sexta-feira, 8 de novembro de 2024

Aconteceu em 8 de novembro de 1940: A queda do Junkers Ju-90A da Deutsche Lufthansa na Alemanha

Um Junkers Ju 90, similar a aeronave que caiu
Em 8 de novembro de 1940, o avião de passageiros Junkers Ju-90A, prefixo D-AVMFda Deutsche Lufthansa, realizava o voo internacional de passageiros entre o Aeroporto de Berlim, na Alemanha, e o Aeroporto Budapest-Ferihegy, na Hungria.

O avião quadrimotor denominado 'Brandenburg' partiu do Aeroporto Berlin-Tempelhof às 14h24 (hora local) em um serviço regular para Budapeste, transportando 23 passageiros e seis tripulantes. 

Às 14h48, o operador de rádio informou ao solo que estava voando a uma altitude de 2.200 metros sob nuvens e relatou condições de gelo dois minutos depois. 

Em seguida, o avião iniciou uma descida e manobras descontroladas quando finalmente acabou caindo em um campo aberto localizado a cerca de 300 metros de Brauna, perto do município de Schönteichen , na Alemanha

Todos os 29 ocupantes morreram, entre eles o músico e jornalista alemão Adolf Raskin.

O Conselho de Investigação de Acidentes acreditou que a causa do acidente seja o congelamento entre o equilíbrio externo e a tampa da aleta do profundor e o bloqueio do sistema de controle de altitude na posição pressionada, o que, juntamente com a grave degradação das características de voo devido ao espessura do gelo, impossibilitou o controle da aeronave. Cerca de 30 minutos após o acidente, uma camada de 15 a 20 milímetros de gelo ainda estava presente nas superfícies críticas.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro

Hoje na História: 8 de novembro de 1950 - A primeira vez que um caça a jato foi abatido por outro caça a jato

Esta pintura do famoso artista da aviação Keith Ferris retrata a estrela cadente Lockheed F-80C do 1º Tenente Russell Brown enquanto ele abatia um inimigo Mikoyan-Gurevich MiG 15 sobre a Coreia, em 8 de novembro de 1950 (Keith Ferris)

Em 8 de novembro de 1950, o Primeiro Tenente Russell J. Brown, Força Aérea dos Estados Unidos, 16º Esquadrão Interceptador de Caças, 51ª Asa Interceptadora de Caças, é creditado por abater um caça a jato Mikoyan-Gurevich MiG 15 de fabricação russa perto do rio Yalu enquanto voava em um Lockheed Estrela cadente F-80C-10-LO. Esta pode ter sido a primeira vez que um caça a jato foi abatido por outro caça a jato.

As fontes variam, relatando o número de série do lutador do Tenente Brown como 49-713 ou 49-717.

Lockheed F-80C-10-LO Shooting Star 49-432 em exibição no Museu de Armamento da Força Aérea, Base da Força Aérea de Eglin, Flórida. O lutador é marcado como F-80C-10-LO 49-713, atribuído ao 16º Esquadrão de Caça, 51º Grupo de Interceptadores de Caça, Kimpo, Coreia, 1950

Brown deu uma descrição colorida da luta na primeira batalha jato-contra-jato da história na semana passada. Ele disse: “Tínhamos acabado de completar uma corrida de metralhamento nas posições antiaéreas de Sinuiju e estávamos subindo quando soubemos que jatos inimigos estavam na área."

"Então os vimos do outro lado do Yalu, fazendo acrobacias. De repente, eles chegaram a cerca de 400 milhas por hora. Estávamos fazendo cerca de 300. Eles romperam a formação bem na nossa frente a cerca de 18.000 ou 20.000 pés. Eles eram aviões bonitos - brilhantes e novos.” - INS , Tóquio, 13 de novembro.

1º Tenente Russell J. Brown. (Times da Força Aérea)

Os registros soviéticos relataram que nenhum MiG 15 foi perdido em 8 de novembro. O tenente Kharitonov, 72ª Unidade de Aviação de Caça dos Guardas, relatou ter sido atacado por um F-80 sob circunstâncias que sugerem que este foi o engajamento relatado pelo Tenente Brown, no entanto Kharitonov conseguiu escapar do caça americano após mergulhar e jogar fora seus tanques de combustível externos.

Técnicos russos fazem manutenção em um MiG 15 bis do 351º IAP na Base Aérea de Antung, China, em meados de 1952 (Reprodução)

Um piloto soviético do MiG 15, o tenente Khominich, também da 72ª Guarda, afirmou ter abatido um F-80 americano em 1º de novembro, mas os registros dos EUA indicam que esse caça foi destruído por fogo antiaéreo.

O que está claro é que o combate aéreo havia entrado na era do jato e que a União Soviética não estava apenas fornecendo seu MiG 15 de asa varrida para a Coreia do Norte e a China, mas que os pilotos da Força Aérea Soviética estavam ativamente engajados na guerra na Coreia.

Uma estrela cadente Lockheed F-80C do 16º Esquadrão de Interceptadores de Caças, 51ª Asa de Interceptores de Caças, faz uma decolagem assistida por JATO de um campo de aviação na República da Coreia do Sul, por volta de 1950 (Força Aérea dos EUA)

O Lockheed F-80C-10-LO Shooting Star 49-713, voado por Albert C. Ware, Jr., foi perdido 10 milhas ao norte da Base Aérea de Tsuiki, Japão, em 23 de março de 1951.

Fonte: thisdayinaviation.com

Abrir porta de avião em voo é quase impossível e dá cadeia

Abrir a porta ou a saída de emergência de um avião durante um voo é uma missão praticamente impossível.

Porta de avião: Diferença de pressão entre o lado de dentro e o de fora impede a abertura durante o voo
Abrir a porta de um avião em um voo é quase impossível. Isso deve à diferença de pressão entre o lado de dentro e o de fora da comunicação.

Quanto mais alto, mais rarefeito é o ar, ou seja, menos denso. Com isso, há mais dificuldade em respirar, devido à menor concentração de oxigênio.

Conforme o avião sobe, ele controla sua pressão interna para reproduzir a mesma atmosfera encontrada entre 1,8 km e 2,4 km de altitude. Enquanto isso, o voo pode chegar a uma altitude de 12 km acima do nível do mar.

Dessa maneira, a pressão de dentro fica maior enquanto a de fora é menor. Mas, como isso evita a abertura?

Avião é como panela de pressão


De uma maneira simplificada, é possível fazer uma analogia entre um avião comercial de grande porte e uma panela de pressão. O encaixe da porta e da saída de emergência na fuselagem da aeronave evita que ela esteja aberta em voo.

Assim como na panela de pressão, a tampa pode até ser destruída. Mas a pressão interna mantém no lugar, evitando sua abertura.

No avião, funciona de maneira semelhante. A porta e a saída de emergência precisam ser puxadas para dentro antes de serem abertas.

Para isso, seria necessária uma força descomunal, de algumas toneladas, para vencer a diferença de pressão. Mesmo que isso ocorra, a porta ainda contém sistemas de segurança que impedem que ela seja puxada durante o voo.

Em aviões de pequeno porte, nem sempre as portas funcionam dessa maneira. Isso não é necessário, já que eles voam em baixas altitudes e nem sempre são pressurizados.

Com informações e foto de Alexandre Saconi (Todos a Bordo/UOL)

Quais são os aeroportos mais distantes das cidades que os dão o nome?

Em nosso mundo cada vez mais interconectado, muitas cidades agora são servidas por vários aeroportos. Embora isso ajude a dar mais opções aos passageiros que chegam e que saem, às vezes pode haver um problema. Especificamente, é importante estar ciente de que alguns aeroportos estão bastante distantes da cidade que servem. Mas quais são os mais distantes? 

O mais distante de todos


Os leitores familiarizados com o cenário da aviação comercial francesa saberão que vários aeroportos comerciais servem Paris. CDG e Orly não ficam longe da capital francesa, enquanto a mais distante Beauvais-Tillé oferece uma alternativa de baixo custo. No entanto, apesar de estar a mais de 80 km/50 milhas de distância, este não é o aeroporto mais distante de Paris.

De fato, fontes como a Lonely Planet listam o Aeroporto Châlons Vatry como o mais distante da cidade que serve. Localizada a cerca de 160 km/100 milhas da capital francesa, a viagem de carro de Châlons Vatry até Paris leva mais de duas horas. Antigamente era uma base militar antes de abrir comercialmente em 2000. Hoje, a Ryanair serve a partir de Marrocos e Portugal.

Por ser uma antiga base militar, Vatry tem uma pista de 3.860 metros
(Foto: Antoine Fleury-Gobert via Wikimedia Commons)
Apesar da distância da capital francesa, o aeroporto foi comercializado não oficialmente como Aeroporto Paris Vatry. Também foi referido como Paris-Vatry (Disney). Embora esteja mais perto deste famoso resort, ainda fica a cerca de 130 km / 80 milhas de distância por estrada.

Um fenômeno particularmente europeu


A Europa tem vários aeroportos que se encontram a uma distância considerável da cidade que servem. O surgimento de companhias aéreas de baixo custo em todo o continente, como a easyJet , Ryanair e Wizz Air, viu esse aumento. Eles visam reduzir os custos operacionais atendendo instalações menores e mais distantes.

Você pode encontrar várias instâncias disso na Alemanha. Por exemplo, às vezes as companhias aéreas comercializam o Aeroporto Memmingen Allgäu como Munich West. Isto apesar de estar a cerca de 120 km/75 milhas da capital da Baviera. Enquanto isso, Frankfurt Hahn está mais longe, a cerca de 125 km/78 milhas. Na verdade, é aproximadamente equidistante entre Frankfurt e Luxemburgo.

A Ryanair abriu uma base em Frankfurt Hahn em 2002 (Foto: Getty Images)
Em outras partes do continente, a Escandinávia também abriga vários aeroportos que exigem uma longa viagem para chegar à cidade nomeada. Só Estocolmo tem duas dessas instalações: os aeroportos de Skavsta e Västerås ficam a cerca de 105 km/65 milhas de distância. Na vizinha Noruega, o Aeroporto de Oslo Torp perto de Sandefjord fica a 120 km/75 milhas da capital do país.

Por ser um país menor, o Reino Unido não tem aeroportos tão distantes. No entanto, há uma exceção notável. O Aeroporto de Londres Oxford fica a cerca de 100 km/60 milhas da capital britânica, aproximadamente a meio caminho entre essa cidade e Birmingham. No entanto,  Oxford não via serviços de linha aérea há vários anos.

Já se passaram vários anos desde que a torre do Aeroporto de Oxford em Londres lidou com
um voo comercial programado (Foto: Tom Loze-Thwaite via Wikimedia Commons)

O resto do mundo?


É claro que a Europa não é a única parte do mundo onde você pode encontrar aeroportos que exigem um mas de uma viagem rodoviária para chegar à cidade nomeada. Na verdade, atravesse o Oceano Atlântico e você descobrirá que até Nova York tem um. Especificamente, o Aeroporto Internacional Stewart de Nova York fica a 115 km/71,5 milhas ao norte da Big Apple por estrada.

Enquanto isso, quando se trata da Ásia, a Lonely Planet observa que mesmo o principal aeroporto de Kuala Lumpur ainda fica a 67,5 km/42 milhas da capital da Malásia. Enquanto isso, Amusing Planet relata que o Aeroporto de Tóquio Narita fica a cerca de 60 km/37 milhas do centro da área metropolitana mais populosa do mundo. Isso requer uma viagem de 50 minutos.

O Aeroporto Internacional de São Paulo/Guarulhos – Governador André Franco Montoro (GRU) (foto acima), que serve a cidade de São Paulo e região, está localizado a 25 km da capital.  

Quais são os caças de quarta geração?

(Foto: Divulgação/Ministério da Defesa do Japão)
Os caças, aviões de combate que surgiram na época da Primeira Guerra Mundial, evoluíram em armamentos, tecnologias e manobrabilidade com o passar do tempo, como mostramos por aqui em uma série de conteúdos. As aeronavas que abordaremos logo mais tiveram tanta representatividade que ganharam até mesmo uma "subgeração".

Estamos falando dos caças de quarta geração, que surgiram no início da década de 1980 e, até hoje, são utilizados por muitas Forças Aéreas ao redor do planeta. Os caças de quarta geração são baseados em conceitos retirados das aeronaves usadas nos anos 1970, de terceira geração, mas (muito) aprimorados.

A capacidade de manobras, os motores, os armamentos e a aviônica elevaram o padrão a um nível de excelência jamais visto. Nos Estados Unidos, a evolução foi além e o país viu nascer, após alguns anos da quarta geração de caças em ação, uma subgeração, chamada de 4.5.

Caças do tipo F-15 são considerados da "geração 4.5"
(Imagem: Divulgação/Mike Freer,Touchdown Aviation)
Neste seleto grupo estão inclusos os modelos F-15 e F-16, além dos russos MiG-35 e Su-30 e o Eurofighter Typhoon, de origem alemã. Estes caças da geração 4.5 tinham como principal característica a tecnologia furtiva, ou seja, recursos que ajudavam o avião a ficar mais escondido e, portanto, mais difícil de ser detectado por radares inimigos.

Computadores melhores, caças melhores


A evolução no universo dos computadores durante as décadas de 1980 e 1990 influenciou diretamente na aviação. A maior velocidade na transferência de dados permitiu que os sistemas dos caças de quarta geração, como os de busca e rastreamento por infravermelho (IRST), fossem cada vez mais ágeis.

Os caças de quarta geração também passaram a ter a manobrabilidade aprimorada pela estabilidade estática relaxada, graças à introdução do chamado sistema de controle de voo fly-by-wire. Tudo isso, claro, também combinado com a já citada evolução dos computadores digitais e das técnicas de integração de sistemas.

Foram os caças de quarta geração que também mostraram ao mundo pela primeira vez o supercruise, ou supercruzeiro, capacidade de voar em velocidades supersônicas sem o uso constante do pós-combustor. Isso reduziu o consumo de combustível, aumentou o alcance e não prejudicou o desempenho das aeronaves.

MiG-31 tinha capacidade de interceptar e eliminar inimigos a longas distâncias
(Imagem: Divulgação/Ministério da Defesa da Rússia)
A chamada tecnologia furtiva também evoluiu consideravelmente nos caças de quarta geração. Os Estados Unidos equiparam seus modelos com radares AESA APG-63, livres de partes móveis e que conseguem projetar feixes menores e executar varreduras mais rápidas. Aeronaves de outros países, como a Dassault Rafale e a Thales Spectra também utilizavam tecnologia furtiva para ficarem “invisíveis” aos radares.

Caças de quarta geração têm Rússia como expoente


Os caças de quarta geração têm modelos de destaque em Forças Aéreas de todo o mundo, mas a Rússia, derivada da extinta União Soviética, é quem domina o ranking dos 5 melhores aviões de combate deste segmento.

Segundo a revista especializada Military Watch, três dos cinco melhores caças pertencentes à quarta geração dos aviões de combate foram fabricados pelos russos. O top 5 conta ainda com um representante da China na terceira posição e um dos Estados Unidos, considerado o quarto melhor do mundo.

Su-35 foi primeiro caça do mundo produzido após o fim da União Soviética
(Imagem: Aleksandr Markin/Wikipedia/CC)
Os caças de quarta geração citados pela Military Watch como melhores representantes desta era são os seguintes:
  • MiG-31 BSM (Rússia): Tem como principal atributo a capacidade de interceptar e eliminar caças inimigos em longas distâncias e altitudes extremas. Era equipado com mísseis ar-ar R-37, que carregavam o triplo da carga considerada padrão;
  • Su-35 (Rússia): Primeiro caça do mundo produzido após o fim da União Soviética. Entre suas principais armas destaca-se o radar Irbis-E, capaz de detectar alvos furtivos a até 80 km de distância e os tradicionais a até 400 km;
  • J-16 (China): O J-16 não é russo, mas foi construído com base no Su-27. O avião faz parte de uma remodelada frota de aeronaves do país asiático e conta com alta capacidade furtiva e mísseis PL-15;
  • F-15SA (EUA): O F-15SA foi fabricado pelos Estados Unidos com base no F-15E Stryke Eagle, mas, na verdade, foi usado pelas forças da Arábia Saudita. O caça de quarta geração podia carregar até 12 mísseis de uma só vez, além de ter a bordo um radar de última geração e sistemas de busca por alvos inimigos altamente sensíveis;
  • Su-27SM3 (Rússia): Fechando o top 5 de caças de quarta geração temos o terceiro representante da Rússia. O Su-27SM3 utiliza também a tecnologia desenvolvida para o Su-35, como o radar Irbis-E e outros sistemas avançados. A capacidade de manobras, no entanto, era um pouco inferior a do “irmão” e, por isso, sua colocação no ranking também foi pior.
Via Paulo Amaral | Editado por Jones Oliveira (Canaltech)

quinta-feira, 7 de novembro de 2024

Aproximação da pista: como os pilotos encontram seu caminho com segurança para o solo?


Voar pela metade do caminho ao redor do mundo é ótimo, mas a menos que você possa encontrar com precisão o caminho para as últimas centenas de metros até a pista, é um pouco inútil. Quando o tempo está bom, os pilotos podem ver o aeroporto a vários quilômetros de distância. No entanto, o que fazemos quando há pouca nuvem ou neve reduzindo a visibilidade? Felizmente, a maioria dos aeródromos possui algum tipo de sistema de aproximação que nos permite descer com segurança a aeronave em direção à pista.

O que impede os pilotos de fazerem uma abordagem?

Para cada abordagem a uma pista, existem critérios meteorológicos mínimos que os pilotos devem obedecer legalmente. Isso é para garantir a segurança da aeronave e evitar que os pilotos “arrisquem” na esperança de que ainda possam pousar.

Este critério varia de abordagem para abordagem, de pista para pista e de aeronave para aeronave. Existem dois elementos para a abordagem: a visibilidade e a Altitude Mínima de Descida (MDA)/Altitude de Decisão (DA). Esses valores são publicados na parte inferior do gráfico de abordagem relevante que está disponível para os pilotos.

A precisão da abordagem determina o quão perto os pilotos podem chegar da pista

A visibilidade é o fator definidor, o limite legal ditando se podemos ou não iniciar a abordagem. Se a visibilidade informada pelo aeródromo estiver abaixo do mínimo na carta, não temos permissão para iniciar a abordagem. É preto e branco.

O MDA/DA é a altitude até a qual temos permissão para voar a aeronave antes de tomar uma decisão. Se nesse ponto pudermos ver a pista, podemos continuar pousando. Do contrário, devemos dar uma volta e voltar para o céu.

Se a visibilidade relatada for boa o suficiente, mas a base da nuvem for inferior ao MDA/DA, ainda podemos iniciar uma abordagem. Porém, faremos isso sabendo que há uma chance muito alta de não ver a pista no ponto de decisão e ter que fazer uma volta.

O que foi usado no passado - VOR / NDB

Um alcance omnidirecional de frequência muito alta (VOR) é um tipo de farol de navegação por rádio de curto alcance que emite um sinal. Aeronaves equipadas com o equipamento certo são capazes de captar este sinal e não apenas determinar onde o farol está, mas também a que distância estão dele. A distância é quantificada como Equipamento de Medição de Distância - DME.

Os VORs já existem há um bom tempo e foram desenvolvidos pela primeira vez na década de 1930, entrando em serviço em meados dos anos 1940. A melhor característica dos VORs em relação aos antigos beacons de navegação é que o sinal é verdadeiro e forte. Os tipos mais antigos estavam sujeitos à interferência da atmosfera e forneciam apenas direção, não distância.

Os VORs permitem que os pilotos determinem sua orientação e distância do farol

Como o sinal emitido pelos VORs é enviado em linha reta, eles são limitados pela linha de visão - eles continuam no espaço conforme a terra se curva abaixo deles. Como resultado, para uma aeronave no cruzeiro, eles só são úteis em cerca de 140 milhas. No entanto, esse alcance é suficiente para permitir que as aeronaves voem de um farol para outro enquanto ziguezagueavam ao redor do mundo.

Os VORs se tornaram muito úteis nos estágios finais de abordagem, quando há pouca nuvem.

Ao colocar um VOR em ou próximo a um campo de aviação, os pilotos são capazes de voar em direção ao farol a partir de uma determinada direção e ter bastante confiança em sua posição. Então, usando o DME para determinar a que distância estão do farol, os pilotos podem então começar a descer em direção ao campo de aviação.

Uma boa vantagem de um VOR é que a abordagem não precisa ser direta em direção à pista. Em campos de aviação onde há colinas na linha central estendida da pista, os pilotos podem voar em direção ao campo de aviação em um ângulo que os mantém longe do terreno. Uma vez fora da nuvem e com a pista à vista, eles podem virar a aeronave para alinhá-la com a pista.

As abordagens VOR tendem a ser encontradas em aeroportos menores, onde as instalações são limitadas. Eles são bastante comuns nos aeroportos ao redor das ilhas gregas.

Uma abordagem VOR em Heraklion, Grécia. O ângulo de aproximação é diferente do da pista, mantendo a aeronave afastada do terreno

Há, no entanto, uma desvantagem principal nas abordagens de VOR: a precisão.

Ao voar ao redor da Terra a 36.000 pés, estar uma ou duas milhas fora do caminho não é um grande problema. No entanto, quando você está tentando abrir caminho entre colinas ao se aproximar da terra, a precisão é tudo. Como resultado, os mínimos nas abordagens de VOR tendem a ser muito conservadores. Não é incomum exigir vários milhares de metros de visibilidade para iniciar a abordagem e ter um MDA de cerca de 600 pés, ou mais, acima do solo.

Isso é bom quando o tempo está decente, mas não é bom quando o clima de inverno está bom. O que você precisa é de algo mais robusto, que permitirá aos pilotos voar mais baixo com pior visibilidade.

O que é usado agora - ILS


Voe para qualquer grande aeroporto internacional e eu terei certeza de dizer que você voou em um ILS - Instrument Landing System - abordagem. Desenvolvido para dar maior precisão na aproximação da pista, as melhores aproximações ILS permitem que os pilotos voem com suas aeronaves até a pista, sem a necessidade de ver o solo externamente.

O ILS consiste em dois feixes de rádio que se projetam da área ao redor da pista até o caminho de abordagem. Esses sinais são então captados na aeronave pelo receptor ILS, que os exibe nas telas da cabine de comando.

O primeiro sinal é o localizador, irradiando das antenas que ficam no final da pista. Isso mostra aos pilotos onde a aeronave está em relação à linha central. O segundo sinal vem das antenas ao lado da pista, a cerca de 300 metros da cabeceira da zona de toque. Este é o glideslope e envia outro feixe para o céu, normalmente em um ângulo de três graus para guiar a aeronave verticalmente para o ponto correto de toque.

A maioria das abordagens ILS são feitas com o piloto automático fazendo o vôo e os pilotos monitorando os sistemas. Quando as referências visuais necessárias forem vistas, o piloto em voo desconectará o piloto automático e pousará a aeronave manualmente.

Cat I ILS

Em sua forma mais básica, um ILS de Categoria Um (CAT I) permite que a aeronave inicie uma aproximação com apenas 550 metros de visibilidade relatada e um DA de 200 pés acima do solo. Isso normalmente será suficiente em 99% das condições climáticas que um campo de aviação experimentará em um ano. Como resultado, as abordagens CAT I ILS são encontradas em todos os principais aeroportos internacionais e são o tipo padrão usado.

Dito isso, alguns aeroportos estão tão ocupados que se as condições forem piores do que 550 metros de visibilidade, toda a operação de vôo terá que ser encerrada. Para lidar com essas situações, existem outros tipos de abordagens ILS disponíveis.

Os vários mínimos para a abordagem ILS para a pista 30R em Dubai

CAT II ILS

Quando o tempo realmente fecha, o método padrão de relatar a visibilidade não é bom o suficiente. Para dar leituras mais precisas da visibilidade, um dispositivo especial denominado transmissômetro mede o Alcance Visual da Pista - RVR.

Em sua forma mais simples, o transmissômetro dispara uma fonte de luz entre um emissor e um sensor. Essa interação mede a “espessura” da umidade do ar e dá o RVR em metros.

Uma abordagem CAT II usa o mesmo sinal ILS do localizador e glideslope, mas existem proteções adicionais no local para preservar a integridade dos feixes ILS. Além disso, com uma abordagem CAT II, ​​em vez de usar o altímetro baseado em pressão (bastante preciso) para descer até o DA, os pilotos usam o rádio altímetro (muito preciso) para voar para uma altura de decisão (DH). O rádio-altímetro dispara um feixe de radar abaixo da aeronave para fornecer uma altura exata em que a aeronave está acima do solo.

Como resultado do aumento da precisão, as abordagens CAT II têm mínimos mais baixos, normalmente em torno de 300 metros RVR com um DA de 100 pés acima do solo. Esses mínimos reduzidos também significam que os pilotos normalmente deixam o piloto automático acionado até o toque e executam uma aterrissagem automática. Dito isso, caso haja uma falha no solo ou nos sistemas baseados em aeronaves, há referências visuais suficientes fora da janela para os pilotos ainda pousarem manualmente.

CAT IIIA e CAT IIIB ILS

Quando as coisas ficam realmente nebulosas, o máximo em precisão de navegação é necessário. Com uma abordagem CAT III, a aeronave pode pousar com um RVR de apenas 75 metros e sem DH - na verdade, não há necessidade de ver nada pela janela antes de pousar. Desnecessário dizer que as abordagens CAT III são sempre autolands.

Com uma abordagem CAT IIIB, existem redundâncias suficientes no sistema para ainda pousar com um RVR de 75 metros no caso de uma falha do sistema. Em uma abordagem CAT IIIB, certas falhas exigiriam que os pilotos voltassem a usar os mínimos CAT II. Se isso aconteceu mais tarde na abordagem, pode ser necessário dar uma volta. É exatamente por isso que pousos em mau tempo são realizados pelo piloto automático - ele dá aos pilotos a capacidade sobressalente para perceber falhas no sistema e tomar as medidas adequadas quando o tempo é apertado.

As abordagens do CAT III permitem que as aeronaves pousem com visibilidade de apenas 75 metros

O futuro - RNAV e GPS


Os sistemas ILS são ótimos porque oferecem uma precisão incomparável, mas sua principal falha é que a aproximação deve ser alinhada diretamente com a pista. Isso é bom para lugares como Dubai, onde a área ao redor do aeroporto é plana, mas não é ótimo para lugares cercados por colinas.

Para esses lugares, as abordagens VOR sempre costumavam ser o único método de fazer abordagens em nuvem, mas com o avanço da tecnologia GPS, um novo método de abordagem nasceu - abordagens RNAV.

Em sua forma básica, as abordagens RNAV permitem que as aeronaves usem a precisão de seus sistemas a bordo para fazer uma abordagem em um campo de aviação que não possui antenas físicas no solo. Isso significa que, em tese, uma aeronave pode se aproximar de qualquer aeroporto do mundo com a devida autorização.
Abordagens de RNAV

As abordagens RNAV usam uma série de waypoints GPS para guiar os pilotos lateralmente em direção à pista. Contanto que os sistemas a bordo da aeronave possam manter a precisão necessária (normalmente 0,3 milhas), os pilotos também podem descer de acordo com o perfil publicado nas cartas de aproximação.

Isso é ideal para aeroportos menores, pois eles não precisam pagar e continuar a manter os caros sistemas ILS no solo. Uma vez que a abordagem foi criada e autorizada pelas autoridades competentes, os pilotos podem simplesmente voar a abordagem publicada usando seu equipamento a bordo.

No entanto, quando as abordagens de RNAV realmente entram em ação é quando há terreno ao redor.


Abordagens AR (autorização necessária)


O crème de la crème das abordagens de aeródromo, as abordagens RNAV AR, permitem que os pilotos voem com suas aeronaves em terrenos mais acidentados e ainda se alinhem com a pista. Embora a abordagem seja publicada para que todos possam ver, o aspecto AR significa que cada companhia aérea deve receber a aprovação do regulador para voar aquela abordagem específica. Isso normalmente envolverá o treinamento no simulador para todos os pilotos antes que a aprovação seja concedida.

Embora os mínimos normalmente não sejam muito melhores do que uma abordagem VOR ou RNAV normal, a maior precisão de uma abordagem AR permite que as aeronaves pousem em lugares que normalmente seriam incapazes de fazê-lo. Um ótimo exemplo disso é em Innsbruck (INN), na Áustria, como pode ser visto no gráfico abaixo.

A abordagem RNAV AR em Innsbruck

Com a aproximação começando na extremidade oeste do vale, os pilotos instruem o piloto automático a fazer a aeronave voar através dos waypoints prescritos, virando o vale descendo, descendo conforme eles avançam. Embora a visibilidade necessária seja de 2.400 metros, a abordagem traz a aeronave com segurança a apenas 1.000 pés acima do campo de aviação.

Resultado


Colocar a aeronave com segurança na pista no destino é a principal tarefa de seus pilotos. Para fazer isso, há uma série de abordagens diferentes que poderíamos esperar voar, dependendo das instalações disponíveis no campo de aviação.

As abordagens de VOR foram inovadoras para a época, mas conforme a tecnologia avançava, sistemas mais precisos se tornaram disponíveis. As abordagens ILS são a norma para a maioria dos aeroportos principais agora, permitindo que aeronaves pousem com visibilidade de apenas 75 metros. No entanto, com o aumento da precisão e confiabilidade do GPS, as abordagens de RNAV estão se tornando mais comuns. Eles permitem que as aeronaves façam aproximações em campos de aviação onde antes eram incapazes, tudo sem o custo adicional dos sistemas de navegação terrestres. 

Fontes e imagens: Charlie Page (The Points Guy) / ej.edu.br

Vídeo: PH RADAR 26 - Acontecimentos da Aviação


  • NBAA 2024
  • O eVTOL JOBY
  • Uso indevido dos jatos executivos da FAB
  • Azul ganha apoio financeiro
  • Avião da Azul re-estréia a pista de Porto Alegre
Via Canal Porta de Hangar de Ricardo Beccari

5 benefícios de design de motores montados na parte traseira em jatos particulares

A grande maioria dos jatos particulares possui motores na fuselagem traseira.

Um Bombardier Global Express 7500 (Foto: ThaKlein)
Hoje, a maioria dos jatos particulares tem designs semelhantes: motores montados na traseira com cauda em T e winglets. Há exceções, é claro, como o trijet Dassault Falcon 8X e Falcon 900 ou os outliers completos, como o Honda HA-420 HondaJet, cujos motores são encontrados acima das asas do jato particular. Depois, há o Cirrus SF50 Vision Jet, que possui um único motor montado no topo da fuselagem, um unicórnio literal dentro do mercado de jatos executivos.

A única aeronave comercial em produção hoje com motores montados na traseira é a Commercial Aircraft Corporation of China (COMAC) ARJ21, uma aeronave regional construída na China. Embora a Airbus nunca tenha construído um avião com tal configuração de motor, a Boeing produziu o 717 (embora tenha sido projetado por McDonnell Douglas). Boeing e McDonnell Douglas fundiram-se em 1997.

Então, quais são os benefícios de design dos motores montados na parte traseira e por que a maioria das aeronaves executivas os utiliza?

1. A fuselagem está mais baixa em relação ao solo


Os passageiros podem embarcar na aeronave onde houver falta de infraestrutura

Um dos benefícios de ter motores montados na fuselagem traseira é que o trem de pouso não precisa ser tão alto como quando os motores estão localizados abaixo das asas, pois é necessária menos distância ao solo. Isso permite que os passageiros embarquem na aeronave usando as escadas aéreas. Os jatos particulares normalmente operam em aeroportos privados menores que não possuem infraestrutura para embarque por meio de uma ponte de embarque. Exemplos de tais aeroportos incluem o Aeroporto Teterboro (TEB), o Aeroporto Farnborough (FAB) e o Aeroporto Van Nuys (VNY).

Um Gulfstream G650 (Foto: BlueBarron)
Mesmo que os jatos particulares pousem em aeroportos comerciais, existem terminais privados, como a Private Suite – agora conhecida como PS – no Aeroporto Internacional de Los Angeles (LAX) . Além disso, como as aeronaves estão mais próximas do solo devido aos motores montados na parte traseira, os passageiros não precisariam depender da infraestrutura geral do aeroporto. Em vez disso, eles podem acessar seus jatos particulares por meio de escadas aéreas, evitando assim a interação com o público em geral durante suas viagens.

2. Menos ruído na cabine


Os motores montados na traseira geram menos ruído do que os motores montados nas asas

Como os motores estão posicionados na popa, o ruído produzido pelos motores sai para trás. Embora isto possa resultar em níveis de ruído mais elevados na parte traseira da aeronave, isto se traduz em menos ruído no meio e na frente da cabine, onde os passageiros dos jatos executivos provavelmente se encontrarão durante a maior parte do voo.

Dentro da cabine de um Embraer Praetor 500 (Foto: Embraer)
Consequentemente, os ocupantes podem concentrar-se mais facilmente no seu trabalho, permitindo-lhes utilizar o tempo de viagem de forma mais eficiente, especialmente se estiverem sentados perto ou em frente da asa. Alguns jatos particulares, como o Embraer Praetor 500, colocam taticamente o lavatório em uma configuração típica na parte traseira da aeronave, o que significa que a maior parte da cabine não fica exposta ao ruído de admissão do motor.

3. Risco reduzido de FOD (dano por objetos estranhos)


Quanto mais altos os motores, menor o risco de danos causados ​​por detritos de objetos estranhos (FOD)

Ao contrário dos motores montados em postes sob as asas, os motores montados na parte traseira estão muito mais acima do solo. Como resultado, o risco de ingestão aleatória de FOD é muito menor, especialmente quando se opera em aeródromos com terreno mais acidentado.

Um close-up de um motor a jato particular (Foto: Media_works)
Da mesma forma, voar em jatos particulares com motores montados na traseira durante condições de chuva pode resultar na ingestão excessiva de água pulverizada pelo trem de pouso pelos motores. De acordo com um documento da Administração Federal de Aviação (FAA), “os motores de turbina dos aviões são suscetíveis a surtos, estol e extinção quando ingerem quantidades excessivas de água”. 

No entanto, o regulador acrescentou que: “Todos os motores de turbina certificados demonstraram capacidade de ingerir chuva simulada sem sofrer problemas operacionais.”

4. Segurança durante situações de emergência


Vários riscos são mitigados com esta configuração de motor

Como os motores são montados na fuselagem traseira, uma falha não contida do motor só pode resultar na perfuração da parte traseira da cabine. Continuando com o mesmo exemplo mencionado anteriormente, a configuração padrão de um Embraer Praetor 500 não posiciona assentos de passageiros próximos aos locais dos motores. Na pior das hipóteses, uma falha não contida no motor poderia resultar em mortes de passageiros, como o voo SW1380 da Southwest Airlines. Lá, o motor CFM International CFM56 da aeronave falhou, com as peças da capota danificando a fuselagem e sugando um passageiro.

Uma vista aérea de um jato particular estacionado em um aeroporto (Foto: Sanatana)
Além disso, durante uma aterragem de barriga para cima, ter uma superfície completamente plana reduz riscos adicionais, como os motores pegarem fogo devido a faíscas geradas pela fricção ou os motores rasparem no solo à medida que a aeronave desacelera. No entanto, isso poderia ser compensado pelo fato de que, como o combustível é armazenado nas asas, o vazamento de combustível durante um pouso de barriga para cima poderia piorar a situação.

Ao mesmo tempo, porém, os jatos montados na parte traseira podem danificar as superfícies de controle durante uma falha do motor. Um exemplo é o voo 232 da United Airlines, quando o motor montado na cauda do McDonnell Douglas DC-10 danificou o sistema hidráulico do motor, impactando posteriormente a capacidade dos pilotos de controlar a aeronave. Este incidente resultou tragicamente na perda da vida de 112 dos 296 ocupantes.

5. Reduzindo o impulso assimétrico


Com os motores posicionados muito mais próximos, há menos impulso assimétrico em caso de falha do motor

Normalmente, os motores de aeronaves montados nas asas são separados por uma parte significativa das asas e da fuselagem. Enquanto isso, os motores montados na parte traseira são integrados à fuselagem, o que significa que não são montados tão distantes uns dos outros, permitindo aos pilotos controlar a aeronave com muito mais facilidade em caso de falha do motor.

Um close de um Embraer Phenom 300 (Foto: Ryan Fletcher)
Um sistema de aceleração automática com defeito resultou na queda de um Boeing 737-500 da Sriwijaya Air na Indonésia em 2021, com o sistema produzindo impulso assimétrico ao reduzir a velocidade de rotação do motor esquerdo do carretel de baixa velocidade (N1), enquanto o motor direito o N1 do motor permaneceu o mesmo. O Comitê Nacional de Segurança nos Transportes da Indonésia (KNKT) também observou que os pilotos não conseguiram monitorar a assimetria do empuxo e o desvio do 737 da trajetória de voo.

Com informações de FAA, Simple Flying e KNKT

Aconteceu em 7 de novembro de 2018: Voo Sky Lease Cargo 4854 - Boeing 747 sai da pista no Canadá

Ative a legenda em português nas configurações de vídeo

Em 7 de novembro de 2018, o avião de carga Boeing 747-412F, prefixo N908AR, da Sky Lease Cargo (foto abaixo), operava o voo 4854, um voo internacional entre Aeroporto Internacional Chicago-O'Hare, em Illinois, nos EUA, e o Aeroporto Internacional Halifax-Stanfield, na Nova Escócia, no Canadá.

A aeronave envolvida no acidente
O N908AR era um Boeing 747-412F registrado nos Estados Unidos (nº de série 28026) que serviu o voo 4854 em 7 de novembro de 2018. A aeronave foi entregue nova à Singapore Airlines Cargo e registrada como 9V-SFF, antes da Sky Lease Cargo adquiri-la. em abril de 2017.

A aeronave não transportava carga a bordo. Havia uma tripulação de 3 e 1 passageiro, um capitão fora de serviço. 

O voo 4854 partiu de Chicago para o Aeroporto Internacional de Halifax onde seria embarcada a carga. Então, continuaria até o Aeroporto Internacional Ted Stevens Anchorage, no Alasca, para reabastecer e trocar de tripulação. Em seguida, partiria para seu destino final, o Aeroporto Internacional Changsha Huanghua, na China.

O voo transcorreu dentro da normalidade até a aproximação ao aeroporto de Halifax. A tripulação voou a aproximação do sistema de pouso por instrumentos (ILS) para a pista 14. 

Oitenta e um segundos da cabeceira da pista, os pilotos notaram um vento favorável. A tripulação continuou a aproximação sem recalcular os dados de desempenho para confirmar que a distância de parada era suficiente, possivelmente porque tinham pouco tempo antes do pouso. O vento favorável que encontraram aumentou a distância de parada do 747, mas a distância ainda não excedeu o comprimento da pista.

O avião pousou às 5h06, horário padrão do Atlântico, na escuridão. Após pousar, o acelerador do motor 1 avançou além da posição de marcha lenta. Isso fez com que os freios automáticos fossem desengatados e os spoilers retraíssem. O ângulo direito do caranguejo de 4,5°, os ventos cruzados enfrentados no pouso e o empuxo assimétrico fizeram com que a aeronave se desviasse para a direita da linha central.

A atenção do piloto estava fortemente focada no movimento lateral, ao invés da desaceleração. Assim, chamadas vitais nunca foram feitas. Embora a frenagem manual tenha sido aplicada 8 segundos após o toque, a frenagem máxima não ocorreu até 15 segundos depois. O avião estava a apenas 800 pés (244 m) do final da pista 14.

Cinco segundos depois, o voo 4854 saiu do asfalto a 77 nós (143 km/h; 89 mph) e deslizou por um aterro. Os trens de pouso do nariz e da carroceria entraram em colapso e os motores 2 e 3 foram arrancados de cada asa. A aeronave finalmente parou, em uma área gramada perto de uma via pública, cerca de 544 pés (166 m) após o final da pista 14. Todos os três tripulantes ficaram levemente feridos. O passageiro não sofreu ferimentos.


A torre de controle do aeroporto informou aos veículos de resgate que a aeronave estava na cabeceira da pista 32. Os primeiros veículos que chegaram relataram que havia um pequeno incêndio na cauda, ​​​​eles precisavam que todos saíssem. 


Oito minutos após a chegada dos primeiros veículos ao local o chefe dos bombeiros informou que o pequeno incêndio na cauda foi apagado, não houve incêndio a bordo da aeronave.

A investigação descobriu que a tripulação não recebeu descanso restaurador suficiente nas 24 horas anteriores ao acidente. Este fator, combinado com o tempo do voo, degradou significativamente a tomada de decisão e o desempenho geral dos pilotos. 


Isso aumentou a confusão e diminuiu o tempo de reação da tripulação para iniciar uma arremetida ou para detectar os erros uns dos outros, incluindo desengatar os freios automáticos. 


Outro fator que contribuiu foi o fato de os pilotos não terem escolhido a abordagem mais fácil para a pista 23. Esta era uma pista mais longa, perpendicular à pista 14. No momento do acidente, os primeiros 1.767 pés (539 m) da pista 23 estavam fechados para luz e marcação de trabalho.


O Aviso aos Aviadores (NOTAM) que a tripulação recebeu declarava "NÃO AUTH" em referência à pista 23. Isso pode ter levado a tripulação a acreditar que toda a pista estava fechada. Contabilizando o trecho fechado, a pista 23 ainda era mais longa que a pista 14.


O 747-400F envolvido (N908AR) foi danificado sem possibilidade de reparo e amortizado. A tripulação foi enviada ao hospital devido aos ferimentos. O passageiro ileso também foi internado para avaliação por precaução. Nenhum membro da tripulação enfrentou acusações criminais. Este incidente é a perda de casco do 747 mais recente durante o voo (não enquanto armazenado).

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro

Aconteceu em 7 de novembro de 1996: Voo ADC Airlines 086 - 144 mortos em acidente na Nigéria

O voo 086 da ADC Airlines foi um voo doméstico nigeriano operado pela ADC Airlines de Port Harcourt, região produtora de petróleo, para Lagos. Em 7 de novembro de 1996, a tripulação do Boeing 727-200 que operava o voo perdeu o controle da aeronave, evitando uma colisão no ar durante a aproximação; a aeronave caiu invertida em alta velocidade, matando todos os 144 passageiros e tripulantes a bordo. Os investigadores determinaram que a causa primária do acidente foi um erro do controle de tráfego aéreo.

A aeronave, o Boeing 727-231, prefixo 5N-BBG, da ADC Airlines (foto abaixo), decolou de Port Harcourt às 15:52. O co-piloto estagiário era o Pilot Flying, o capitão era o Pilot Monitoring no voo para Lagos. A bordo da aeronave estavam 134 passageiros e 10 tripulantes.

O Boeing 727-231, 5N-BBG, da ADC Airlines envolvido no acidente (BAAA)
O voo 086 foi liberado pelo ATC de Port Harcourt para a altitude de cruzeiro do FL240 e, às 15h47, estabeleceu contato inicial com o Controle de Aproximação de Lagos, e foi atribuído um código transponder. 

Às 15h54 o voo relatou cruzar o ponto SEPER. Após este reporte de posição, o voo parecia não estar mantendo uma escuta atenta, uma vez que não respondeu a duas chamadas consecutivas do Controle de Aproximação, e depois de algum tempo respondeu a uma transmissão não destinada a ele

Ao mesmo tempo, um Boeing 727 da Triax Airlines (Voo 185) partiu de Lagos e voava no FL160 para Enugu. O controlador de Lagos havia encerrado o contato com a aeronave Triax quando a tripulação do ADC solicitou a descida. A permissão para descer foi adiada para permitir que um jato corporativo (5N-APN) passasse por baixo do 727 no FL210.

Às 15h59, o Controle de Aproximação de Lagos autorizou o voo 86 para o FL160 e, posteriormente, solicitou ao voo para entrar em contato com o radar de Lagos.

O 5N-BBG foi identificado pelo radar de Lagos, a 41 milhas a sudeste do aeroporto, e instruiu-o a fazer o rumo 320° para evitar o voo 185 da Triax e descer para o FL50.

Às 16h02.50, o radar de Lagos instruiu a aeronave duas vezes consecutivas a manter a posição 300. O capitão então assumiu o controle do copiloto, declarando: "Eu tenho."

Às 16h03.08 o voo informava: "Estou com trânsito ... e continuo rumo a 330 para evitá-lo". Esta foi a última transmissão.

Os registros do FDR mostram que o voo 086 estava mantendo uma curva estável e coordenada em direção ao rumo 330 nos primeiros 10 segundos dos últimos 50 segundos do voo. 

Após 15 segundos, o avião foi colocado em um ângulo de inclinação de 43,2 graus. Ele manteve essa configuração por 10 segundos antes do ângulo de inclinação aumentar para 68,8 graus. Essa atitude foi observada por 5,5 segundos antes de ser aumentada para 83 graus. O avião deve ter sofrido um estol em alta velocidade e rolado com o nariz para baixo.

A aeronave parecia estar se recuperando pouco antes de impactar a água de uma lagoa, porque conseguiu reduzir a aceleração vertical de 8,44 para 2,1 G e o ângulo de inclinação para 61,6 graus. Mas não teve altura suficiente para fazer uma recuperação completa.

A aeronave caiu a 7,5 km a oeste de Ejirin e se desintegrou com o impacto, matando as 144 pessoas a bordo.

Seis helicópteros, a maioria deles doados por empresas de petróleo estrangeiras, se juntaram à polícia nigeriana, autoridades de aviação e soldados na busca hoje. Equipes de resgate também sobrevoaram as águas de Lagos, conhecida como Baía de Benin.

Parentes das pessoas a bordo se reuniram nos escritórios da companhia aérea durante toda a noite e no início de hoje, aguardando a palavra final sobre o destino do vôo 086.

Inicialmente, havia um medo generalizado de sabotagem, pois uma das vítimas era o professor Claude Ake, um crítico proeminente de Sani Abacha, o então líder da junta militar na Nigéria. A investigação concluiu posteriormente que não havia sinais de sabotagem na queda do voo 086.

A principal causa do acidente foi determinada como um erro por parte do controlador de tráfego aéreo, citação "A separação desordenada do tráfego pelo controlador do radar que resultou da vetorização do ADK086 em direção à pista do tráfego oposto TIX 185." [1] O piloto também foi considerado culpado por prosseguir no rumo 330 e pela manobra arriscada para evitar uma colisão com o avião Triax.

Como causa imediata para o acidente, foi apontada a separação desordenada do tráfego pelo controlador do radar que resultou da vetorização do ADK 086 para a via do tráfego oposto TIX 185. E, como causa remota, o erro de julgamento do piloto do ADK 096 em continuar sua virada para o rumo 330 M para evitar o TIX 185 e sua subsequente manobra para evitar a colisão.

Após uma série de acidente, a companhia aérea ADC Airlines foi suspensa em 2006 pelo governo nigeriano.

Memorial aos mortos no acidente com o voo 086 da ADC Airlines
Um memorial foi erguido às margens do rio Itoikin em Ejirin para homenagear as vítimas do voo 086. Foi inaugurado em novembro de 1997 pelo então Ministro da Aviação Ita Udo-Ime. O local do memorial, no entanto, ficou coberto de ervas daninhas. A última reforma foi realizada em 2010 e nenhum funcionário do governo visitou o local desde então.

Em 7 de novembro de 2021, 25 anos após o acidente, um evento memorial foi realizado em Ejirin por familiares e amigos das vítimas e ex-funcionários da ADC Airlines.

Por Jorge Tadeu (Site Desastres Aéreos) com ASN e Wikipédia