As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
Ative a legenda em português nas configurações do vídeo
A década de 1970 foi considerada uma década negra na história da Malév, a companhia aérea nacional húngara. Entre 1971 e 1977, no espaço de apenas seis anos, Malév perdeu um total de cinco aeronaves em acidentes aéreos, e todos os desastres envolveram vítimas mortais. As verdadeiras causas do último infortúnio da década, a tragédia do voo Malév 203 entre Istambul-Bucareste-Budapeste em 21 de setembro de 1977, que ceifou 32 vidas, foram ocultadas pelas autoridades Kádáristas durante muitos anos.
Em 23 de setembro de 1977, a principal notícia de primeira página do Népszabadság, principal jornal do Partido Socialista dos Trabalhadores Húngaro (MSZMP), foi o breve anúncio do Ministério dos Transportes e Correios (KPM) durante a cobertura do jornal oficial reunião entre os líderes do partido húngaro János Kádár e o iugoslavo Joszip Broz Tito sobre o acidente fatal envolvendo o voo 203 da Malév dois dias antes.
Na quarta-feira, 21 de setembro de 1977, o Tupolev TU-134, prefixo HA-LBC, da Malev Hungarian Airlines (foto acima), estava operando o voo regular, MA203, de Istambul (Turquia) a Budapeste (Romênia), com uma escala intermediária em Bucareste, Romênia.
A bordo da aeronave estavam oito tripulantes e 45 passageiros (trinta e cinco húngaros, quatro alemães orientais e seis turcos), incluindo um grupo de jovens da agência de viagens Express, regressava a casa depois de um programa turístico em Istambul.
O avião foi controlado por Miklós Bakcsi, como piloto-chefe, e Péter Fejes, como piloto no voo, mas, além deles, estavam também o radionavegador László Révbíró, o operador de rádio naval András Bohner e o mecânico naval László Bocskai, todos servindo com uniformes Malév.
As designações "piloto-chefe" e "piloto no voo" no relatório oficial posterior sobre o acidente podem ter parecido estranhas desde o início, uma vez que os cargos de serviço de Malév não receberam esses nomes.
Em vez disso, foram utilizados os títulos de comandante de aeronave (hoje: capitão) e copiloto (hoje: primeiro oficial). No entanto, estes nomes não podiam ser atribuídos a algum tipo de confusão, mas sim ao facto de a tripulação de cabine do voo 203 não pertencer a Malév, mas sim ao Ministério do Interior.
Enquanto descia para o aeroporto de Bucareste-Otopeni a uma altitude de 4.000 pés, a tripulação foi liberada para uma aproximação direta à pista 26 e descer para 2.000 pés.
O avião perdeu altura e atingiu o solo. Ele perdeu o trem de pouso e deslizou por algumas centenas de metros antes de parar em chamas em um campo aberto localizado 6,3 km a sudoeste de Urziceni, cerca de 37 km a nordeste do aeroporto de Otopeni.
Todos os oito tripulantes e 21 passageiros morreram, enquanto outras 24 pessoas ficaram feridas. A aeronave foi destruída por forças de impacto e um incêndio pós-colisão.
Como é típico da era do socialismo, o primeiro anúncio oficial sobre o grave desastre só foi publicado depois de a transmissão em língua húngara da Rádio Europa Livre já ter noticiado a tragédia.
O aviso do KPM escrevia sobre um pouso de emergência, como se implicasse que o avião poderia ter sofrido uma falha técnica, quando na verdade um erro humano grave foi a principal causa do desastre – é verdade, isto só se tornou conhecido em todos os seus detalhes muitos e muitos anos depois do acidente.
Os comunicados oficiais emitidos sobre o acidente mantiveram intencionalmente o silêncio sobre o facto de, no momento do desastre, a tripulação do voo 203 não ser operada por pilotos Malév, mas sim pelo Ministério do Interior (BM) III. Foi ministrado por pilotos de aeronaves pertencentes ao quadro da V. Subdivisão (Aviação) da Guarda Governamental do Chefe do Grupo Principal de Segurança do Estado.
Até 1972, os voos governamentais dos mais altos líderes do partido e do estado eram realizados por pessoal cuidadosamente selecionado de Malév e da Força Aérea do Exército Popular Húngaro.
No entanto a partir de 1972 os dois aviões piloto Tu-134 disponíveis foram operados exclusivamente pela Guarda Governamental da BM com pessoal próprio do Ministério do Interior (a propósito, as duas máquinas de governo tinham um total de três tripulações de voo completas).
Os dois pilotos, por outro lado, quase nunca voavam, por isso as competências do pessoal de serviço também estavam "enferrujadas" devido ao baixíssimo número de horas de voo. Deste ponto de vista, foi particularmente lamentável que o primeiro secretário do MSZMP, János Kádár, tivesse um forte medo de voar, por isso, sempre que podia, utilizava o comboio especial do governo para as suas visitas ao estrangeiro, em vez dos aviões do governo.
Assim, por iniciativa do Ministério do Interior, o acordo alcançado entre o BM e o KPM em 1976 permitiu aos pilotos pertencentes à subdivisão BM pilotar os aviões da companhia aérea nacional com uniformes Malév, a fim de manter seu nível de treinamento.
É claro que nenhum dos “camaradas competentes” pediu antecipadamente a opinião de Malév sobre este assunto.
Naquela época, András Fülöp era o piloto-chefe dos porta-aviões Tu-134 de Malév. Ele treinou os pilotos do BM, incluindo o tenente-coronel da polícia Miklós Bakics e o major da polícia Péter Fejes, para esse tipo. Miklós Bakics serviu anteriormente como piloto militar no Exército Popular Húngaro, de onde foi transferido para o estado-maior da BM. No entanto, András Fülöp elogiou os pilotos da BM pelo seu desempenho durante a reciclagem não o considerou apto para o serviço de Malév, sobre o qual também preparou um relatório oficial.
Os dirigentes do BM evitaram o "destreinamento" do piloto-chefe Malév, enviando Miklós Bakics e Péter Fejes a Moscou para reciclagem, onde já haviam recebido a licença de tipo.
Embora os pilotos da corregedoria voassem nos aviões regulares da companhia aérea com as cores de Malév, nem a gestão profissional de Malév nem o piloto-chefe do tipo tinham quaisquer direitos de controle sobre eles, o que não era apenas inédito, mas uma situação que contradizia diretamente a aviação internacional. convenções.
Há outro fio interessante nesta história: após a tragédia do voo 203, o relatório que discutia a incompetência dos pilotos foi retirado dos documentos, de modo que a nota “desagradável” de András Fülöp foi completamente perdida.
"Agora o que aconteceu?"
A largada em Istambul continuou com um voo sem intercorrências até o início da descida em direção ao Aeroporto Internacional de Bucareste-Otopen.
No entanto, a tripulação levou muito a sério a execução precisa da lista de verificação obrigatória de pré-pouso, o que causou um erro que teve um papel grave na ocorrência do desastre: durante a leitura do checklist, os altímetros barométricos não foram ajustados para a pressão atmosférica do aeroporto de Bucareste-Otopeni por descuido. Foi devido a esta configuração errada dos instrumentos que, quando iniciaram a descida em direção a Bucareste, os instrumentos mostraram valores de altitude falsos.
O controle de tráfego aéreo em Bucareste deu uma altitude limite de 1.860 pés (600 metros) para iniciar o pouso. Ao atingirem essa altura conforme o instrumento, Miklós Bakcsi deu instruções para liberar o trem de pouso. Mas por causa do erro de calibração mencionado acima naquela época eles já voavam abaixo do mínimo de segurança.
Este erro por si só teria sido suficiente para causar o extraordinário incidente de voo, mas a situação perigosa foi agravada pelo facto de os interceptores (placas de travão) embutidos nas asas terem aberto juntamente com o trem de aterrissagem (os interceptores normalmente abrem apenas quando a máquina já tocou o concreto, e sua função - junto com o reversor do jato - é aumentar a resistência do ar para parar a máquina).
Devido ao trem de pouso liberado e às pastilhas de freio abertas, a velocidade foi significativamente reduzido e o avião começou a descer rapidamente. Porém, nem os pilotos nem o controle de tráfego aéreo perceberam isso.
A tripulação de cabine só percebeu que algo poderia estar errado quando o indicador de proximidade do solo no rádio altímetro acendeu a sessenta metros. O áudio do gravador de dados de voo (a chamada caixa preta) capturou o choque do sinal inesperado, quando alguém gritou: “O que aconteceu?”
Ao mesmo tempo, também perceberam que as pastilhas de freio estavam abertas. "Puxe o receptor de volta!" - a instrução nervosa pode ser ouvida na gravação. Nos últimos momentos da gravação sonora gravada pela “caixa preta”, ainda se ouve o ronco dos motores, o que sugere que os pilotos tentaram ganhar altitude aumentando a potência do motor. No entanto, já era tarde demais e o HA-LBC Tu-134 caiu em alta velocidade num campo, a 55 quilómetros do aeroporto de Bucareste, na fronteira de Urziceni.
Um grande estrondo foi ouvido, então fumaça e chamas envolveram os destroços.
Nem um único membro da tripulação sobreviveu ao desastre e vinte e um passageiros perderam a vida. Vinte e quatro sobreviveram ao acidente, vinte e três húngaros e um cidadão turco. A inspeção in loco realizada após o acidente revelou que o avião, descendo intensamente em alta velocidade, primeiro derrapou em um pinhal e depois caiu em um campo atrás das árvores.
O impulso ainda levou o avião sobre o primeiro canal de irrigação, mas não sobre o segundo: o nariz quebrou e a primeira seção do avião foi arrancada junto com a cabine, que a fuselagem cuidadosamente amassou sob si mesma. Todos que estavam na seção antes da falha geológica do tronco tiveram uma morte horrível. A parte central da fuselagem balançou ainda mais devido à força inercial, enquanto a cauda também se quebrou. Os destroços do Tu-134, divididos em três pedaços, queimaram com uma chama ardente na noite escura.
Os sobreviventes, presos na seção central e traseira da fuselagem dividida, romperam a espessa fumaça e as chamas e saltaram dos destroços em chamas cada vez mais intensas em estado de choque. Um dos sobreviventes, László Babucs, relembrou os momentos dramáticos da tragédia assim: “Estávamos em frente a Bucareste quando a comissária anunciou que todos deveriam sentar-se e apertar os cintos... Nem quinze ou vinte segundos se passaram. passou, foi inacreditável que o avião começou a oscilar, às vezes para cima, às vezes para baixo. Estávamos sentados ao nível da asa do avião e olhando pela janela, e quando o avião começou a oscilar como se estivéssemos em um vórtice, olhei para o esquerda e foi como se eu visse uma língua de fogo na ponta da asa."
"E então meu estômago subiu terrivelmente até a garganta, descemos e houve uma grande explosão, um estalo, um clarão, um rugido - como se algum raio tivesse atingido o avião - e depois gritos e roncos terríveis. Não conseguia imaginar o que aconteceu porque já voei várias vezes antes e então foi como se parássemos. Abri os olhos e a um metro e meio a dois metros de distância o avião estava quebrado, na minha frente havia uma enorme língua de fogo, como aquela por onde saltam os leões no circo."
O doutor viajou no voo 203. Zoltán Magyari e sua esposa, a dra. Pastora Annamária também. Segundo as lembranças do doutor, um terrível estrondo foi ouvido. A fuselagem do avião foi atingida por um grande golpe, e as fileiras de assentos à frente deles e o homem correndo para seus lugares simplesmente desapareceram na abertura rasgada.
Segundo o Dr. Magyari, houve um grande barulho e gritos, as luzes se apagaram e os destroços começaram a ser envolvidos pelas chamas. Ele e sua esposa tiveram muita sorte; como o nariz do avião quebrou bem na frente deles, eles simplesmente desabotoaram os cintos de segurança e simplesmente pularam no chão.
Os moradores da vizinha Urziceni apareceram pela primeira vez no local do acidente, trazendo cobertores e bebidas, e os feridos foram levados para a aldeia, onde o médico local, entretanto alertado, e o Dr. fratura de costela, começou a tratar os feridos.
A prova está encerrada, esqueça!
As autoridades húngaras receberam as primeiras informações sobre o desastre do avião Malév por parte do controlo de tráfego aéreo romeno. Os sobreviventes, que estavam em estado de choque, foram levados de ônibus de Bucareste para a Hungria no dia seguinte.
Por uma reviravolta do destino, o ônibus romeno também pegou fogo no caminho.
A difícil viagem de regresso à Roménia terminou em Szeged, onde as autoridades de Malév esperavam pelos sobreviventes da catástrofe, que foram levados de lá de táxi.
Nos dias que se seguiram, os sobreviventes foram abordados por funcionários da BM de terno cinza e informados
“não é recomendado” falar com a imprensa ou com qualquer outra pessoa sobre o desastre.
Até à mudança de regime, não foi revelado quem conduzia o malfadado avião Malév. O desastre, que ceifou muitas vidas, foi causado por erro humano e por uma falha técnica fora do controle dos pilotos, a abertura dos interceptadores.
Oficicialmente, foi apontada como causa principal do acidente, o fato de a aeronave ter voado com potência reduzida, levando a uma perda gradativa de altitude, despercebida pela tripulação.
Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN, baaa-acro e civilek.info
O último voo da balsa do ônibus espacial veio em setembro de 2012, quando o Endeavour foi para seu local de descanso final na Califórnia (Foto: NASA)
Por 30 anos, o programa do ônibus espacial da NASA realizou importantes missões espaciais, cativando os espectadores com visuais fascinantes dos ônibus espaciais durante o lançamento e a reentrada. Foi, portanto, igualmente empolgante ver dois 747s especialmente modificados pegando carona nos mesmos ônibus espaciais pelo país de uma base para outra. Os voos icônicos de balsa chegaram ao fim nove anos atrás, quando o ônibus espacial Endeavour pulou no 747 pela última vez para viajar até seu local de descanso final na Califórnia.
Jumbos especiais
Embora os ônibus espaciais pudessem ser transportados por estradas por curtas distâncias, eles dependiam de dois Boeing 747-100 altamente modificados - chamados de Shuttle Carrier Aircraft (SCA) - para viagens de longa distância. Não havia como confundir esses jumbos com aviões regulares com três amortecedores projetando-se da parte superior da fuselagem e dois estabilizadores verticais adicionais.
Eles também não tinham nenhum mobiliário interno e eram equipados com instrumentação usada pelas tripulações e engenheiros da SCA para monitorar o desempenho durante os voos de balsa. A maioria dos jumbos transportava os ônibus espaciais entre a Edwards Air Force Base, na Califórnia, e o Kennedy Space Center, na Flórida.
Antes de voar para a NASA, o 747 voou comercialmente para a American Airlines e Japan Airlines. Aqui, o jumbo ainda pode ser visto com a libré americana (Foto: NASA)
O primeiro dos dois jumbos, N905NA, operava inicialmente para a American Airlines e foi adquirido pela NASA em 1974. Inicialmente, foi usado para outros fins de pesquisa antes de a NASA começar a modificá-lo em 1976 para missões de transporte de ônibus espaciais. A aeronave foi retirada de serviço em 2013, um ano após seu último voo de transporte em 2012.
O segundo 747 começou com operações comerciais com a Japan Airlines e entrou na frota da NASA em 1988 com o número de registro N911NA. Ele realizou sua primeira missão de transporte de ônibus espacial em 1991, e seu voo final também foi em 2012, alguns meses antes do do N905NA.
Voo final de balsa
Com o programa do ônibus espacial chegando ao fim em 2011, os SCAs começaram a transportar os ônibus icônicos para seus locais de descanso em museus e centros de ciência. A final desses voos veio em 21 de setembro de 2012, com N905NA transportando Space Shuttle Endeavour de Cabo Canaveral, Florida para Los Angeles (LAX), com uma escala em Edwards Air Force Base.
O voo comemorativo sobrevoou marcos icônicos na Califórnia antes de pousar em LAX (Foto: NASA)
O voo comemorativo deu uma volta da vitória sobre a Califórnia, fazendo sobrevôos de baixa altitude sobre cidades e pontos de referência. Os pilotos do voo, Jeff Moultrie e Bill Rieke, carregaram o Endeavour sobre estruturas icônicas como a Ponte Golden Gate em São Francisco, o Capitólio Estadual em Sacramento e o Centro de Pesquisa Ames da NASA em Moffett Field ao norte de San Jose.
Trabalhadores de escritório estavam no topo dos edifícios aplaudindo enquanto o 747 voava acima deles, e duas estradas principais que levam a LAX ficaram congestionadas quando os motoristas saíram de seus carros para testemunhar o voo icônico. Antonio Villaraigosa, então prefeito de Los Angeles, cumprimentou a Endeavour na pista do aeroporto, dizendo:
“Deixe-me ser o primeiro a dizer, bem-vindo a Los Angeles, Endeavor.”
Na verdade, foi uma despedida condizente com um ônibus espacial notável e o 747 único.
Onde eles estão agora?
Os ônibus espaciais e os dois 747s foram preservados e exibidos para os amantes da indústria aeroespacial. Dos seis ônibus espaciais construídos, Challenger e Columbia foram, infelizmente, destruídos em acidentes. Os quatro restantes estão em vários locais nos EUA:
Shuttle Atlantis - Complexo de visitantes do Kennedy Space Center na Flórida
Descoberta do ônibus espacial - Steven F. Udvar-Hazy Center na Virgínia
Shuttle Endeavour - California Science Center em Los Angeles
Shuttle Enterprise - Intrepid Sea, Air & Space Museum na cidade de Nova York
Dos dois 747s, o N905NA foi desmontado e enviado para preservação no Centro Espacial Johnson em Houston, Texas, onde está em exibição com uma réplica do Ônibus Espacial anexado a ele. O outro, N911NA, está em exibição no Joe Davies Heritage Air Park em Palmdale, Califórnia.
O programa do ônibus espacial e os voos icônicos de balsa podem ter acabado, mas os entusiastas ainda podem visitar esses locais para ter um vislumbre daquela era passada.
O sistema de freios das aeronaves é bem potente e capaz de parar toneladas de peso (Imagem: Divulgação/twenty20photos/Envato)
Uma das situações mais delicadas e importantes de um voo é o pouso da aeronave. Seja qual for o seu tamanho, peso ou potência, a manutenção dos freios e dispositivos auxiliares para que o piloto faça bem o seu trabalho deve estar sempre em dia, isso sem falar nas condições da pista, que são bem diferentes do que encontramos nas estradas e ruas pelas cidades mundo afora.
O avião, claro, tem freios em seu trem de pouso e eles funcionam de modo muito parecido como em outros veículos. Mas a diferença é que, ao contrário de seu carro ou picape, ele precisa ser capaz de parar toneladas, seja no pouso, seja em uma decolagem abortada. Esse sistema de freios é composto por inúmeros discos, que podem ser de aço ou de carbono, dependendo do modelo da aeronave. Para acioná-los, claro, há um pedal na cabine do piloto ou acionamento eletrônico.
Durante o processo de frenagem, os discos dos freios não podem ultrapassar os 900ºC, de modo que, se isso ocorrer, significa que o acionamento ou os próprios materiais desses discos estão gastos e necessitam de troca ou de reparos. Para evitar esse desgaste, os pilotos podem utilizar dois outros mecanismos que ajudam na hora do pouso: os spoilers e os reversos.
Os spoilers, ou freios aerodinâmicos, são placas localizadas nas asas que se levantam para gerar mais resistência no ar. Já o reverso está presente majoritariamente em aviões a jato e funcionam dentro dos motores. Ao acioná-los, o piloto consegue utilizar parte da potência do avião para diminuir a velocidade no solo. E assim, a união desses três elementos faz esses gigantes prateados pararem em segurança no solo.
Via Canaltech News (com informações de Aviões e Músicas)
Os procedimentos de segurança dos aeroportos tornaram-se muito mais rigorosos após os eventos terroristas em 2001 e conspirações posteriores.
Estamos todos muito acostumados a retirar nossos recipientes de líquidos de 100 ml ao passar pela segurança do aeroporto. Não muito tempo atrás, você poderia levar recipientes de líquidos de qualquer tamanho pela segurança e a bordo da aeronave. As limitações só foram introduzidas em 2006, na sequência de parcelas específicas descobertas em voos transatlânticos.
Aumentando a segurança após 2001
Houve muitas mudanças na segurança de voos e aeroportos após os incidentes terroristas de 11 de setembro de 2001. Os processos de segurança e a tecnologia foram intensificados, e as companhias aéreas e os reguladores começaram a exigir portas de cabine seguras. Nos EUA, a Transport Security Administration ( TSA ) foi formada como uma autoridade separada para lidar com a segurança de passageiros e aeroportos.
Essas mudanças levaram a processos de segurança e triagem de aeroportos muito mais rigorosos em todo o mundo - mas não introduziram a proibição de líquidos . Isso ocorreu depois que os serviços de segurança descobriram e impediram outro conjunto de ataques terroristas.
A 'conspiração da bomba líquida'
Em agosto de 2006, os serviços de segurança britânicos descobriram um plano para transportar dispositivos explosivos improvisados a bordo de vários voos transatlânticos e detoná-los durante o voo. A trama envolvia o uso de peróxido de hidrogênio como explosivo. Isso seria transportado a bordo dentro de recipientes de bebidas padrão e montado em um dispositivo explosivo a bordo.
Os voos entre o Reino Unido e os EUA foram alvos da trama (Foto: Getty Images)
Isso levou à imposição de restrições imediatas e severas. As regras foram trazidas durante a noite e, a partir da manhã de 10 de agosto, os passageiros do Reino Unido e dos EUA não podiam levar nada a bordo da aeronave, exceto um pequeno item pessoal. Líquidos foram proibidos - além de uma concessão para as mães trazerem leite para bebês.
Isso teve um efeito significativo no setor de aviação. A pressão sobre os sistemas de bagagem (particularmente em Heathrow ) foi severa, muitos voos foram cancelados e muitos passageiros mudaram para transportes alternativos. De acordo com reportagem do The Independent, na semana após a proibição, a British Airways cancelou mais de 1.500 voos, e o setor de aviação do Reino Unido em geral perdeu mais de £ 50 milhões (US $ 69 milhões).
Novas regras para líquidos
As restrições líquidas foram introduzidas repentinamente em 10 de agosto no Reino Unido e nos EUA (Foto: Getty Images)
As regras foram introduzidas repentinamente, causando confusão e longos atrasos nos aeroportos. Desde então, os procedimentos e a compreensão melhoraram, assim como a tecnologia de triagem e varredura para detectar e testar líquidos.
Há esperança de que as melhorias tecnológicas possam em breve começar a remover as restrições. A tomografia computadorizada (TC) está agora mais prontamente disponível e pode detectar melhor líquidos e outros itens. Os scanners de tomografia computadorizada produzem uma imagem de 360 graus da bagagem e seu conteúdo. Líquidos, e seus volumes, podem ser detectados desta forma – esperamos permitir mudanças nas políticas.
Southend foi o primeiro aeroporto no Reino Unido a ter scanners de tomografia computadorizada instalados - outros aeroportos de Londres seguiram agora (Foto: Getty Images)
Até agora, os scanners foram testados em muitos aeroportos (incluindo Londres Heathrow em 2019) e instalados em vários - incluindo muitos grandes aeroportos dos EUA e Amsterdam Schiphol. No entanto, tornar a tecnologia suficientemente disponível para alterar as restrições provavelmente levará algum tempo.
Eles permitem uma triagem muito mais rápida, muitas vezes eliminando a necessidade de remover líquidos e eletrônicos da bagagem. Mudar as restrições para permitir novamente líquidos está muito mais distante, no entanto. O que começou como uma resposta temporária a um incidente de segurança já está em vigor há mais de 15 anos e provavelmente continuará por alguns anos ainda. Espero que se torne mais fácil de gerenciar.
O 787 foi a primeira aeronave de fuselagem composta (Foto: Vincenzo Pace)
Jatos modernos, como o 787 e o A350, viram uma mudança para materiais compostos para a construção da fuselagem. Parece que isso permanecerá como o caminho a seguir para novos projetos de aeronaves. Existem desafios, mas o peso menor oferece melhorias significativas em eficiência e custo operacional.
A fuselagem de alumínio
Os aviões nem sempre foram feitos de metal. Muitos dos primeiros aviões usavam madeira e tecido. E não apenas aeronaves pequenas, como os primeiros biplanos - o Howard Hughes H4 de madeira, conhecido como 'Spruce Goose', foi uma das maiores aeronaves já construídas. Ele voou uma vez, mas nunca entrou em serviço - devido ao fim da guerra, porém, não sua construção de madeira!
O Spruce Goose, lançado em 1947, foi a maior aeronave de madeira construída (Foto: Getty Images)
A madeira era um material prático. Era de baixo custo e muito baixo peso. Mas não era forte o suficiente para voar em alta velocidade. Com o aumento das velocidades e, certamente, com a introdução dos motores a jato, o metal se tornou a melhor opção.
O alumínio foi a melhor escolha. É durável, leve e relativamente barato. O titânio, na verdade, é ainda melhor, mas muito caro. O compromisso é usar ligas de alumínio para reduzir os problemas de fadiga por tensão e corrosão. Essas ligas de alumínio formaram a base de todas as fuselagens de aviões a jato até recentemente. Pequenas quantidades de outros metais (como aço ou ferro) podem ser usadas na construção, mas por si só são muito pesadas e sofreriam tensão em altas temperaturas.
Douglas DC-8 (1961) - Os jatos são construídos há muito tempo com a maioria das ligas de alumínio (Foto: Getty Images)
Mudando para o composto
Muitas aeronaves modernas, principalmente o Boing 787 e o Airbus A350, mudaram para materiais compostos para construção. Isso segue a tendência de operação de aeronaves mais eficiente, de menor custo e de emissões mais baixas nos últimos anos. Estes são os dois primeiros a ter uma construção composta significativa
As aeronaves anteriores já haviam começado a se mover dessa forma, no entanto. O A380, por exemplo, é aproximadamente 20% composto, e o 777 cerca de 12%. Curiosamente, o novo 777X manterá uma fuselagem de alumínio, pois é baseado na atualização do 777.
Composto refere-se à construção de dois ou mais materiais diferentes que, quando combinados, apresentam um desempenho melhor do que os elementos por si próprios. No 787, cerca de 50% dos materiais usados são plástico reforçado com fibra de carbono (CRFP) e outros compósitos. O alumínio ainda representa 20%, o titânio 15% e o aço 10%.
A fuselagem do 787 tem cerca de 50% de fibra de carbono e compostos (Foto: Getty Images)
A Airbus também faz uso de CFRP no A350. O fabricante fornece uma boa descrição de como ele usa o CRFP em seu site: “Na produção de CFRP, milhares de fios de carbono microscopicamente finos são agrupados para fazer cada fibra, que se junta a outras em uma matriz mantida unida por uma resina robusta para atingir o nível necessário de rigidez. O componente composto é produzido em folhas de formato preciso colocadas umas sobre as outras e, em seguida, ligadas, normalmente usando calor e pressão em um forno chamado autoclave, resultando em um composto de alta qualidade.”
Grande parte do crédito pela mudança para os compósitos deve-se à Boeing. Ela optou por seguir o sucesso do 777 (como o carro largo mais vendido até agora) com um novo projeto de aeronave em folha limpa no 787. Essa era uma capacidade inferior ao do 777 e levou a Boeing para o mercado não comprovado de fuselagem composta. As companhias aéreas reagiram positivamente, no entanto. Tanto que a Airbus optou por revisar seus planos para o A350 e também projetar um novo corpo largo composto de folha limpa com o A350XWB (anteriormente, estava planejando uma atualização com base no A330).
O 787 foi a primeira aeronave de construção composta significativa, lançada quatro anos antes do A350XWB (Foto: Vincenzo Pace)
Vantagens dos compósitos
A principal vantagem é a redução de peso, o que reduz o consumo de combustível, as emissões e, em última análise, o custo por assento para as companhias aéreas. Esses materiais também são menos suscetíveis à corrosão e fadiga, reduzindo o tempo e o custo de manutenção para as companhias aéreas.
As estruturas compostas podem ser moldadas em qualquer formato. Isso permitiu que seções inteiras do "barril" da fuselagem fossem feitas em locais diferentes, em vez de chapas de alumínio que precisavam ser aparafusadas. A Boeing usou isso extensivamente na construção do 787. As seções de fuselagem são totalmente montadas em diferentes locais (incluindo Itália e Japão) e depois transportadas para as fábricas da Boeing nos Estados Unidos para montagem final, usando a aeronave Dreamlifter.
Seções separadas da fuselagem do compósito 787 são unidas durante a montagem final (Foto: Boeing)
Outra diferença que você notará com o composto são as janelas maiores. Com a fuselagem menos resistente à fadiga, eles podem ser aumentados em tamanho. O 787 tem as maiores janelas de passageiros de qualquer jato de passageiros e, à medida que o uso de compostos avança, poderíamos ver maiores.
O 787 tem as maiores janelas de qualquer aeronave atual (Foto: Getty Images)
Limitações de compostos
Com a mudança para os compostos, pelo menos para jatos comerciais de passageiros, agora bem encaminhada, há desvantagens? O custo é um, até certo ponto. Os componentes CFRP são mais caros de produzir do que as peças metálicas padrão (isso pode mudar à medida que a produção e o uso se expandem). Mas, com o tempo, isso pode ser compensado por custos de manutenção mais baixos.
Também surgiram preocupações sobre a detecção de danos à fuselagem. O dano por impacto não é tão visível ou fácil de detectar como em uma fuselagem de metal. As propostas dos reguladores para mitigar isso incluem melhor treinamento e mais monitoramento e relatórios de contatos de fuselagem em potencial. Outros testes (incluindo ópticos, elétricos e acústicos) podem verificar se há danos à fuselagem.
Outro desafio que podemos ver é com a modificação da aeronave. Isso foi levantado como um problema com as conversões de cargueiros - cortar uma porta de acesso de carga em uma fuselagem composta é mais desafiador do que em uma de alumínio. Pode ser mais fácil para um possível cargueiro A350 , já que sua fuselagem é construída a partir de painéis compostos em vez de seções completas do cilindro.
Um cargueiro A350 provavelmente seria baseado na fuselagem do A350-900 (Foto: Getty Images)
Mas com a economia de peso e a melhoria na eficiência, essas desvantagens provavelmente agradarão aos operadores.
O Gulfstream foi modificado para voar como o orbitador do ônibus espacial.
O Gulfstream II da NASA (Foto: NASA)
Embora o Gulfstream seja conhecido principalmente como jato particular, a aeronave já desempenhou um papel crucial na indústria espacial. A variação Gulfstream II, produzida pela primeira vez em 1967, foi implantada pela NASA na década de 1980 como meio de treinar pilotos em pousos perfeitos do orbitador do ônibus espacial da NASA.
Programa do ônibus espacial da NASA
Como o quarto programa de voo espacial humano, a era dos ônibus espaciais da NASA mudou a história. O orbitador lançado com dois foguetes propulsores sólidos reutilizáveis voou pela primeira vez em 12 de abril de 1981 e, em 30 anos, foi crucial para muitas missões no espaço.
A frota, incluindo Columbia, Challenger, Discovery, Atlantic e Endeavour, fez parte da construção da Estação Espacial Internacional, prestando serviços para o Telescópio Espacial Hubble, recuperando satélites, cargas úteis e transportando astronautas para o espaço.
O ônibus espacial foi a primeira espaçonave reutilizável, lançando-se verticalmente ao espaço e pousando como um avião. Operou 135 missões e enviou 355 astronautas ao espaço, mas depois que o programa se tornou muito caro e perigoso, a missão final do ônibus espacial operou em 21 de julho de 2011, depois que o Atlantis estacionou no Centro Espacial Kennedy da NASA, na Flórida.
Aeronave de treinamento de transporte
Que o jato particular Gulfstream II. O orbitador do ônibus espacial era conhecido como um “tijolo voador” pelos pilotos que o operavam, pois era complicado de manobrar e o pouso era uma experiência completa. Devido à natureza do orbitador, ele não poderia ser treinado como uma aeronave. Portanto, em 1973, a NASA decidiu modificar quatro jatos Grumman Gulfstream II para se tornarem uma aeronave de treinamento de ônibus espacial (STA).
A aeronave foi alterada para imitar a configuração e a cabine do orbitador quase perfeitamente para treinamento. Dentro da aeronave havia computadores e simuladores que faziam os pilotos se sentirem como se estivessem pilotando uma espaçonave sem motor, segundo a NASA. Isso significava que enquanto os pilotos estivessem encarregados de controlar o avião, o computador decidiria como o ônibus real reagiria. NASA disse:
“Quando o astronauta puxa o manche para trás, por exemplo, o computador decide como um orbitador real reagiria. Em seguida, o computador move a asa e a cauda para fazer o STA agir da mesma maneira. O movimento leva apenas 50 milissegundos para ocorrer, então o piloto não sente nenhum atraso.”
Em 1973, a NASA encomendou duas aeronaves GII modificadas para servir como treinadores de aproximação e pouso para astronautas do ônibus espacial. Embora essas aves tenham se aposentado, a frota da agência ainda inclui aeronaves da Gulfstream (Foto: NASA)
O STA foi construído para reverter seus motores em vôo e operava com dois conjuntos de rodas de pouso principais. A NASA disse que para corresponder à taxa de descida do ônibus espacial e ao perfil de arrasto a 37.000 pés, o trem de pouso principal foi abaixado e o impulso do motor foi revertido. Além disso, os flaps seriam desviados para cima para diminuir a sustentação.
No que foi considerado como “mergulhar de cabeça em uma faixa de concreto a seis milhas de altura”, de acordo com a NASA, o “padrão de pouso” da espaçonave significava que a Gulfstream voaria a 300 mph durante um mergulho, que é “várias vezes mais íngreme do que o de um avião comercial.
A agência espacial disse que as tampas foram instaladas no lado esquerdo das janelas da cabine para imitar a visão que os astronautas teriam da cabine do ônibus espacial. O lado direito da cabine tinha controles e displays convencionais.
Aproximando-se da pista, se os pilotos acertassem a velocidade, uma luz verde no painel de instrumentos simularia um pouso quando os olhos do piloto estivessem 32 pés acima da pista, imitando a posição exata que a cabeça do piloto estaria em um pouso real. A NASA declarou:
“No exercício, o STA ainda está voando a 6 m (20 pés) acima do solo. O piloto instrutor desmarca o modo de simulação, armazena os reversores e executa uma arremetida, nunca – durante as aproximações de treino – pousando a aeronave de fato.”
Gulfstream II para treinamento em ônibus espaciais da NASA (Foto: NASA)
Os quatro STAs geralmente estavam localizados no local de operação avançada da NASA em El Paso, Texas, e os astronautas praticavam no Shuttle Landing Facility e no White Sands Space Harbor.
Treinamento no Gulfstream
Em 2007, a NASA publicou um artigo sobre como era pilotar o STA, com a colaboração de Jack “Trip” Nickel, um piloto de pesquisa, e de Alyson Hickey, uma engenheira de simulações de voo.
O artigo dizia que a aeronave de treinamento era significativa porque, no orbitador real, os comandantes só tinham uma chance de pousar a espaçonave de 110 toneladas. Isso ocorre porque não há chances de dar uma volta, já que a espaçonave não possui motores atmosféricos para ganhar impulso extra, portanto, realizar um pouso perfeito foi crucial.
Níquel disse: “O ônibus espacial tem características de vôo de tijolo, basicamente, com asas. Num avião como este, um jato corporativo, não há céu visível na cabine dianteira. Tudo o que você vê pela janela é sujeira, não há absolutamente nenhum céu. Então, é uma sensação muito ameaçadora. Com os motores em marcha-ré, você está pendurado no cinto."
"Você obtém a dinâmica real do ar real passando por cima da aeronave (e) simplesmente não pode modelar isso com um computador. Simplesmente não há comparação com estar no ar real, vendo os auxílios de pouso reais. Este é apenas o real coisa."
Durante o treinamento, Nickel garantiria a segurança da aeronave, e Hickey monitorava o computador e desempenhava o papel de piloto do ônibus espacial informando os astronautas a bordo. Durante o treinamento, Hickey sentava-se atrás e entre o astronauta à esquerda e o instrutor à direita.
Hickey executaria toda a simulação e, em parceria com Nickel, os dois apresentariam problemas que poderiam acontecer na vida real para o comandante praticante do ônibus espacial resolver.
Nickel disse que esta aeronave funcionou nos “limites estruturais de velocidade no ar em simulação (modo)”, mas a recompensa foi um treinamento realista para pilotos que só tiveram “uma chance” de pousar o avião espacial.
Ônibus espacial Columbia da NASA (Foto: NASA)
A aposentadoria da aeronave
O Gulfstream foi crucial para treinar astronautas na difícil tarefa de pilotar o ônibus espacial. Após milhares de horas e 946 dias de voo, o jato pousou no Aeroporto Internacional Rick Husband Amarillo e taxiou em direção ao Texas Air and Space Museum como local de descanso final em 21 de setembro de 2011. Sua aposentadoria foi sinônimo do encerramento do programa do ônibus espacial.
Two shuttles, two T-38s and one Gulfstream II Shuttle Training Aircraft = too much awesome in one picture to handle. Credit: NASA/Robert Markowitz pic.twitter.com/EtAs1jtf0K
A aeronave é apenas um dos vários outros modelos de aeronaves a serem aposentados pela NASA à medida que a agência continua a se adaptar aos requisitos modernos. Notavelmente, um Boeing 747SP que carregava um telescópio para o Observatório Estratosférico de Astronomia Infravermelha (SOFIA) foi aposentado em outubro passado. A unidade fez parte de várias missões revolucionárias.
O avião foi utilizado anteriormente pela Pan American e pela United Airlines antes de chegar às instalações da NASA em 1996. Ele fez parte de uma série de descobertas em todo o universo .
Boeing 747SP (SOFIA) (Foto: NASA)
Além disso, na virada de 2023, a NASA observou que estava se preparando para abandonar sua antiga aeronave DC-8. O jato modificado tem sido usado como laboratório voador, coletando dados cruciais no mundo da exploração espacial. O homem de 54 anos abre caminho para uma aeronave um pouco mais moderna na forma de um Boeing 777.
Ao todo, a NASA implantou bem uma série de modelos comerciais e civis para suas aventuras acima. Este factor continuará a prevalecer neste próximo capítulo da aviação, com o grupo continuando a colaborar com os fabricantes norte-americanos. No início deste ano, concedeu à Boeing um contrato de voo sustentável com a esperança de produzir um demonstrador em escala real durante os próximos cinco anos.
ATC do Aeroporto Internacional de São Francisco, na Califórnia (EUA) (Foto: SFO)
No próximo mês, no dia 20 de outubro, a indústria celebrará o Dia Internacional do Controlador de Tráfego Aéreo . Embora os sistemas de controlo de tráfego aéreo sejam agora abrangentes e empreguem milhares de pessoas em todo o mundo, há muitos anos atrás, tudo começou com um homem e uma bandeira que guiava os pilotos nas descolagens e aterragens. O sistema avançou significativamente, mas o controlo do tráfego aéreo continua a ser o prejudicado na manutenção da segurança do espaço aéreo.
Origens humildes
Embora o primeiro voo regular de passageiros em 1914 tenha sido um dos marcos mais significativos da história da aviação, o controle de tráfego aéreo (ATC) só surgiu anos depois. Antes do início do ATC, os pilotos usavam métodos de navegação visual, como bússolas e mapas, para voar e pousar aviões.
Em 1920, o Aeroporto de Croydon, em Londres, foi o primeiro a introduzir uma torre ATC. A 'Torre de Controle do Aeródromo' foi usada principalmente para orientação básica de tráfego e meteorologia para pilotos usando rádio. Entretanto, nos Estados Unidos, a Lei do Comércio Aéreo de 1926 foi a primeira vez que o ATC foi de alguma forma reconhecido quando o secretário do comércio foi encarregado de estabelecer regras de tráfego aéreo, certificar pilotos e aeronaves, estabelecer vias aéreas e operar sistemas de navegação.
Alguns anos mais tarde, em 1929, após o primeiro voo solo de Charles Lindbergh através do Atlântico – sem escalas de Nova Iorque a Paris em 1927 – foi contratado o primeiro controlador de tráfego aéreo dos EUA, um piloto e mecânico chamado Archie W. League. A torre de controle da Liga era muito menos complicada do que os padrões atuais.
Todos os dias, League carregava uma cadeira, guarda-chuva, almoço, água, bloco de notas e bandeiras de sinalização em um carrinho de mão para um campo de aviação em St. Louis e orientava os pilotos nas partidas e pousos. Ele tinha duas bandeiras, uma para 'Go' e outra para 'Hold', e este foi o primeiro controle de tráfego aéreo coordenado.
Isso deu início à longa carreira da League no desenvolvimento do sistema federal de controle de tráfego aéreo. Ele ingressou no serviço federal e tornou-se diretor do Serviço de Tráfego da Administração Federal de Aviação (FAA) após se aposentar como administrador assistente em 1973, segundo o regulador.
Seguindo as bandeiras-guia da Liga vieram os canhões leves, mas em 1930, a primeira torre de controle “equipada com rádio” foi estabelecida no Aeroporto Municipal de Cleveland, mudando o curso do ATC. Nos cinco anos seguintes, mais 20 cidades adotariam a mesma tecnologia.
Archie W. League no aeroporto de St. Louis (Foto: FAA)
Em 1935, um consórcio dos EUA abriu a primeira estação ATC em Newark, Nova Jersey, de acordo com a FAA. A estação monitoraria a posição dos aviões com o uso de mapas e quadros negros e usaria telefones para manter contato com pilotos e despachantes de companhias aéreas.
Então, em 1936, o Bureau of Air Commerce estabeleceu os três centros de controle de tráfego de rotas aéreas (ARTCC), que dirigiam o movimento dos aviões desde a partida e o pouso após o aumento das colisões no ar. A primeira foi fundada em Newark e seguida pela abertura de duas em Chicago e Cleveland. Os três foram os “precursores” dos atuais 22 ARTCCs em operação nos EUA.
O surgimento do radar
O uso do radar - RAdio Detection And Ranging - marcou o maior avanço para o ATC depois de ser útil durante a Segunda Guerra Mundial , liderado pelo governo britânico. Plane Finder explica que a tecnologia foi testada por 'espelhos sonoros', que usavam uma antena de radar e um microfone para detectar sons de motores à distância.
A demonstração bem-sucedida da tecnologia levou ao desenvolvimento de estações de radar ao longo da costa sul da Inglaterra, chamadas de “Chain Home”, que foi a principal defesa da Grã-Bretanha durante a guerra.
O uso do radar também se espalhou para outras nações e, eventualmente, os militares dos EUA escolheram a Gilfillan Brothers Inc. – agora ITT-Gilfillan – para desenvolver um sistema de radar oficial em 1942. Após a Segunda Guerra Mundial, em 1950, a Administração Aeronáutica Civil (agora a FAA) implantou seu primeiro sistema de Vigilância Aeroportuária (ASR-1).
A FAA descreveu: “À medida que a antena girava, os controladores observavam seus telescópios em busca de “blips” que indicassem a posição da aeronave nos primeiros sistemas de radar. O uso de radar para fornecer separação para o tráfego aéreo em rota acompanhou a aplicação desta tecnologia na área terminal.”
O sistema de controle ASR-1 (Foto: FAA)
Então, em 1952, a CAA estabeleceu seus procedimentos de controle de partida por radar no Aeroporto Nacional de Washington, após anos modificando a tecnologia da guerra.
A era da automação
A automação da tecnologia de radar foi sinônimo da Era do Jato. O crescimento do turismo em todo o mundo significou a necessidade de uma abordagem muito mais sofisticada ao ATC. Os EUA estavam na vanguarda da nova era da navegação aérea e, em 1961, a FAA começou a desenvolver um sistema que “utilizaria dados tanto do radar terrestre como dos faróis de radar aéreo” após apelos contínuos à tecnologia informática para controlar o tráfego aéreo.
Em 1967, um protótipo de computador desenvolvido pela IBM foi entregue ao Centro de Controle de Tráfego da Rota Aérea de Jacksonville. A primeira fase do sistema, chamada NAS En Route Stage A, consistia em distribuir automaticamente os dados do plano de voo através do Computer Update Equipment (CUE), o que significava que os controladores podiam ver os voos em três dimensões. A FAA disse que em 1973, todos os centros de rota nos EUA contíguos haviam adotado este sistema.
A segunda fase foi mais detalhada e envolveu processamento de dados de radar. Este computador, através de códigos alfanuméricos, poderia identificar a identidade, altitude e outras características essenciais de um avião.
Entretanto, a FAA também criou um sistema para controladores em terminais aeroportuários, denominado ARTS III – Automated Radar Terminal Systems - e em 15 de Agosto de 1975, era operado por todos os aeroportos mais movimentados dos EUA. Onze dias depois, a FAA finalmente concluiu a fase dois do NAS En Route Stage A.
De acordo com um relatório de 1973 do General Accounting Office, o sistema ARTS III foi inicialmente contratado por US$ 51,3 milhões, mas aumentou para US$ 64,5 milhões em meados dos anos 70 devido a múltiplas mudanças no sistema.
Agora, 50 anos após a ampla adopção da tecnologia de radar e rádio na aviação, o mundo do controlo de tráfego aéreo continua a crescer. Desde a apresentação de planos de voo ao controle de tráfego aéreo até o uso de telas de radar para rastrear o progresso das aeronaves no céu, o ATC se tornou o que League nunca poderia ter imaginado em 1929.
Torres remotas permitem o controle das operações do aeródromo a quilômetros de distância(Foto: NATS)
O ATC remoto também está ganhando força graças aos avanços tecnológicos . Em 2021, o Aeroporto London City se tornou o primeiro grande aeroporto internacional do mundo a utilizar completamente torres remotas.
É provável que tais iniciativas sejam um elemento básico na aviação nas próximas décadas. Podemos esperar muita evolução aqui, à medida que os aeroportos e as companhias aéreas continuam empenhados em melhorar a segurança e a eficiência.
Apesar de todos os desenvolvimentos ao longo dos anos, ainda existem desafios no domínio do controlo do tráfego aéreo. O drama ATC deste mês no Reino Unido é um exemplo disso. Os voos foram interrompidos em toda a Europa devido a uma falha técnica , causando o lançamento de uma investigação e a perda de mais de 120 milhões de dólares apenas em despesas aéreas.
Além disso, os controladores de tráfego aéreo estão empenhados em melhorar as condições de trabalho, tendo sido realizadas várias greves nos últimos meses. Exemplos notáveis encontram-se em França , onde a acção sindical causou um impacto significativo nas operações de voo em todo o mercado. Além disso, os principais aeroportos em todo o mundo continuam a enfrentar escassez de ATC, forçando novas perturbações .
Cena foi registrada em vídeo por tripulantes da aeronave que se preparava para decolar. Pilotos desligaram os motores para evitar uma tragédia.
Homem se aproxima de hélice de avião em Angola
"Esse gajo (sujeito) não bate bem, ele vem aqui em direção ao nosso avião".
A frase pronunciada por um tripulante que estava na cabine de um modelo ATR resume a cena tão inusitada quanto perigosa, registrada no Aeroporto de Soyo, distante 440 km de Luanda, capital de Angola, no continente africano.
No vídeo gravado por outro tripulante, o homem surge na pista do aeroporto correndo em direção ao avião, que estava com os motores ligados, prestes a decolar. Na gravação, pode-se ouvir uma tripulante implorar: "Sai, vai embora".
Enquanto isto em Soyo, Angola!!! Cada dia uma doideira nova!!! Ainda bem que o comandante pensou rápido... pic.twitter.com/jXmAqsFUwJ
O desespero fica maior quando o homem se aproxima da hélice do motor número 1, localizada do lado esquerdo da aeronave.
Atônito, um dos pilotos parece reportar a cena à torre:
"Ele veio perto do nosso avião, nós tivemos que cortar (desligar) um motor, cortamos o motor esquerdo por causa disso, porque ele vinha em direção às hélices".
O homem para bem próximo da hélice, que se estivesse na rotação original pré-decolagem, poderia causar um acidente fatal.
Depois de algum tempo, outro homem, que aparenta ser um segurança do aeroporto, surge e inicia uma perseguição a pé contra o invasor, que corre em direção à saída do terminal.
A fragilidade estrutural do aeroporto é de conhecimento público: em 2019, reportagens locais davam conta de que o Aeroporto “Comandante Ndozi”, na cidade do Soyo, província do Zaire, pode deixar de receber aeronaves de médio e grande porte, a qualquer momento, por insegurança na pista, que ficou descoberta com a danificação da rede de vedação.
“Os aeroportos do Soyo e de Cabinda apresentam muitas irregularidades em termos de segurança, o que representa um grande perigo à navegação aérea”, justificou à época um porta-voz do Instituto Nacional da Aviação Civil (Inavic).
Com uma pista de 2.100 metros de comprimento e 45 de largura, o Aeroporto do Soyo, segundo a Angop, "registrou recentemente três incidentes, sem registo de vítimas humanas".