janeiro de 1960, o diretor de segurança do CAB testemunhou que se a pista do LaGuardia tivesse sido equipada com luzes de alta densidade, "o acidente provavelmente não teria acontecido".

Ele também defendeu mais treinamento de copilotos de aeronaves e a instalação de gravadores eletrônicos de voo nas aeronaves para auxiliar nas investigações de acidentes.

Como resultado do depoimento, três dos senadores no subcomitê pediram a instalação de sistemas modernos de iluminação no aeroporto Midway de Chicago e outros campos de pouso, e a implementação de requisitos para que os copilotos fossem certificados nas aeronaves que voam.

Elwood Richard Quesada , administrador da Agência Federal de Aviação, testemunhou que o governo se comprometeu a pagar 75 por cento do custo para instalar iluminação de alta intensidade e abordagens de radar em La Guardia antes do acidente, mas que os funcionários do aeroporto se recusaram a pagar os 25% necessários para a cooperação local.

As más condições climáticas no destino fizeram com que a tripulação tivesse que descer através de nuvens densas e nevoeiro, mas a aeronave voou mais baixo do que os pilotos pretendiam e caiu no rio gelado a 4.900 pés (1.500 m) antes da pista a uma velocidade de 140 nós (160 mph; 260 km / h). A American Airlines voava esse tipo de aeronave em serviço comercial apenas cerca de duas semanas antes do acidente.


Testemunhas oculares do acidente relataram que a aeronave estava voando significativamente mais baixo do que o normal para aviões que se aproximavam do aeroporto, enquanto os membros da tripulação de voo sobreviventes alegaram que os instrumentos da aeronave haviam lhes dito que o voo estava operando em altitudes normais até o momento do impacto. 

Uma investigação da Civil Aeronautics Board concluiu que erros cometidos pela tripulação de voo, a inexperiência da tripulação de voo no tipo de aeronave e as más condições climáticas foram as causas do acidente. A conclusão foi contestada pela Air Line Pilots Association, que considerou que o acidente foi causado por instrumentos defeituosos e más condições meteorológicas, e não por erros cometidos pela tripulação altamente experiente.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro.com

Aconteceu em 3 de fevereiro de 1959: 'O dia em que a música morreu' - Queda de avião mata astros do rock


O acidente aéreo em que Ritchie Valens, Buddy Holly e Big Boppa faleceram tragicamente durante uma turnê lendária.

Destroços do avião onde os músicos morreram (Wikimedia Commons)
Em 1959, os dois maiores ídolos do rock norte-americano seguiram caminhos opostos à fama; Elvis Presley decidiu servir ao Exército como soldado na Alemanha, e Little Richard decidia abandonar o gênero para se tornar pastor evangélico. Com as perdas, a necessidade midiática de novas estrelas apontou esperanças para um trio de músicos versáteis.

Com 28 anos, J.P. Richardson se tornava nacionalmente conhecido como The Big Bopper, emplacando o hit ‘Chantilly Lace’. Buddy Holly, com 22 anos, era ainda mais cobiçado, sendo conhecido não apenas pelas gravações com a banda ‘The Crickets’, mas compondo e produzindo os próprios álbuns na carreira solo. O mais jovem era Ritchie Valens, consagrando a canção ‘La Bamba’ como um dos clássicos do rock aos 17 anos.


Juntos, foram responsáveis por protagonizar um dos episódios mais tristes da história do rock, conhecido como “O Dia em que a Música Morreu”. Com isso, o site Aventuras na História separou 5 fatos sobre a tragédia histórica:

A união de astros


Com o sucesso de ambos, o trio decidiu se unir para realizar uma turnê pelos Estados Unidos, nomeada como "The Winter Dance Party" ("A Festa Dançante do Inverno", em tradução livre) e planejada para realizar apresentações em 24 municípios em apenas três semanas, durante os dias 23 de janeiro e 15 de fevereiro de 1959.

Programação da turnê Winter Dance Party, 1959
A proposta buscava unificar a projeção dos astros, que não tinham muitos hits, mas juntos poderiam preencher um show completo e atrair mais produtores. Dessa maneira, poderiam levar o trabalho para mais locais e, consequentemente, deixarem de lado o título de promessas e se consolidarem com os principais contratantes do país.

Primeiros problemas


Apesar do sucesso nas primeiras datas de apresentações, o rigoroso inverno que os Estados Unidos enfrentavam não cooperou com o transporte dos músicos e seus equipamentos; pouco após o início da turnê, o sistema de aquecimento do ônibus que levava o trio quebrou, fazendo o trajeto se tornar bem mais difícil.

Poster anuncia "The Winter Dance Party" em Iowa, dias antes da tragédia (Crédito: Divulgação)
Cansado das cansativas viagens por terra, Buddy afirmou aos companheiros de shows que, na parada seguinte, em Clear Lake, no estado de Iowa, iria buscar um serviço de transporte aéreo para fretar um avião até a próxima parada, em Minnesota.

Suporte aéreo


Conforme o pedido de Holly, os produtores conseguiram indicar um piloto regional para auxiliar no prosseguimento das apresentações; Roger Peterson tinha 21 anos e havia realizado algumas viagens em aviões de pequeno porte na cidade vizinha de Mason City, sendo contratado por Buddy após a apresentação.


Além do piloto, a aeronave modelo Beechcraft 35 Bonanza, prefixo N3794N, fabricada doze anos, foi disponibilizada pelo dono e piloto Hubert Dwyer, dono da Dwyer Flying Service, Inc, que não se dispôs a realizar o trajeto. Os membros da banda Dion and the Belmonts, que também participavam da turnê, recusaram o auxílio pelos ares devido a taxa de 36 dólares por passageiro.

Os escolhidos para o voo


Com a recusa da banda, os músicos de apoio de Buddy, Waylon Jennings e Tommy Allsup, ficaram com as vagas. Ritchie Valens, no entanto, ficou curioso com a possibilidade, visto que nunca tinha viajado de avião, fez uma aposta no cara ou coroa com Allsup, levando a vaga.

O Big Bopper também pediu a vaga a Jennings, que cedeu após compreender que o músico estava sofrendo com um resfriado adquirido pelas longas viagens geladas. Na noite de 3 de fevereiro de 1959, o avião estava pronto para decolar.

O acidente aéreo e o fim de uma geração


Sem orientação sobre as péssimas condições de voo e a inexperiência do piloto no tipo de aeronave foram cruciais para uma tragédia; o avião decolou às 0h55 e, com um rastro de luz decrescente, foi visto pela última vez na madrugada à 1h00, cinco minutos depois de subir. A preocupação iniciou horas depois, quando as autoridades não receberam nenhum sinal na torre de comando.

Mais tarde naquela manhã, Dwyer, sem ouvir nenhuma palavra de Peterson desde sua partida, decolou em outro avião para refazer a rota planejada de Peterson. Em poucos minutos, por volta das 9h35, ele avistou os destroços a menos de 10 km a noroeste do aeroporto. 

O escritório do xerife, alertado por Dwyer, despachou o deputado Bill McGill, que dirigiu até o local do acidente, um milharal pertencente a Albert Juhl. 


A queda fez o avião atingir o solo a 270 km/h,  inclinado abruptamente para a direita e com o nariz para baixo. A ponta da asa direita atingiu o solo primeiro, fazendo a aeronave rodopiar pelo campo congelado por 540 pés (160 m), antes de parar contra uma cerca de arame na extremidade da propriedade de Juhl. 

Os corpos de Holly e Valens foram ejetados da fuselagem e estavam perto dos destroços do avião. O corpo de Richardson foi jogado por cima da cerca e no milharal do vizinho de Juhl, Oscar Moffett, enquanto o corpo de Peterson ficou preso nos destroços.


Com o resto da comitiva a caminho de Minnesota, Anderson, que havia levado o grupo ao aeroporto e testemunhado a decolagem do avião, teve que identificar os corpos dos músicos. 

O legista do condado, Ralph Smiley, certificou que todas as quatro vítimas morreram instantaneamente, citando a causa da morte como " trauma grave no cérebro" para os três artistas e "dano cerebral" para o piloto resultando nos óbitos imediatos e, consequentemente, na comoção do país.

Memorial no local do acidente

Filmes

  • O acidente é mencionado no filme biográfico The Buddy Holly Story (1978).
  • Os preparativos para o acidente e suas consequências também são retratados no filme biográfico de Ritchie Valens, La Bamba (1987).
Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Wallacy Ferrari (Aventuras na História), ASN e Wikipedia

Homens invadem hangar, rendem piloto e roubam avião próximo à fronteira Brasil-Paraguai

Imagem de arquivo do monomotor Cessna roubado em área do tráfico
Nesta quinta-feira (1), a polícia paraguaia registrou o roubo de uma aeronave de pequeno porte no interior da fazenda Teicheira, no município de San Alberto, na região leste do Paraguai, próximo à Santa Helena, na costa oeste do Paraná.

O avião é o Cessna 172L Skyhawk, matrícula ZP-TNJ, cor branca, faixa vermelha e sem GPS.

O piloto, Mário Daniel Miranda Duarte, de 43 anos, informou que ao entrar no hangar, foi rendido por dois homens com armas curtas. Uma mulher também acompanhava os suspeitos dentro de um veículo no interior do galpão.

Os indivíduos embarcaram na aeronave e decolaram da pista. A polícia paraguaia, a Direção Nacional de Aeronáutica Civil (DINAC) e o Departamento de Crime Organizado e o Comando Tripartido foram acionados. A situação será apurada pelas autoridades.

Via ric.com.br e Campo Grande News

A incrível história de um A-6 Intruder na Guerra do Vietnã

A história incrível do A-6 Intruder que se esquivou de 5 mísseis SAMs antes de realizar um ataque perfeito às docas de balsas fortemente defendidas perto do centro de Hanói


O Grumman A-6 Intruder foi a 'bateria principal' da aviação de porta-aviões durante a Guerra do Vietnã. Representou a aeronave de ataque médio mais capaz no teatro de operações para todo o conflito, sendo capaz de atingir alvos com uma carga pesada de munições em quase qualquer condição climática.

No entanto, o papel icônico no Vietnã para o A-6 foi como um atacante noturno de um único navio em altitudes muito baixas .

Na noite de 30 de outubro de 1967, o Aviador Naval, Tenente Cdr Charlie Hunter e seu Bombardeiro/Navegador (B/N), o Tenente Lyle Bull lançaram um único A-6A do USS Constellation (CVA-64) e conduziu um ataque perfeito em as docas de balsas de Red River, anteriormente intocadas, localizadas perto do centro de Hanói. Seu intruso VA-196 , BuNo 152618, foi carregado com bombas Snakeye de 1300 libras Mk 83 em cinco Racks Ejetores Múltiplos (MERs).

Situado sobre o Rio Vermelho, o local da balsa foi considerado um alvo importante desde que saiu da lista de 'proibidos', mas tinha evitado a destruição até agora. Conforme explicado por Rick Morgan em seu livro A-6 Intruder Units of the Vietnam War, várias tentativas de atacar o local com Carrier Air Wing Quatorze Alpha Strikes falharam, em grande parte devido às intensas defesas, que incluíram, de acordo com Lyle Bull, '20 Locais de mísseis terra-ar SA-2 e exatamente 597 posições AAA! 

XO Bob Blackwood há muito sustentava que um único Intruder entrando em altitude muito baixa à noite poderia chegar ao alvo e acertá-lo, defendendo veementemente que atacar o local da balsa ferroviária era a missão para a qual o Intruder supostamente havia sido adquirido.

Hunter e Bull lançaram-se de 'Connie' e ficaram 'com os pés no chão' perto da 'axila' ao norte de Vinh e então correram para o norte em direção a Hanói a 500 pés. Eles inicialmente correram por cársticos paralelos, o que lhes permitiu ficar dentro da sombra do radar fornecida por os ridgelines.

Duas aeronaves Grumman A-6A Intruder da Marinha dos EUA (BuNo 154148, 154155) do Esquadrão de Ataque 196 (VA-196) “Bateria Principal” lançando bombas Mk 82 227 kg (500 lbs) sobre o Vietnã
Bull estava com a cabeça baixa na bota do radar interpretando os retornos para marcar seu caminho enquanto Hunter habilmente controlava a aeronave enquanto se aproximava do alvo. Os primeiros indícios de atividade do SAM não ocorreram até 18 milhas do alvo, mas ele ficou ativo com pressa depois disso. Com o primeiro SAM que apareceu, os dois se lembraram de que a inteligência havia lhes dito que o SA-2 não poderia rastrear abaixo de 1.500 pés. Quando o míssil pareceu segui-los abaixo de 500 pés, Hunter começou um rolo de barril de alta G para jogá-lo fora . A ameaça foi atrás deles e explodiu.

'A inteligência relatou que o SA-2 não conseguia rastrear abaixo de 1.500 pés. Ficamos perturbados ao ver que a avaliação deles estava incorreta', o B/N diria mais tarde.

No entanto, com o A-6 agora de cabeça para baixo a 500 pés, todo o seu mundo estava iluminado com mais SAMs e uma quantidade enorme de tiros.

Contando pelo menos cinco mísseis no caminho, o piloto endireitou a aeronave e levou o Intruder a 100 pés acima do solo, enquanto fazia mais de 450 nós. Bull se lembra especificamente de ter visto 50 pés no altímetro do radar às vezes, mas ele tinha fé total em Hunter. Ele também se lembra que os SAMs não os seguiram enquanto eles estavam tão baixos. Quando o alvo apareceu no radar, eles puxaram cerca de 200 pés para liberar seus `Snakeyes'. 

O alvo foi atingido com força e eles imediatamente viraram para o leste para evitar o aeroporto Gia Lam de Hanói, que agora estava logo na cara. A viagem foi recebida por mais AAA, com pelo menos uma rodada de 85 mm se aproximando, mas eles conseguiram recuperar a constelação a bordo conforme planejado após memoráveis ​​1,9 horas de voo.


Os dois homens posteriormente receberam a Cruz da Marinha por seu trabalho noturno, tornando-se os primeiros de cinco tripulantes A-6 da Marinha dos EUA a receber o prêmio por ação em voo. Hunter e Bull subsequentemente ascenderiam ao posto de contra-almirante.

Edição de texto e imagens por Jorge Tadeu

Como usar o simulador de voo Google Earth


Sabia que o Google Earth inclui o seu próprio simulador de voo que podem usar de forma totalmente gratuita? Saiba como funciona o simulador de voo do Google Earth.

Não é preciso um computador para jogos para poder subir aos céus como no último capítulo da saga Flight Simulator da Microsoft.

Graças ao Google Earth, a plataforma do Google para explorar a Terra e espaço, podemos disfrutar do simulador de voo da Google e totalmente grátis.

Pode não ser um jogo tão completo quanto o da Microsoft, mas o simulador de voo do Google Earth é uma boa alternativa ao Flight Simulator e , como já disse, não é necessário ter um computador muito potente, nem comprar um jogo.

O que é o simulador de voo Google Earth


O nome não deixa dúvidas: mas se houver o Google explica na sua página de ajuda, o simulador de voo do Google Earth é um simulador online que permite que o utilizador explore o mundo sem fazer Download ou instalar jogos pesados ​​no computador.

Claro, é um software totalmente gratuito que podem baixar a qualquer hora de qualquer lugar, desde que tenham uma conexão com a Internet.

De resto, é um simulador como qualquer outro: teremos que controlar um avião e sobrevoar o planeta Terra, decolar e chegar aos aeroportos mais famosos do mundo e visitar a nossa cidade do ar.

Requisitos para jogar o simulador


Antes de aceder ao Simulador de voo do Google Earth no vosso smartphone Android, devem saber que precisam atender a uma série de requisitos. São os seguintes:

  • Ter um computador Windows ou Mac com o Google Earth instalado
  • Ter um Joystick ou teclado e mouse

É tudo. Podem aceder ao simulador de voo Google Earth do vosso computador e começar a voar.

Como fazer o download do simulador no Windows ou Mac


Conforme mencionamos na seção de requisitos, para baixar o simulador de voo do Google Earth, é preciso ter um computador com o aplicativo Google Earth instalado.

Este simulador não está disponível na versão web do Google Earth. Portanto, é preciso Fazer Download e Instalar o aplicativo do endereço web oficial.

Donwload Google Earth (Windows e Mac)

Quando fizer o download da aplicação - a web detectará o sistema operacional que está usando e fará o download automaticamente da versão apropriada.

Como jogar com teclado e mouse ou joystick


Depois de instalar e abrir a aplicação, para aceder ao simulador de vôo, usem esta combinação de teclas.

Dependendo da plataforma que usam, será algo diferente:

  • No Windows: Ctrl + Alt + a
  • E Mac: ⌘ (CMD) + Opção + a
Também pode baixar o simulador de voo do Google Earth no menu de ferramentas do aplicativo.

Quando começar vai ver uma janela de boas-vindas que, entre outras coisas, oferece a possibilidade de escolher se prefere jogar com joystick, ou se o vai fazer com um teclado e um mouse.

Caso tenham um joystick compatível e queira usá-lo, basta marcar a opção "Joystick" no menu de opções.

Como iniciar o voo e começar a voar


Se tem um joystick, provavelmente já deve estar familiarizado como funciona neste tipo de simuladores. Por outro lado, se jogar com teclado e mouse os controles são um pouco diferentes.

Como voar usando joystick


  • Empurre o joystick para a frente para aumentar a velocidade.
  • Quando o avião ganhar velocidade, mova o joystick ligeiramente para trás para decolar.
  • Quando a aeronave atingir a altitude de voo e as asas estiverem estabilizadas, mova o joystick para a posição central.
  • Para alterar a direção, o curso correto ou virar para a esquerda ou direita, mova o joystick na direção que deseja seguir.

Como voar usando o mouse e o teclado


  • Pressione a tecla Page Up no teclado para aumentar a aceleração e manobrar o avião na pista.
  • Quando o avião estiver em movimento, mova o mouse ligeiramente para baixo. Ao atingir a velocidade necessária, o avião decolará.
  • Quando a aeronave atingir a altitude de voo e as asas estabilizarem, centralize o mouse na tela
  • Use as setas do teclado para mudar de direção, curso correto ou inclinar para a esquerda ou direita.
  • Para olhar ao redor, pressione as teclas de seta + Alt ou + Ctrl para girar lenta ou rapidamente, respectivamente.

Quais os aviões e aeroportos disponíveis?


Se há um aspecto em que um Simulador de voo possa ser considerado um simulador de vôo para a maioria dos fãs deste tipo de "jogos", é ter uma grande variedade de aviões e aeroportos, realistas até nos mínimos detalhes.

Como é lógico, não há tanta variedade no simulador de voo do Google Maps, mas ainda tem um catálogo interessante:

Aviões


  • F-16- Recomendado para utilizadores experientes. Ele pode acelerar e subir simultaneamente e é capaz de atingir uma velocidade máxima maior que o dobro da velocidade do som.
  • SR22- Recomendado para utilizadores iniciantes. É uma aeronave a jato de alto desempenho com motor de 310 cavalos.

Aeroportos


Buenos Ares / Christchurch / Frankfurt / Hamburgo / Kathmandu / Kilimanjaro / King County
Lasham / Londres Heathrow / Los Angeles / Meigs / Minsk / Moffett / Montpellier / Moscou
Nova York / Palo Alto / Pokhara / Salzburg / Samedan / São Francisco / Sydney 
St. Petesburgo / Tronfheim / Truckee Tahoe / Viena / Wellington / Zurique

4 truques para aproveitar ao máximo


Embora seja um simulador aparentemente simples, é possível ter ainda mais desta ferramenta com alguns dos truques mais úteis para o simulador de voo do Google Earth:

  • Faça movimentos suaves: Como o Google recomenda na sua página de ajuda, quanto mais suaves os movimentos que fazemos com o mouse ou joystick, melhores resultados teremos ao voar. Sem curvas apertadas.
  • Escolha o avião certo: cada um dos dois aviões disponíveis no simulador de voo do Google Earth oferece uma experiência de voo diferente. Se está começando neste mundo, é melhor escolher o SR22, se já usa simuladores de voo há muito tempo, o poderoso o F-16 pode ser uma boa opção.
  • Decole de qualquer lugar: Quando começa a voar, o Google dá a possibilidade de escolher entre um dos diferentes aeroportos disponíveis no simulador, porém, se estiver explorando a Terra e desejar iniciar o voo de qualquer lugar, basta usar a combinação de Botões Ctrl + Alt + a para começar a voar do ponto onde está naquele momento.
  • Use as combinações de teclas: Um bom truque para o simulador é aproveitar as vantagens das combinações de teclas do Google Earth, pois elas também funcionam quando estamos no modo de simulação. veja todas na página de ajuda do Google.

Como a Hughes Aircraft Company produziu o helicóptero com o maior sistema de rotores de todos os tempos

O barulho do helicóptero era tão alto que podia ser ouvido a 13 quilômetros de distância.

(Foto: Getty Images)
Conhecido como um "guindaste voador", o Hughes XH-17 foi o primeiro projeto de helicóptero assumido pela Hughes Aircraft Company, com sede em Culver City, na Califórnia. A enorme máquina tinha um rotor principal de duas pás com um diâmetro de 134 pés.

Após o fim da Segunda Guerra Mundial , a Força Aérea do Exército dos Estados Unidos queria um helicóptero que pudesse transportar 10.000 libras. O contrato inicial para projetar o helicóptero de carga pesada foi dado à Kellett Aircraft Corporation de Upper Derby, Pensilvânia. Caso a Aeronáutica aprovasse o projeto, o próximo passo seria a construção de um protótipo.

Kellett tinha problemas financeiros


No final do verão de 1947, o projeto do XR-17 havia progredido bem o suficiente para que a luz verde fosse dada para construir um equipamento de teste do sistema de rotor do helicóptero. Kellett estava com dificuldades financeiras e tentou economizar usando componentes retirados de outras aeronaves.

Incapaz de se livrar de seus problemas financeiros, a construção do XR-17 foi vendida para a empresa Hughes Aircraft com a bênção da Força Aérea. Hughes empregou muitos dos engenheiros de Kellett e os mudou para a Califórnia para continuar com o projeto. 

O trabalho no XR-17 foi retomado em março de 1949, e Hughes, assim como Kellett, usou peças de outros aviões. A cabine foi retirada do planador Waco CG-15 e o trem de pouso veio de um bombardeiro norte-americano B-25 Mitchell. O trem de pouso traseiro do helicóptero veio de um Douglas C-54 Skymaster e o tanque de combustível de um Boeing B-29 Superfortress.

O helicóptero era muito barulhento


No verão de 1952, o helicóptero estava completo e pronto para testes de voo. Ele tinha uma velocidade máxima estimada de 90 mph e um alcance de apenas 40 milhas por causa da alta queima de combustível dos dois motores General Electric J35 (TG-180). Os rotores principais de duas pás tinham um pé de espessura e 58 polegadas de largura. Eles pesavam 5.000 libras e giravam apenas a 88 rpm. Ao virar, o barulho era tão alto que podia ser ouvido a 13 quilômetros de distância. Isso levou muitas pessoas a registrar reclamações de ruído contra a Hughes Aircraft Company.

O Hughes XH-17 (Foto: USAF via Wikipedia Commons)
Um rotor de cauda de um Sikorsky H-19 Chickasaw foi adicionado ao XH-17. Era tão pequeno em comparação com os rotores principais que só era adequado para controle direcional diferencial. Por causa do trem de pouso alto e largo do helicóptero, as cargas que precisavam ser levantadas podiam ser conduzidas ou arrastadas sob o XH-17 e presas para levantamento.

No final de 1952, a Força Aérea dos Estados Unidos estava perdendo o interesse no projeto XH-17 e sentiu que seu dinheiro poderia ser melhor gasto no desenvolvimento de aeronaves a jato. A princípio, o Exército se interessou por ver o XH-17 como um tanque e outro veículo de transporte pesado, mas logo decidiu que seu dinheiro seria melhor gasto em helicópteros menores e mais baratos do que o XH-17. Em 17 de agosto de 1953, a Força Aérea cancelou o programa.

Ao longo de três anos, começando em 1952, o XH-17 foi testado e, em 1953, levantou um peso bruto de mais de 50.000 libras. O XH-17 detém o recorde mundial de voar com o maior rotor do mundo, que permanece até hoje. Como o helicóptero era muito ineficiente, com um alcance de apenas 40 milhas e complicado de construir, apenas um protótipo foi produzido.

Projeto do Hughes XH-17 sob três ângulos (Imagem: USAF via Wikimedia Commons)

Características e especificações gerais do XH-17:

  • Capacidade: Cargas de até 10.284 libras foram transportadas
  • Capacidade de combustível: 635 galões americanos
  • Powerplant: 2 × Geradores de gás General Electric 7E-TG-180-XR-17A, 3.480 hp
  • Velocidade máxima: 90 km/h
  • Alcance: 30 milhas com carga útil de 10.284 libras
  • Teto de serviço: 13.100 pés
  • Taxa de subida: 1.650 pés/minuto
Com informações do Simple Flying

Vídeo: Homem em fuga da PM invade aeroporto de Guarulhos e avião chega a arremeter

Polícia usou um helicóptero para tentar prender o suspeito e as operações no terminal tiveram alterações por alguns minutos.

Helicóptero da PM sobrevoa próximo de pista no aeroporto de Guarulhos atrás de fugitivo
(Imagem: Reprodução/Golf Oscar Romeo)
Um homem invadiu uma área de mata no aeroporto de Guarulhos, na Grande São Paulo, e interferiu nas operações do local. Ele fugia da Polícia Militar. Segundo a PM, um homem foi abordado em uma viela nas proximidades do aeroporto, por volta das 15h30 desta terça-feira (30). Ao verificar os antecedentes do suspeito, de acordo com a PM, foi constatado que ele era procurado pela Justiça. Neste momento, o suspeito conseguiu fugir e começou a perseguição.

Conforme a corporação, as buscas, que não haviam terminado às 18h, estavam sendo feitas nas proximidades e no próprio aeroporto. Um vídeo do canal Golf Oscar Romeo, que faz transmissão ao vivo de Guarulhos, mostrou quando o helicóptero Águia, da PM, sobrevoou próximo a uma das pistas do aeroporto. Um carro da polícia também passou próximo a uma cerca.


A gravação mostra quando o helicóptero Águia 11 informa a torre de controle sobre uma operação de segurança pública e que havia uma ocorrência em uma das cabeceiras, com "ingressos de marginais em sua área controlada", e que iria "interferir no eixo".

O controlador de voo, também conforme a gravação, orienta outros aviões sobre a presença do helicóptero da polícia. O PM, então, avisa que iria voar baixo, próximo ao gramado.

Na conversa, o controlador pergunta se seria necessário alterar operações de aviões para outra cabeceira e alerta um outro piloto sobre a operação policial. Um dos aviões chega a arremeter.

"O indivíduo adentrou na área aeroportuária", afirmou o PM no helicóptero. Um outro piloto informou à torre ter visto policiais militares à pé - à reportagem, a PM disse que as buscas iriam continuar dentro e fora do aeroporto. Os pousos e decolagens passaram a ser feitos alternadamente apenas pela pista 28R.

Em nota, a GRUAirport, que administra o aeroporto, afirmou que foi notificada das operações e está colaborando com as autoridades policiais. E que não houve impacto no aeroporto. A operação na pista 28L voltou após alguns minutos.

Guarulhos é o aeroporto mais movimentado do país. De acordo com a concessionária, no ano passado cerca de 275 mil pousos e decolagens foram realizados no local, que teve a movimentação de 41,3 milhões de passageiros, o número é quase 20% superior aos 34,5 milhões de 2022.

Via Fábio Pescarini/Folhapress e Golf Oscar Romeo

sexta-feira, 2 de fevereiro de 2024

História: O computador neste avião não funcionou bem, colocando 315 pessoas em uma situação de vida ou morte

Quando um computador “psicopata” em um avião jumbo perde o controle e tira o controle do piloto, 315 pessoas enfrentam um desastre.


Voltando do banheiro, o segundo oficial Ross Hales se acomoda no assento do lado direito ao lado do capitão Kevin Sullivan na cabine do jato Qantas. “Sem mudanças”, disse o americano Sullivan. Ele está se referindo ao piloto automático e à altitude do Airbus A330-303 enquanto ele navega a 37.000 pés acima do Oceano Índico em um dia de céu azul.

Em um minuto, o piloto automático do avião se desconecta misteriosamente. Isso força Sullivan a assumir o controle manual do voo 72 da Qantas, transportando 303 passageiros e 12 tripulantes de Cingapura a Perth, na Austrália. Cinco segundos depois, os avisos de estol e velocidade excessiva começam a soar. “St-aaa-ll, st-aaa-ll”, gritam eles. Os avisos de velocidade excessiva soam como um alarme de incêndio. Ding, ding, ding, ding. Mensagens de cuidado iluminam o painel de instrumentos.

"Isso não está certo!" Sullivan exclama. Como o avião pode estolar e acelerar ao mesmo tempo? A aeronave está dizendo a ele que está voando nas velocidades máxima e mínima e, 30 segundos antes, nada estava errado.

“É melhor você trazer Peter de volta”, diz Sullivan. Minutos antes, o primeiro oficial Peter Lipsett saiu para o intervalo. Hales pega o interfone do avião para tentar localizá-lo.

Capitão Kevin Sullivan
“Eu estava em uma briga de faca com este avião”, disse Kevin Sullivan. “E apenas uma pessoa ou um computador iria vencer.”

Na cozinha traseira, o comissário de bordo Fuzzy Maiava relaxa após recolher as bandejas de refeição dos passageiros. As persianas da cabana estão fechadas e a calma desceu após o serviço de almoço. Alguns passageiros fazem fila para os banheiros. Um capitão Qantas de folga e sua esposa, que estavam de férias, juntam-se a Maiava.

"Ei, Fuzz, onde está o seu vinho?" eles perguntaram.

“Sirva-se, você sabe onde está”, diz Maiava, rindo.

Booooom. Um som de estrondo rasga a cabana. Em uma fração de segundo, Maiava, o capitão de folga e sua esposa são lançados para o teto e nocauteados.

Na cabine, Sullivan instintivamente agarra o manche no momento em que sente o nariz do avião cair violentamente. São 12h42. Ele puxa o manche para impedir a rápida descida do jato, apoiando-se na cortina do painel de instrumentos. Nada acontece. Então ele me solta. Se o avião de repente devolver o controle a ele, recuar pode piorar a situação, levantando o nariz e causando um estol perigoso.

Em dois segundos, o avião mergulha 200 metros. Em um momento angustiante, tudo o que os pilotos podem ver pela janela da cabine é o azul do Oceano Índico. Minha vida vai acabar aqui hoje? Sullivan se pergunta. Seu coração está batendo forte. O voo 72 da Qantas está com problemas graves. O capitão não tem controle sobre este avião.

Segundos depois de o A330 mergulhar, o avião lentamente começa a responder aos movimentos do manche de Sullivan. Ao fazê-lo, ele permite que o avião continue a descer antes de nivelar cuidadosamente e subir de volta a 37.000 pés.

É tarde demais para os mais de 60 passageiros e tripulantes que não estavam amarrados em seus assentos e foram sacudidos como se estivessem presos em uma máquina de pinball. Maiava deita-se na parte de trás da cozinha depois de bater no teto. Na descida, ele atingiu o banco da cozinha e foi jogado contra o depósito do carrinho de refeições. Recuperando seus sentidos, Maiava vê sangue jorrando da cabeça do capitão Qantas fora de serviço. Ele está inconsciente no chão. A esposa do capitão - uma comissária de bordo sênior da Qantas - começa a recuperar a consciência.

Além da cortina da cozinha, duas jovens irmãs desacompanhadas Maiava estão vigiando gritam. Com medo nos olhos, a mais jovem estende a mão para Maiava. Quase inconsciente, ele não pode fazer nada para confortá-la. Máscaras de oxigênio pendem do teto, balançando de um lado para o outro. Bagagens e garrafas quebradas espalham-se pelo chão da cabine.

De repente, um passageiro de um grupo indiano de turismo corre para a cozinha em pânico, apontando para um colete salva-vidas inflado em volta do pescoço. Seu rosto está ficando azul.

O cara está sufocando”, grita Maiava. A esposa do capitão de folga entrega uma caneta ao passageiro, apontando para um bico no colete salva-vidas. Enfiando a caneta no bico, o passageiro esvazia o paletó e respira fundo. Segundos depois, ele se curva em gratidão. Maiava diz-lhe sem rodeios para voltar ao seu lugar.

Na cabine, avisos de sobrevelocidade e estol continuam soando nos ouvidos dos pilotos, mesmo quando o avião se recupera a 37.000 pés acima do Oceano Índico. Sullivan e Hales não têm ideia do que fez o avião mergulhar. O sistema do computador não os informa. Sullivan voa à medida que eles começam a responder às mensagens de falha e advertência. Um dos três principais computadores de controle de vôo da aeronave - que os pilotos chamam de PRIMs - está com defeito. Eles começam a redefini-lo pressionando o botão liga-desliga.

Então, sem aviso, o avião mergulha novamente. Sullivan puxa o manche para trás e, como fez no primeiro arremesso, solta. Demora vários segundos para o avião responder aos comandos. Em pouco mais de 15 segundos, o jato Qantas cai 120 metros.

Na cozinha traseira, Maiava sente que a aeronave está prestes a mergulhar novamente no momento em que ouve um rugido. Com medo absoluto, ele cruza os olhos com a esposa do capitão Qantas fora de serviço. A segunda queda livre - menos de três minutos após a primeira - os impele em direção ao teto novamente. Eles evitam bater agarrando-se a um corrimão. Deitada no chão segundos depois, Maiava reza que a morte virá rapidamente e sem dor.

Fuzzy Maiava
Fuzzy Maiava sofreu oito operações desde o incidente.

"Que raio foi aquilo?" Hales exclama para Sullivan.

“É o PRIM”, responde o capitão.

A compreensão de sua situação ocorreu em Sullivan. Os computadores de controle de voo - os cérebros do avião - devem manter o avião dentro de um “envelope operacional”: altitude máxima, força g máxima e mínima, velocidade e assim por diante. Mesmo assim, contra a vontade dos pilotos, os computadores estão dando comandos que ameaçam todos a bordo.

Na cozinha traseira, a esposa do capitão da Qantas, de folga, ajuda o marido e Maiava da melhor maneira que pode. Maiava anseia por se sentar. “Nós temos que mudar. Temos que chegar aos nossos lugares”, diz ele. Juntos, eles se arrastam para assentos de salto próximos.

Minutos depois, eles ouvem um anúncio pelo capitão do capitão. Sullivan diz aos passageiros que espera pousar em 15 minutos em um aeroporto remoto na cidade de Learmonth, na Austrália Ocidental, onde os serviços de emergência estarão esperando.

Com o desvio do voo 72 da Qantas, a polícia da Austrália Ocidental e um pequeno centro médico entram em ação. Por causa da distância do campo de aviação, os serviços de emergência precisam de pelo menos 30 minutos para se preparar. Os serviços na área são básicos: um caminhão de bombeiros e duas ambulâncias.

No entanto, Sullivan ainda não sabe se eles podem pousar. O sistema de computador não está dizendo a eles quais dados está amostrando e o que está fazendo. Os pensamentos correm pela mente do capitão: Qual é a minha estratégia? Como vou interromper um pitch down se acontecer durante o pouso?

Circulando por Learmonth, os pilotos analisam uma lista de verificação. Os dois motores do avião estão funcionando. Mas os pilotos não sabem se o trem de pouso pode ser abaixado ou os flaps das asas estendidos para o pouso. Mesmo que eles possam estender os flaps, eles ainda não têm ideia de como o avião vai reagir. Tanto quanto podem, os pilotos tentam afirmar o controle do A330. Eles digitam “Aeroporto Learmonth” no computador usado para navegação. O computador mostra um erro. Isso significa que eles terão que realizar uma abordagem visual. A precariedade da situação é revelada em um extenso resumo das mensagens de erro em suas telas. Eles incluem a perda de frenagem automática e spoilers para impedir a sustentação quando o avião estiver na pista.

A força da queda livre desalojou as portas dos compartimentos superiores e os painéis do teto
Sullivan planeja confiar em uma estratégia que ele praticou em jatos de combate. Nascido em San Diego, ele se tornou piloto da Marinha aos 24 anos. Em dois anos, ele pilotava jatos F-14 do USS America durante a crise de reféns no Irã. Em 1982, foi selecionado para Top Gun, a escola de armas de caça da Marinha que ficou famosa com o filme de mesmo nome. Em 1983, ele se tornou um dos primeiros pilotos de intercâmbio da Marinha dos EUA com a Royal Australian Air Force. Sua estada na Austrália deveria durar três anos. Mas depois de se casar com um australiano e ter uma filha, ele se juntou à Qantas.

Sullivan tenta usar toda essa experiência para derrubar o voo 72 da Qantas com segurança. Voando a 10.000 pés acima do campo de aviação de Learmonth, ele pretende reduzir a potência e descer em uma espiral antes de alinhar a pista e voar rápido na esperança de evitar outro mergulho. Minutos depois, Sullivan abaixa o nariz do A330 e reduz a potência para marcha lenta ao iniciar a aproximação final. O primeiro oficial Peter Lipsett o lembra que a velocidade é maior do que deveria. "Anotado", Sullivan responde laconicamente.

Setenta minutos após o primeiro mergulho, as rodas do A330 arranham a pista de Learmonth. Os passageiros aplaudem freneticamente enquanto ele desliza pela pista. Enquanto o avião para, Sullivan se vira para seus pilotos. “Então, um pouco de emoção em um dia monótono”, ele brinca, imitando Arnold Schwarzenegger em True Lies.

A cabine do avião parece uma cena de um filme de desastre. Os paramédicos de uma cidade próxima cuidam dos passageiros; as portas dos compartimentos foram arrancadas das dobradiças; garrafas, copos e bagagens quebrados estão espalhados pelo chão. “Parecia que o Incrível Hulk havia passado por lá em fúria e destruído o lugar”, Sullivan lembrou mais tarde.

O desastre do voo 72 da Qantas aconteceu há quase dez anos, em 7 de outubro de 2008. O dia ainda assombra Sullivan e Maiava. Sullivan tirou oito meses do trabalho. Quando voltou, estava hiperalerto e preocupado com outra potencial perda de controle. Ele continuou a voar, mas não gostava mais do trabalho que um dia o definiu. Ele se aposentou há três anos, após três décadas na Qantas.


Como Sullivan, Maiava ainda sofre de transtorno de estresse pós-traumático. Ele não teve trabalho remunerado desde o incidente e sofre lesões físicas e psicológicas crônicas. “Tenho espasmos continuamente, todos os dias, sem parar. Isso é o que desencadeia os flashbacks, as memórias, os pesadelos - simplesmente não foi embora”, diz ele.

Até imprimirem o registro de manutenção após o pouso, os pilotos não sabiam que o A330 havia sofrido dez falhas simultâneas no mesmo momento. Em vez de alertá-los sobre as falhas, o sistema do computador respondeu por conta própria às falhas e Sullivan não conseguiu anulá-lo. “Houve um computador de dados aéreos que se tornou invasor”, diz ele. “Ele não se identificou para dizer, 'Estou ficando maluco'. Como um ser humano, eu deveria ter o direito de vetar [os comandos do computador].”

Os eventos de 7 de outubro de 2008 não são apenas sobre como três pilotos de linha aérea se encontraram lutando para salvar um avião de passageiros de si mesmo. Ele serve como um conto de advertência à medida que a sociedade acelera em direção a carros, caminhões e trens sem motorista.

No ar, complexos sistemas de informática já supervisionam uma nova geração de aviões, reduzindo o controle dos pilotos que passam longos períodos de vôo em vigilância. A tecnologia ajudou a tornar os céus cada vez mais congestionados do mundo mais seguros. No entanto, paradoxalmente, é a tecnologia que ameaçou as vidas das pessoas no voo 72 da Qantas.

“Embora esses aviões sejam super seguros e fáceis de voar, quando eles falham, eles estão apresentando aos pilotos situações que são confusas e potencialmente fora de seus domínios para se recuperarem”, diz Sullivan. “Para mim, é um sinal de alerta na estrada da automação dizer: 'Ei, você pode remover completamente a entrada humana?'”

Edição de texto e imagens por Jorge Tadeu (com Reader's Digest e Sydney Morning Herald)

Avião de pequeno porte cai em parque de trailers residenciais na Flórida, Estados Unidos, e mata três pessoas

Segundo a Administração Federal da Aviação do país, três pessoas morreram no acidente: o piloto do avião e duas pessoas que estavam no chão.


O avião de pequeno porte Beechcraft V35B Bonanza, prefixo N6659L, da empresa Control Data, caiu em um parque de trailers residenciais na Flórida, Estados Unidos, na noite de quinta-feira (1º). Segundo a Administração Federal da Aviação (FAA, em inglês) do país, três pessoas morreram - o piloto do avião e duas pessoas que estavam no chão.

O acidente aconteceu por volta das 19h10 no horário local (21h10 horário de Brasília) de quinta na cidade de Clearwater, que tem cerca de 117 mil habitantes e fica na costa oeste da Flórida.


Durante uma coletiva de imprensa, o corpo de bombeiros afirmou que o piloto chegou a enviar um pedido de socorro por meio de um rádio antes da queda, relatando uma falha no motor. O avião acabou atingindo várias residências - ao todo, quatro trailers foram destruídos.

"Uma casa móvel não resiste muito, então a aeronave praticamente a demoliu. O fogo consumiu o resto", disse o chefe dos bombeiros de Clearwater, Scott Ehlers.

Segundo um porta-voz da FAA, o piloto comunicou uma falha no motor momentos antes de cair.


Testemunhas afirmaram que ouviram uma explosão no local. A queda do avião também causou um incêndio com uma grande coluna de fumaça, que foi controlado pelos bombeiros. Um dos moradores da região, Steven Ascari, que postou o vídeo da cena nas redes sociais, disse que os primeiros socorros chegaram rapidamente e apagaram as chamas em meia hora.

“Ouvimos uma explosão lá fora que abalou todo o apartamento e, sem seguida, vimos uma coluna gigantesca de fumaça”, disse Ascari.


A imprensa norte-americana informou que o avião saiu do Aeroporto Regional de Vero Beach, a 250 km de Clearwater. A decolagem foi feita uma hora antes da queda.

Via g1 e ASN