sexta-feira, 12 de março de 2021

Parte do motor do Airbus A300 cai em via pública perto do Aeroporto Internacional de Bogotá

O Airbus A300B4F, prefixo YV560T, da Transcarga, sofreu uma falha incontida de seu motor esquerdo durante a decolagem no Aeroporto Internacional de Bogotá, às 00h30 (hora local) desta quinta-feira (11).

O Airbus A300 estava partindo para realizar o voo T91527 para Caracas, na Venezuela, quando um estrondo foi ouvido. A tripulação foi obrigada a abortar a decolagem e retornar ao estande.

Um grande objeto metálico cilíndrico caiu perto do aeroporto, próximo a um motociclista que estava na via pública. O objeto metálico era um disco de rotor do motor CF6 esquerdo da aeronave.

Mauricio Marin, morador que presenciou a explosão de uma motocicleta, disse: “Senti que naquele momento saiu um avião e houve uma explosão. Eu estava procurando um endereço quando senti uma explosão e senti aquela cápsula passar atrás de mim; aquele casulo quase me pegou.” “Meu Deus é muito grande e ainda me tem para muitas coisas”, acrescentou.

A aeronave retornou ao aeroporto em segurança. Não houve feridos. Uma investigação inicial pelos investigadores enviados ao local verificou que um disco do rotor havia sido ejetado, impactado uma das malhas de segurança da pista e posteriormente colidido com a porta de uma oficina localizada em uma área ao redor do aeroporto. 

Via Airlive e The Aviation Herald

OVNI 'analista' de tecnologia humana é flagrado passando por helicóptero na Tailândia

Um morador de Bangkok, na Tailândia, capturou a inusitada imagem de um provável extraterrestre atravessando o céu próximo a um helicóptero que sobrevoava a vizinhança, diz ufólogo.

Despretensiosamente, um morador que filmava um helicóptero passando pelo bairro onde vive em Bangkok, na Tailândia, capturou um possível drone extraterrestre atravessando o céu, nesta quinta-feira (11).

No vídeo, que foi desacelerado para melhor observar o objeto voador, é possível perceber que a testemunha teve sorte em estar filmando naquele exato momento.


"Este é um comportamento 100% típico de drones alienígenas. Eles são programados para localizar, investigar e registrar todos os dados da tecnologia de voo", comenta o ufólogo Scott Waring em seu blog.

Para ele, o pequeno OVNI, que passa como um objeto preto no vídeo, se atira ligeiramente para perto do helicóptero ao percebê-lo no ar, e então dispara antes que os pilotos o notem.

"A tecnologia de voo é uma prioridade para os alienígenas coletarem dados, porque isso permite que eles prevejam com precisão quando os humanos serão capazes de viagens espaciais de longa distância", detalha Waring.

Itapemirim atrasa estreia na aviação e mostra pintura amarela do 1º avião

Avião da Itapemirim terá a fuselagem toda amarela, mesmo esquema de cores dos
ônibus da empresa (Imagem: Douglas Cavalcanti/Divulgação)
Nova companhia aérea brasileira, a Itapemirim Transportes Aéreos apresentou hoje o seu primeiro avião com a nova pintura da companhia aérea. A Itapemirim pretendia ter iniciado suas operações no dia 1º deste mês, mas o processo está atrasado e a empresa não tem uma nova data para os primeiros voos. 

Seguindo o estilo dos ônibus do grupo, o Airbus A320 da Itapemirim tem a fuselagem inteira na cor amarela com o nome da empresa na cor preta. Na cauda do avião, o esquema de cores se inverte com o predomínio do preto e as iniciais ITA em amarelo. Na parte traseira da fuselagem, há também o logotipo da Itapemirim em preto.

Em entrevista ao UOL em dezembro, o presidente da Itapemirim, Sidnei Piva, afirmou que a expectativa era ter todos os aviões já em janeiro, mas houve atraso na entrega por causa da pandemia de covid-19. A empresa pretende iniciar suas operações com dez aviões, mas até o momento apenas um já chegou ao Brasil. 

O primeiro avião pousou no Brasil no dia 20 de fevereiro e, desde então, está em São José dos Campos (SP). O Airbus A320 está sendo preparado para os voos de certificação junto à Anac (Agência Nacional de Aviação Civil) para obter o COA (Certificado de Operador Aéreo). 

Segundo a Anac, o processo de autorização da nova companhia aérea brasileira está na fase 4. "É a fase prática do processo em que ocorrem as inspeções das bases de operações e manutenção, avaliação dos treinamentos, voos de avaliação operacional e exame dos tripulantes, por exemplo", afirmou a agência. 




Mais espaço para passageiro


O primeiro A320 da frota da Itapemirim voava anteriormente pela companhia aérea espanhola de baixo custo Vueling. Além da pintura, o avião também deve receber uma nova configuração interna.

Em entrevista ao UOL em dezembro, o presidente da Itapemirim afirmou que os aviões da empresa serão configurados com mais espaço entre as poltronas, o que vai reduzir a capacidade máxima para cerca de 160 lugares. Na Vueling, o avião tinha capacidade para 180 passageiros. 

Segundo Piva, a intenção é criar uma companhia aérea que se diferencia no serviço prestado ao passageiro. Por isso, o objetivo é entregar um avião com mais espaço e serviço de bordo mais elaborado. 


O voo inaugural deverá ser com convidados entre Vitória (ES) e Brasília (DF). Outras cidades que deverão ser atendidas pela nova companhia aérea logo no início das operações serão São Paulo, Ribeirão Preto (SP), Presidente Prudente (SP), Rio de Janeiro, Porto Alegre (RS), Curitiba (PR), Foz do Iguaçu (PR), Florianópolis (SC), Salvador (BA), Fortaleza (CE) e Goiânia (GO). "Queremos atender todas as capitais", afirmou Piva. 

O primeiro avião é uma homenagem ao próprio presidente da empresa. A matrícula do primeiro Airbus A320 da Itapemirim recebeu a designação PS-SPJ, iniciais do nome do presidente Sidnei Piva de Jesus.

Via Vinicius Casagrande (UOL)

Aconteceu em 12 de março de 2018: Piloto perturbado - A queda do voo 211 da US-Bangla Airlines


No dia 12 de março de 2018, o voo 211 da US-Bangla Airlines estava se aproximando de Katmandu, no Nepal, quando os eventos começaram a sair de controle. A tripulação parecia perdida e confusa, o avião voou erraticamente e os controladores de tráfego aéreo temeram por suas vidas quando o avião quase atingiu a torre antes de fazer um pouso forçado na pista. 

O acidente de fogo matou 51 das 71 pessoas a bordo. O que os investigadores descobriram foi chocante: nos últimos minutos do voo 211, o capitão parecia sofrer um colapso mental completo, culminando em sua tentativa condenada de terminar uma abordagem que era irremediavelmente instável - e seu primeiro oficial era muito tímido para intervir.

O DHC-8, prefixo S2-AGU, da US-Bangla Airlines, envolvido no acidente
A US-Bangla Airlines é uma ramificação de uma joint venture entre os EUA e Bangladesh, que começou a transportar passageiros em 2014 em rotas de, para e dentro de Bangladesh. Com uma pequena frota de menos de 10 aviões, começou a se expandir para vários destinos na Índia e no Nepal, incluindo Kathmandu, a capital do Nepal. 

A rota de Dhaka a Kathmandu era normalmente operada por um dos quatro Bombardier Dash 8 Q400s canadenses da companhia, uma popular aeronave turboélice dupla que podia transportar cerca de 70 passageiros. Esta rota seria realizada no dia 12 de março de 2018 pelo de Havilland Canada DHC-8-402Q Dash 8, prefixo S2-AGU, da US-Bangla Airlines.

No comando estava o capitão Abid Sultan, de 52 anos, um piloto experiente com 5.500 horas de voo, incluindo 1.700 no Q400, e que voou para Kathmandu mais de 100 vezes. Sua primeira oficial foi Prithula Rashid, de 25 anos, uma nova contratada que tinha apenas 390 horas de voo e nunca havia voado para Katmandu antes. 


Abid Sultan voava em aviões desde 2002 e já havia voado com a Força Aérea de Bangladesh, mas foi dispensado do serviço em 1993 porque sofria de depressão. No entanto, seus exames médicos durante os anos 2000 não encontraram sinais de que ele fosse mentalmente incapaz de voar. 

Ele também tinha o hábito de fumar e, embora seus superiores soubessem disso informalmente, ele era inconsistente em declarar isso em seus exames médicos, durante os quais às vezes respondia que nunca havia fumado, ou que costumava fazer, mas tinha desistido. 

No entanto, ele tinha a reputação de ser competente, profissional, amigável e maduro em seus serviços com a companhia aérea. A primeira oficial Prithula Rashid também era vista como uma aprendiz rápida e pontuava muito em seus exames.

Nos dias que antecederam o voo, o capitão Abid Sultan aparentemente descobriu que um colega havia criticado seu profissionalismo e habilidade como instrutor de treinamento. Sultan levou isso para o lado extremamente pessoal, a ponto de perder o sono por causa disso e, aparentemente, começar a entrar em uma espiral muito negativa. 

Quando ele se apresentou para trabalhar na manhã seguinte para o voo para Katmandu, estava visivelmente agitado. Mesmo antes de o voo começar, ele foi pego de surpresa por uma nova exigência de que os pilotos relatassem um "número de autorização de defesa aérea" aos controladores em todos os voos para destinos estrangeiros, o que elevou ainda mais seu nível de estresse, uma vez que ele aparentemente não sabia disso nova regra. 

Então, quando o avião saiu de Dhaka, ele inadvertidamente respondeu a uma chamada de rádio dos operadores da empresa para outro avião Bangla dos Estados Unidos, sem confirmar que se destinava a ele. 

Durante todo o voo, o capitão Sultan manteve uma longa conversa unilateral com a primeira oficial Rashid, na qual ele expressou sua frustração com o colega que o havia criticado. Ele acabou declarando que não poderia lidar com isso e teria que renunciar, então expressou preocupação com sua situação financeira após sua renúncia, pois não sabia o que faria para viver (De acordo com colegas, ele havia de fato apresentado sua demissão antes do voo). 

Sultan começou a chorar repetidamente, enquanto Rashid oferecia o mínimo de comentários. Subitamente, Sultan puxou um maço de cigarros e começou a fumar, em flagrante violação dos procedimentos operacionais padrão. 

Em vários pontos ele desabou totalmente, dizendo o quão magoado ele estava com as críticas de seu colega, e uma vez ele gritou “Eu não me importo com um voo seguro, seu f ... ??? seu dever!" Não ficou claro a quem ele dirigiu esse comentário.


Com seu capitão fumando e chorando alternadamente, o voo 211 seguiu em direção ao Aeroporto Internacional Tribhuvan, em Katmandu. Depois de cerca de uma hora no ar, a tripulação começou a fazer os primeiros preparativos para o pouso, e o capitão Sultan passou a instruir a primeira oficial Rashid sobre os pontos mais delicados do pouso em Katmandu. 

Ele pareceu recuperar alguma compostura e parecia em seu elemento, pois seu conselho era calmo e preciso. Às 8h10, com Rashid operando o rádio, o controlador de aproximação em Katmandu instruiu o voo 211 a voar até o waypoint “GURAS” e entrar em um padrão de espera; em resposta, a tripulação programou o padrão de espera no computador de voo.


Depois disso, o capitão Sultan começou a se lamentar novamente. Ele conduziu sem entusiasmo o briefing de abordagem, mas errou muitas etapas e nunca divulgou seus próprios gráficos de abordagem, optando por consultar periodicamente os de Rashid. Isso certamente não ajudou nenhum dos pilotos a entender a abordagem complexa do sul para a pista 02 do Aeroporto de Tribhuvan. 

Minutos depois, o controlador de abordagem cancelou a instrução anterior para aguentar o GURAS e autorizou o voo 211 para uma abordagem direta. A tripulação reconheceu essa instrução, mas aparentemente esqueceu que havia pré-programado o computador de voo para colocar o avião em um padrão de espera. 

Quando o avião chegou ao GURAS, o piloto automático iniciou uma curva para a esquerda para entrar no padrão de espera. O controlador de abordagem ligou para confirmar que eles continuariam a abordagem direta, e a tripulação respondeu afirmativamente. 

O capitão Sultan acendeu outro cigarro, colocou o piloto automático no “modo de rumo” e selecionou um rumo a nordeste para voltar à direita e retomar a abordagem adequada. O avião estava muito alto porque a mudança de rumo do capitão fez com que o piloto automático mantivesse a altitude, e ele não havia começado a descer novamente. 

Sultan finalmente reiniciou a descida, mas eles ainda estavam muito altos. Em seguida, os pilotos começaram a trabalhar na lista de verificação de pouso, que deveria ter sido concluída no início da aproximação. 

Eles estragaram esta lista de verificação também; quando a primeira oficial Rashid pediu que o trem de pouso fosse abaixado, o capitão Sultan não tocou na alavanca do trem de pouso, mas instintivamente chamou "marchas três verdes", referindo-se às três luzes verdes que confirmam que o trem estava abaixado. 

Aparentemente, nenhum dos pilotos realmente olhou para as luzes, que não estavam acesas porque a marcha não estava abaixada. Se Rashid viu isso, ela não contou a Sultan. Claramente, os dois membros da tripulação estavam perdendo o controle da situação.


Quando o avião cruzou em direção ao caminho de aproximação normal, a tripulação falhou em ajustar o rumo de volta ao curso adequado ao norte, e o voo 211 começou a desviar para a direita do aeroporto. 

Ambos, não fizeram qualquer tentativa de colocar seus sistemas de navegação de volta no modo adequado para interceptar a inclinação do planador. O controlador aparentemente não estava monitorando de perto a tela do radar e também não percebeu esse desvio. 

À medida que a aproximação fora do curso continuava, o capitão Sultan definiu incorretamente a altitude mínima segura e, em seguida, solicitou repetidamente a lista de verificação de pouso, embora já o tivesse feito. Um aviso de “trem de pouso inseguro” começou a soar na cabine porque o avião foi configurado para pousar sem o trem de pouso abaixado.


Finalmente, o controlador de aproximação percebeu que o voo 211 estava indo para nordeste e ultrapassando o aeroporto. Ele perguntou à tripulação se pretendiam pousar na pista 02 ou na pista 20 (a mesma pista, mas na outra direção). 

O capitão Sultan, agora operando o rádio e também pilotando o avião - uma grande quebra de procedimento - confirmou que eles estavam pousando na pista 02, mas continuou voando pelo aeroporto, aparentemente acreditando que ele ainda estava no curso. 

O voo 211 caiu perigosamente baixo, acionando os alertas sonoros de proximidade do solo, "Muito baixo - terreno!" 

Nesse ponto, ocorreu uma mudança de turno e um novo controlador de tráfego aéreo assumiu a comunicação com o voo 211. Este controlador autorizou o avião a pousar na pista 20, assumindo que era a pista pretendida.


O voo 211 agora estava indo direto para uma montanha, então Sultan assumiu o controle manual total e executou um loop de 270 graus para a direita. Ele fez a curva extremamente difícil, inclinando-se até 45 graus enquanto a apenas 175 pés acima do solo, disparando avisos simultâneos de ângulo de inclinação e proximidade do solo, bem como o aviso de equipamento inseguro. 

Nivelando na direção oeste, perpendicular à soleira da pista, Sultan subiu de volta a 6.500 pés e passou direto pela extremidade norte do aeroporto. De alguma forma, ele não conseguiu avistar a pista. 

Agora, desesperadamente perdido, ele continuou voando para o oeste enquanto pedia a Rashid a lista de verificação de pouso, que ela novamente disse que eles já haviam completado. O controlador, agora quase tão confuso quanto os pilotos, autorizou o voo 211 para pousar em qualquer uma das pistas e deixou que eles próprios resolvessem o problema.


O Capitão Sultan então entrou em outra volta à direita, girando mais de 180 graus até voar para sudeste. O primeiro oficial Rashid avistou a pista à sua direita de uma altitude de mais de 1.500 metros e, para surpresa de todos, o capitão Sultan imediatamente tentou alinhá-la. 

Ele fez uma margem direita extremamente íngreme e desceu rapidamente, enquanto Rashid permanecia sentada em um silêncio petrificado, aparentemente chocada e assustada demais até mesmo para fazer os callouts de altitude padrão. Ela, no entanto, abaixou o trem de pouso. 

O voo 211 sobrevoou a fronteira do aeroporto e foi direto para o terminal. O controle de tráfego aéreo em pânico disse, “Autorização de decolagem cancelada”, no calor do momento, negligenciando a ordem formal de uma aproximação perdida.


Com avisos estridentes na cabine, o voo 211 passou por um hangar e um pátio de estacionamento, quase atingiu o terminal doméstico e foi direto para a torre de controle. 

Temendo uma colisão, os controladores correram para um lugar seguro enquanto o avião balançava para a esquerda, errando por pouco a torre e sobrevoando vários aviões estacionados em seus portões. 


Segundos depois, o voo 211 pousou diagonalmente na pista, saiu do lado esquerdo, caiu em um aterro e explodiu em chamas. Acima e abaixo, há imagens reais do CCTV do acidente. Em ambos os ângulos, o plano pode ser visto no canto superior esquerdo do vídeo.


O acidente matou imediatamente muitos passageiros do lado esquerdo, bem como os pilotos, e aqueles que sobreviveram foram imediatamente confrontados com um inferno violento que consumiu rapidamente o avião. 


Alguns sobreviventes fugiram a pé enquanto outros foram retirados dos destroços por equipes de resgate que correram para o local. Os bombeiros conseguiram extinguir o incêndio em 15 minutos, mas para a maioria dos que estavam a bordo, era tarde demais.


Vinte e dois passageiros foram levados para hospitais, onde dois sucumbiram aos ferimentos, elevando o número de mortos para 51 com 20 sobreviventes. Entre os mortos estavam os comissários de bordo, o capitão Abid Sultan e o primeiro oficial Prithula Rashid.


Embora as primeiras interpretações da transcrição do controle de tráfego aéreo (que vazou para o público no dia do acidente) sugerissem que os controladores estavam confusos, a investigação descobriu que a fonte de sua confusão era, na verdade, o comportamento extremamente errático do voo 211. 


A gravação de voz angustiante da cabine mostrou que o capitão Abid Sultan passou grande parte do voo sofrendo de um colapso emocional aparente gerado pelas críticas de seu colega sobre sua habilidade, durante a qual ele fumava, chorava e se tornava totalmente incapaz de voar. 


Severamente agitado, distraído e chateado, ele foi incapaz de se concentrar em pilotar o avião e, conseqüentemente, estragou vários procedimentos básicos. 

Ele se esqueceu de limpar o padrão de espera no computador, falhou em conduzir corretamente um briefing de aproximação, falhou em interceptar novamente a rampa de planagem, perdeu o controle de sua posição, não conseguiu abaixar o trem de pouso e muito mais. 

Isso demonstrou uma total falta de consciência situacional provocada por seu estado mental perturbado.


Os investigadores também tiveram que perguntar por que a tripulação não fez uma abordagem errada e tentou alinhar com a pista novamente. 

É provável que o capitão Sultan tenha tido uma visão de túnel - ele ficou tão obcecado em tentar pousar o avião que mal conseguia pensar além de "apontar o avião em direção à pista". 


Ele pode ter estado em um estado que não conseguia pensar em mais nada, ou pode ter pirado tão completamente que simplesmente parou de se preocupar com os procedimentos adequados. 

De qualquer forma, o resultado foi uma abordagem irremediavelmente instável que terminou com o avião sendo desalinhado com a pista em 25 graus após o toque.


Também foi preciso levantar a questão de por que a primeira oficial Prithula Rashid nunca interveio para corrigir nenhum dos erros do capitão Sultan. Na verdade, havia uma série de razões plausíveis para isso. 

Sultan tinha o dobro de sua idade e 14 vezes mais experiência, então ela teria dificuldade em justificar internamente qualquer decisão de contradizê-lo. Ela nunca tinha voado para Katmandu antes e não estava especialmente familiarizada com a abordagem, então ela confiou nele para mostrar a ela o que fazer, criando uma dinâmica professor-aluno que tornava ainda mais difícil questioná-lo. 

Além disso, Sultan tinha acabado de passar a última hora reclamando de um colega que havia criticado sua habilidade de voar. Rashid, sem dúvida, teria pensado nisso enquanto decidia se corrigia seus erros! E durante a abordagem final, ela pode ter ficado tão apavorada com as ações de seu capitão que não foi capaz de reagir, como evidenciado por sua completa falta de presença nos momentos finais da gravação de voz da cabine.


Que lição devemos tirar dessa lamentável seqüência de eventos? Embora possa não ter sido possível prever que Abid Sultan se quebraria de forma tão dramática, os efeitos de seu colapso poderiam ter sido mitigados se Prithula Rashid tivesse um melhor treinamento de gerenciamento de recursos de tripulação que a teria capacitado a enfrentar seu capitão. 

Depois de um certo ponto, deve ter ficado óbvio para ela que a abordagem era instável, mesmo que ela não tivesse certeza de como a abordagem deveria ser normalmente. 


Nesse ponto, mesmo em face da autoridade imponente de Sultan, ela deveria ter pedido uma abordagem errada. Se tivesse um treinamento de CRM melhor, dado a ela um pouco mais de autoconfiança, ela poderia ter tido a presença de espírito para perceber que sua vida e a vida de seus passageiros eram mais importantes do que o respeito pela autoridade.

Edição de texto e imagem por Jorge Tadeu

Com Admiral Cloudberg, ASN, Wikipedia e baaa-acro.com - Imagens: The New York Times, The Daily Star, Prothomalo, Google, Jacdec, DJ's Aviation, CNN, India Today e PBS. Clipes de vídeo cortesia da Infomaze Nepal.

Vídeo: Mayday Desastres Aéreos - Cougar helicopters 91 - Mergulho no Atlântico

(em inglês)

Aconteceu em 12 de março de 2009: Certificado para falhar - A queda do voo 91 da Cougar Helicopters


No dia 12 de março de 2009, um helicóptero Sikorsky S-92A que transportava trabalhadores para uma plataforma de petróleo na costa canadense sofreu uma falha catastrófica da caixa de câmbio principal, fazendo-a despencar nas águas geladas do Atlântico Norte. Das 18 pessoas a bordo, apenas uma conseguiu escapar quando o helicóptero destruído afundou sob as ondas. 

Os investigadores rastrearam a falha até uma falha de projeto minúscula que levou a uma série de falhas crescentes durante um período crítico de 11 minutos durante o voo fatal. Eles também encontraram um erro de cálculo crítico do fabricante do helicóptero, um quase-desastre anterior na Austrália e um conjunto de pistas enganosas que levaram os pilotos a pensar que poderiam voltar ao aeroporto. 

Havia deficiências na comunicação da tripulação, suposições incorretas durante a certificação do helicóptero e manutenção inadequada. O desastre foi possível devido a falhas sutis em todos os níveis ao longo de um período de mais de dez anos, desde o projeto do helicóptero até as decisões de fração de segundo tomadas pela tripulação enquanto eles mergulhavam em direção ao mar. 

Os investigadores descobririam que o acidente continha lições para todos, de reguladores a fabricantes, operadores e pilotos, o que ajudaria a melhorar a segurança dos helicópteros em todo o mundo.

Como um dos maiores produtores de petróleo do mundo, o Canadá tem uma extensa indústria de perfuração offshore que extrai mais de 250.000 barris de petróleo bruto todos os dias. Um de seus depósitos mais lucrativos é o campo de petróleo Hibernia, na costa leste de Newfoundland, sob as ondas do selvagem Atlântico Norte. 

Milhares de homens e mulheres corajosos dirigem as plataformas e plataformas de petróleo aqui durante todo o ano, e a grande maioria deles se desloca para o trabalho de helicóptero. 

Uma das empresas que oferecem voos de rotina de e para o campo de petróleo de Hibernia foi a Cougar Helicopters, uma empresa com sede em St. John's que transporta quase exclusivamente trabalhadores do petróleo para plataformas de petróleo ao largo de Newfoundland. 

Para esses voos, a Cougar Helicopters usou, e ainda usa, o Sikorsky S-92A, um helicóptero de transporte de 19 lugares de última geração que entrou em serviço pela primeira vez em 2004. 

Era um desses helicópteros, o Sikorsky S-92A, prefixo C-GZCH, da Cougar Helicopters  (foto acima), que estava programado para operar um voo de rotina da cidade de St. John's para a plataforma de petróleo Sea Rose e a plataforma de petróleo Hibernia no dia 12 de março de 2009. 

No comando do voo estavam o Capitão Matthew Davis, 34 , um piloto experiente com cerca de mil horas no S-92A; e o primeiro oficial Tim Lanouette, 47, que teve uma longa carreira voando Sea Kings na marinha canadense, mas era novo no Sikorsky, com apenas 94 horas de uso. 

Se juntaram a eles naquele dia, 16 passageiros, todos os quais - como os pilotos - haviam passado por extenso treinamento de sobrevivência, que era necessário para voar em um helicóptero durante operações prolongadas sobre a água. Todos os ocupantes do helicóptero também usaram roupas de sobrevivência à prova d'água e assistiram a um vídeo de segurança de 15 minutos antes do embarque. 

Às 9h17, horário local, o voo 91 da Cougar Helicopters decolou do heliporto do Aeroporto Internacional de St. John e seguiu para sudeste em direção à plataforma de petróleo Hibernia. No entanto, ninguém sabia que nas profundezas dos sistemas vitais do helicóptero, uma grande falha mecânica estava para ocorrer. 

A parte mais importante de um helicóptero é indiscutivelmente a caixa de câmbio principal. A caixa de engrenagens principal é onde o torque do motor é transmitido a uma variedade de sistemas, incluindo o rotor principal, rotor de cauda, ​​bombas de óleo, bombas hidráulicas e geradores elétricos. 


O grande número de peças móveis e engrenagens giratórias dentro da caixa de engrenagens principal significa que ela deve ser preenchida com óleo para manter tudo lubrificado. Sem óleo, os dentes de metal das engrenagens se desgastariam rapidamente até falharem catastroficamente. 

No Sikorsky S-92A, as bombas conduzem o óleo por uma série de filtros para remover os detritos. Os filtros são alojados dentro de uma concha de metal oca chamada de copo do filtro, que é aparafusada na lateral da caixa de engrenagens usando um conjunto de três pinos de titânio. 

O titânio foi escolhido para ajudar os pinos a suportar as cargas significativas que lhes são impostas quando o óleo altamente pressurizado passa pelo copo do filtro. No entanto, o titânio tem uma grande vulnerabilidade: quando esfrega contra o metal, sua superfície tende a se ligar à do outro objeto, fazendo com que seja arrancado - um processo conhecido como escoriação. 

Como resultado, os prisioneiros sofreram danos irritantes sempre que os trabalhadores de manutenção os removeram para substituir os filtros de óleo.


Quando o voo 91 deixou St. John's em 12 de março, os filtros de óleo do helicóptero haviam sido trocados 11 vezes. E a cada vez, a corrosão desgastava alguns dos fios dos pinos, forçando cada vez mais a tensão nos fios que permaneceram intactos. 

Com o tempo, esse estresse extra fez com que um dos três pinos sofresse de fadiga do metal. Uma pequena rachadura se formou e progressivamente alongou ao longo de ciclos de carga repetidos, até que a integridade estrutural do prisioneiro foi fatalmente comprometida. 

Vinte e oito minutos após a decolagem, às 9h45, o pino inferior esquerdo do recipiente do filtro finalmente falhou. Em uma fração de segundo, a transferência repentina de tensão sobrecarregou o pino inferior direito, que também quebrou. 

Preso por apenas um pino, não havia nada que impedisse o óleo altamente pressurizado dentro do copo do filtro de jorrar pelo espaço entre o copo do filtro e a caixa de engrenagens. 

A pressão do óleo começou a cair rapidamente, disparando uma luz vermelha piscante de baixa pressão do óleo nos visores dos pilotos, e uma voz automatizada começou a gritar: “PRESSÃO DA CAIXA DE VELOCIDADES! PRESSÃO DA CAIXA DE VELOCIDADES! ”


Uma perda de pressão da caixa de engrenagens é uma emergência extremamente séria, porque na ausência de óleo lubrificante, a vida útil restante da caixa de engrenagens será medida em minutos. 

O capitão Davis imediatamente entrou em ação, voltando para St. John's enquanto iniciava uma descida de emergência de sua altitude de cruzeiro de 9.000 pés. 

Ele também pediu a lista de verificação de emergência, e o primeiro oficial Lanouette puxou o Manual de referência rápida (QRH), enquanto Davis ligava seu microfone e transmitia uma chamada do socorro para o controle de tráfego aéreo de St. John. 

Dentro de 20 segundos após a falha, a pressão do óleo caiu de sua faixa normal de 45-75 psi para menos de 5 psi, indicando que provavelmente todo o óleo havia escapado. O tempo agora estava chegando ao desastre. Mas Lanouette descobriu que o aviso de pressão da caixa de câmbio principal não estava entre os alertas listados no índice na contracapa do QRH. 

Desistindo do índice, ele começou a folhear o livro em busca do procedimento. Por três vezes, ele indicou que estava tendo problemas para encontrar a lista de verificação, mas Davis estava simultaneamente tentando pilotar o helicóptero e falar com o controle de tráfego aéreo e não ouviu ou não processou os pedidos indiretos de ajuda de Lanouette. 

Depois de dois minutos e meio de pesquisa, Lanouette finalmente encontrou a lista de verificação apropriada - ela acabou sendo integrada à lista de verificação para o cuidado de pressão da caixa de câmbio principal muito menos sério (em oposição ao alerta total, que indica um aviso muito mais significativo perda de óleo).

A lista de verificação usada pela tripulação do Cougar 91
A maior parte da lista de verificação consistia em três conjuntos de sintomas que os pilotos poderiam usar para determinar a gravidade da falha. 

Em um helicóptero, existem três cursos de ação de emergência que correspondem a esses níveis de seriedade: “pousar o mais rápido possível”, “pousar o mais rápido possível” e “pousar imediatamente”. Na prática, isso significava, respectivamente, "pousar em um local de pouso conveniente", "pousar no local seguro mais próximo" e "pousar em qualquer terreno em que você esteja sobrevoando". 

Seu trabalho era determinar qual deles se aplicava à sua situação. Lanouette começou a ler os sintomas listados na lista de verificação, primeiro verificando se a pressão da caixa de marchas estava abaixo de 35 psi (a essa altura, ela havia caído para zero). 

Outro item era a temperatura do óleo, que a lista de verificação afirmava que deveria aumentar durante um vazamento de óleo, conforme o aumento do contato metal com metal entre as engrenagens gera calor de fricção que aquece o óleo restante. 

No entanto, a indicação da temperatura do óleo ainda estava dentro da faixa normal. Os pilotos não sabiam que, com todo o óleo acabado, o sensor estava, na verdade, medindo a temperatura do ar ambiente dentro da caixa de câmbio. 

Esse sintoma conflitante injetou confusão na situação, sugerindo que, afinal, talvez não houvesse problema. Isso foi ainda confirmado pelos outros sintomas listados na lista de verificação: fumaça na cabine, vibrações, flutuações da pressão do óleo entre 5 e 25 psi e falhas hidráulicas. Nenhum desses sintomas estava presente; na verdade, o único sinal de problema era a leitura do medidor de pressão do óleo zero. 

Na ausência de quase todos os sintomas, exceto para a própria leitura da pressão, os dois pilotos começaram a especular que o problema poderia realmente ser com o sensor. Após uma extensa discussão, eles concluíram que provavelmente tinham um problema no sensor e que, mesmo que houvesse algum tipo de vazamento, quase certamente haveria óleo suficiente no sistema para permitir que eles voltassem para St. John's. 

O capitão Davis traçou um curso para St. John's e nivelou a 250 metros, o que lhes permitiria limpar uma colina de 150 metros localizada perto do aeroporto. Como precaução, eles tomaram nota de um estacionamento em Cape Spear, a terra mais próxima, como um local de pouso alternativo em potencial. 


Só então Lanouette chegou ao fim da lista de verificação, que listava as possíveis condições sob as quais eles eram obrigados a pousar imediatamente. Entre eles estava uma pressão da caixa de câmbio abaixo de 5 psi, então Lanouette anunciou que eles estavam, de fato, em uma condição de “aterrissar imediatamente”. 

No entanto, Davis estava totalmente convencido de que o problema era com o sensor e disse isso aos despachantes da empresa pelo rádio. Tendo chegado a essa conclusão incorreta, ele não fez o que todo piloto de helicóptero deveria fazer ao se deparar com uma possível falha da caixa de câmbio principal: descer para 50 ou 100 pés e se preparar para a queda. 

Nesse ponto, o primeiro oficial Lanouette começou a ficar cada vez mais preocupado. Ele novamente apontou que eles estavam em uma condição de "terra imediatamente", mas o capitão Davis o ignorou. Em vez de, Davis decidiu aumentar a potência do motor e ver se notava algo anormal. 

O helicóptero respondeu normalmente, então ele deixou a potência nesta configuração mais alta para encurtar o tempo de voo de volta ao aeroporto. Lanouette respondeu que isso poderia ser uma compensação porque também poderia acelerar a falha da caixa de câmbio principal se todo o óleo tivesse acabado, mas Davis não mudou sua estratégia. 

Lanouette logo acrescentou que a partir de uma altura de 250 metros, a amaração seria difícil e eles provavelmente deveriam revisar os procedimentos de amaração, mas Davis não respondeu. Mais tarde, Davis disse a Lanouette que não havia razão para abandonar a queda, a menos que parecesse que o helicóptero estivesse “desmoronando”. 

Enquanto o voo 91 continuava em direção a St. John's, o colapso da caixa de câmbio estava bem encaminhado. Na ausência da superfície lubrificante gerada pelo óleo, o contato metal com metal entre a engrenagem motriz e a engrenagem do pinhão ligada ao rotor de cauda fez com que o pinhão esquentasse a uma temperatura extremamente alta. Esse calor enfraqueceu o metal e os dentes do pinhão começaram a se desgastar rapidamente. 

Às 9h56, 11 minutos após a falha do copo do filtro, o pinhão do rotor de cauda começou a desistir do fantasma. Uma vibração repentina ou excursão de guinada convenceu o capitão Davis de que o helicóptero estava de fato se desintegrando e que seria necessário um pouso. 

Ele imediatamente iniciou uma descida de emergência e informou aos controladores, despachantes e passageiros que eles estavam para abandonar. 

Trinta segundos depois, a 600 pés acima das ondas, o pinhão do rotor de cauda parou completamente de acasalar com a engrenagem motriz - uma das falhas mais sérias que podem ocorrer em um helicóptero. O rotor de cauda serve para estabilizar o helicóptero no plano horizontal; sem ele, o torque produzido pelos motores fará com que o helicóptero gire em círculos incontrolavelmente.

Assim que o pinhão do rotor de cauda falhou, o helicóptero guinou bruscamente para a direita a uma taxa de 20 graus por segundo. A única maneira de parar esse giro era desligar os motores, o que o Capitão Davis fez dois segundos após a falha.


Com os motores desligados, os pilotos precisavam descer à superfície por meio de uma técnica chamada autorrotação. Durante uma autorrotação, os pilotos devem atingir uma determinada inclinação da pá, velocidade no ar e ângulo de inclinação para otimizar o fluxo de ar através do rotor, permitindo que forças aerodinâmicas o girem no lugar dos motores. 

Isso faz com que as lâminas continuem gerando sustentação, tornando possível uma razão de descida segura. Mas eles também estavam viajando a uma velocidade no ar muito alta com muita potência do motor, o que exacerbou significativamente os problemas de controle que eles experimentaram quando o rotor de cauda falhou. 

No caos do momento, o capitão não baixou o passo das pás para um nível apropriado antes de desligar os motores. O passo alto da pá em relação à corrente de ar causou maior arrasto, o que reduziu a rotação do rotor abaixo do nível necessário para manter a taxa de descida adequada durante uma autorrotação. 

Enquanto o helicóptero descia por 120 metros, Lanouette acidentalmente acionou seu microfone e transmitiu palavras frenéticas de encorajamento para o Capitão Davis pela frequência do ATC. 


No momento em que Davis se recuperou das excursões de pitch and roll, a água estava correndo para encontrá-los, e sua velocidade no ar estava muito baixa e a taxa de descida muito rápida. 

Segundos depois, descendo a uma taxa consideravelmente superior a 2.300 pés por minuto, a rotação da pá caiu tão baixo que as pás estolaram, e o helicóptero caiu como uma rocha no mar. 


Menos de um minuto após a falha do rotor de cauda, o voo 91 da Cougar Helicopters se chocou contra a superfície do Oceano Atlântico com uma força incrível. O helicóptero se espatifou com o impacto e a água do mar entrou em cada fenda, enchendo a cabine em segundos. 

Embora todos os passageiros tenham sobrevivido ao impacto, muitos ficaram gravemente feridos e não puderam agir. Outros foram pegos de surpresa pelo choque frio provocado pela água do mar gelada, que os fez perder a capacidade de prender a respiração; essas pessoas se afogaram rapidamente. 


Apenas dois passageiros conseguiram desfazer seus cintos de três pontos e nadar para fora do helicóptero enquanto ele afundava em uma profundidade de nove metros. Um conseguiu prender a respiração por tempo suficiente para chegar à superfície, mas o outro não, e ela engoliu grandes quantidades de água do mar que a fez se afogar logo após voltar à superfície.

Depois que um avião de reconhecimento o avistou acenando para eles da água, um helicóptero foi enviado para resgatar Decker, chegando cerca de 40 minutos após o acidente. 

Ele havia sofrido vários ferimentos, incluindo vários ossos quebrados e sua temperatura corporal estava perigosamente baixa, mas uma vez fora da água, os médicos conseguiram estabilizar sua condição. Um helicóptero também resgatou o corpo da passageira, que foi encontrada flutuando na superfície nas proximidades. 

Robert Decker a caminho do hospital após ser resgatado
Mas todos os outros passageiros e tripulantes haviam afundado com o voo 91 e precisariam ser resgatados do fundo do oceano junto com os destroços. 

A responsabilidade pela investigação do acidente caiu para o Transportation Safety Board of Canada. Uma embarcação especial de salvamento subaquático foi contratada para levantar os corpos das vítimas e os destroços do helicóptero, que foi levado para um hangar em St. John para análise. 

Com a ajuda dos engenheiros da Sikorsky, os investigadores abriram a caixa de câmbio principal e descobriram imediatamente a origem do problema: os pinos que seguravam o copo do filtro haviam se quebrado, permitindo que todo o óleo escapasse. 

Isso, por sua vez, fazia com que o atrito desgastasse os dentes do pinhão do rotor de cauda até que ele parasse de acasalar com a engrenagem de transmissão, levando à perda de controle. Foi nesse ponto que os engenheiros da Sikorsky deram uma notícia surpreendente: isso já havia acontecido antes.

Os destroços do C-GZCH no fundo do oceano
Em julho de 2008, outro Sikorsky S-92A estava operando um voo para uma plataforma de petróleo na costa da Austrália Ocidental quando os pilotos receberam um alerta de pressão da caixa de câmbio principal. Eles imediatamente voltaram para a terra e começaram a solucionar o problema usando a lista de verificação. Assim como a tripulação do voo 91, eles descobriram que a maioria dos sintomas listados na lista de verificação não estavam presentes, exceto pela indicação da pressão do óleo. 

No entanto, reunindo seus conhecimentos sobre os sistemas, eles perceberam que o aviso e o medidor de pressão do óleo obtinham suas informações de pressão de sensores separados e redundantes, confirmando que as indicações deviam ser reais. Depois de voar por sete minutos, eles colocaram o helicóptero no chão imediatamente ao alcançar a terra; todos a bordo sobreviveram e o helicóptero não foi danificado. 

Quando os engenheiros da Sikorsky examinaram a caixa de câmbio, eles descobriram que os pinos da tigela do filtro haviam quebrado e todo o óleo havia escapado. Os pinos apresentavam evidências visíveis de escoriações, que haviam desgastado os fios até que os pinos quebrassem. 

Como resultado dessas descobertas, em novembro de 2008 a Sikorsky emitiu um aviso de segurança para todos os operadores do S-92A instruindo-os a inspecionar os prisioneiros do copo do filtro sempre que substituíssem os filtros; para substituir os pinos que foram encontrados danificados; e enviar quaisquer pinos danificados para Sikorsky para análise. 

Em janeiro de 2009, a Sikorsky deu sequência a isso com um boletim de serviço exigindo que os operadores substituíssem os pinos de titânio por pinos de aço, que não seriam vulneráveis ​​a corrosão, dentro de um ano ou 1.250 horas de voo. 

Este prazo relativamente frouxo foi considerado razoável porque Sikorsky ainda não havia recebido nenhum relatório de pinos danificados, sugerindo que o problema era raro, e porque o regime de inspeção descrito no aviso de segurança foi claramente suficiente para detectar danos. Então, o que deu errado?

Destroços do helicóptero são trazidos de volta à superfície por um navio de recuperação
Os investigadores descobriram que a escoriação nos prisioneiros da tigela do filtro de titânio era generalizada em toda a frota do S-92A, mas nem um único operador havia realmente implementado os regimes de inspeção estabelecidos no aviso de segurança de Sikorsky. 

A única explicação para essa falha generalizada em seguir as instruções era que os operadores não entendiam o motivo das inspeções. A falha em relatar os parafusos danificados fez com que a Sikorsky redigisse seu boletim de serviço com base em informações imprecisas sobre a escala e a urgência do problema. 

Tragicamente, se a Cougar Helicopters tivesse seguido os procedimentos do aviso de segurança, a corrosão nas vigas do helicóptero do acidente teria sido facilmente detectável. 

Em seguida, os investigadores analisaram o processo de certificação original do S-92A no final dos anos 1990 e início dos anos 2000. Desde a década de 1980, a maioria dos helicópteros foi obrigada a funcionar por pelo menos 30 minutos após a perda total da lubrificação da caixa de câmbio principal. 

No entanto, a Administração Federal de Aviação dos Estados Unidos, que supervisionou o processo de certificação do S-92A, permitiu uma exceção se o fabricante pudesse provar que a possibilidade de uma perda total de lubrificação era "extremamente remota". Isso significava que a probabilidade de falha deveria estar na faixa de uma em dez milhões a uma em um bilhão por hora de voo - raro o suficiente para que certamente não houvesse mais de uma ou duas dessas falhas durante a vida de toda a frota. 

A Sikorsky inicialmente esperava que o S-92A cumprisse a regra de 30 minutos, mas para sua surpresa, a caixa de câmbio principal falhou depois de apenas 11 minutos durante um teste de “funcionamento a seco” em 2002. Como resultado, eles decidiram ter a caixa de câmbio certificada sob a provisão “extremamente remota” em vez disso. 

Eles instalaram uma válvula de desvio que poderia interromper qualquer vazamento de óleo assim que fosse ativada, fornecendo redundância suficiente para empurrar uma perda total de lubrificação para a faixa de probabilidade necessária. A FAA certificou a caixa de câmbio S-92A com base em sua análise dessas mudanças.


No entanto, Sikorsky e a FAA não consideraram uma falha do copo do filtro de óleo em seus cálculos. A falha do copo do filtro que ocorreu no Cougar 91 e no incidente australiano causou um vazamento tão grande que todo o óleo já havia acabado antes que os pilotos pudessem ativar a válvula de desvio. 

Quando o S-92A foi certificado no Canadá, a Transport Canada expressou preocupação de que os pilotos não seriam capazes de ativar a válvula de derivação a tempo, porque Sikorsky havia declarado que eles deveriam fazer isso dentro de cinco segundos após receberem um aviso de pressão da caixa de câmbio. 

A Transport Canada sentiu que esta ação deveria ser automatizada. A Sikorsky respondeu que cinco segundos era o pior cenário e que, na prática, os pilotos poderiam ativar a válvula de derivação muito mais tarde. Transport Canada relutantemente aceitou esta explicação, com a condição de que Sikorsky fornecesse algum meio para os pilotos saberem se ativaram a válvula em breve, o que eles fizeram. 

Entrentanto, os pilotos do Cougar 91 levaram nada menos que 77 segundos para ativar a válvula de derivação - e mesmo se tivessem feito isso em cinco segundos, ainda não teria sido rápido o suficiente para interromper a perda total de lubrificação. 

Ficou claro a partir dessas descobertas que a base na qual a caixa de engrenagens S-92A foi certificada tinha uma falha fatal, porque era possível que uma única falha contornasse a redundância fornecida pela válvula de desvio.

Os investigadores remontaram os destroços do helicóptero em um hangar para análise
Apesar de tudo isso, a falha dos prisioneiros do copo do filtro no voo 91 não precisava terminar em desastre. Alguns anos antes, um tipo diferente de helicóptero que atendia aos campos de petróleo offshore do Canadá também sofreu uma falha na caixa de câmbio principal; nesse caso, os pilotos realizaram uma amarração controlada imediata e todos sobreviveram. 

A diferença entre aquele caso e o Cougar 91 estava nas decisões tomadas pela tripulação durante os 11 minutos críticos entre a falha e o acidente. Os investigadores encontraram uma variedade de fatores contribuintes que levaram os pilotos, especialmente o Capitão Davis, a acreditar que eles poderiam voltar para St. John's. 

Em primeiro lugar, eles não sabiam que o tempo esperado de “secagem” para o S-92A era de apenas 11 minutos - tempo insuficiente para retornar à costa - porque esse número não foi mencionado em nenhum lugar do manual de operações de voo. Se eles soubessem que a caixa de câmbio poderia falhar após 11 minutos, eles poderiam ter decidido que o fosso era a opção mais segura. 


Mas um fator ainda mais importante para sua decisão foi a diferença entre como eles esperavam que uma perda de pressão na caixa de câmbio ocorresse e como isso realmente aconteceu. 

Durante o treinamento, os dois pilotos enfrentaram uma perda simulada de lubrificação da caixa de câmbio principal. Mas no cenário de treinamento, a perda de pressão foi gradual e abaixo de 20 psi o simulador introduziu vibrações pesadas que levariam a tripulação a pousar imediatamente. 

A simulação também incluiu o aumento da temperatura do óleo, que acabou voltando ao normal depois que todo o óleo acabou. Em contraste, a perda real de lubrificação aconteceu muito repentinamente, sem queda gradual de pressão; a temperatura do óleo nunca teve chance de aumentar antes que todo o óleo acabasse; e nenhuma vibração ocorreu. 

A lista de verificação de emergência também enfatizou esses sintomas e foi enterrada dentro da lista de verificação da luz de advertência da pressão da caixa de câmbio principal menos urgente, porque Sikorsky esperava que esta luz acendesse antes do alerta de pressão da caixa de engrenagem principal mais sério. 

Novamente, o procedimento foi baseado na expectativa de que qualquer vazamento seria gradual, o que contribuiu para a dificuldade do primeiro oficial Lanouette em encontrar a lista de verificação e para a confusão dos pilotos ao interpretá-la.


Todas essas expectativas enganosas levaram os pilotos a concluir que provavelmente tinham um problema no sensor, em vez de uma perda real de pressão do óleo. Como resultado, o Capitão Davis optou por nivelar a 800 pés para limpar a colina perto do aeroporto e manteve a velocidade bem acima do valor recomendado na lista de verificação de emergência. 

Quando o rotor de cauda falhou, isso os forçou a uma autorrotação. Quando recuperaram o controle direcional do helicóptero, sua velocidade no ar estava muito baixa, as hélices não giravam rápido o suficiente e sua taxa de descida estava muito alta. 

Se estivessem voando a 30 metros em vez de 250 metros, nada disso teria importância, porque quando os primeiros sinais de problemas no rotor de cauda começaram, eles teriam sido capazes de descer até a água antes que o rotor realmente falhasse.


Mesmo assim, ficou claro pela gravação de voz da cabine que o primeiro oficial Lanouette tinha dúvidas sobre a decisão do capitão Davis de continuar o voo. Em vários pontos, ele expressou preocupação sobre sua altura, velocidade e falta de preparação para uma amarração que Davis ignorou devidamente. Isso sugeriu uma falta de gerenciamento adequado dos recursos da tripulação. 

Embora tivesse apenas 94 horas no S-92A, Lanouette tinha 11 anos de experiência na água, tanto como primeiro oficial quanto como capitão de helicópteros Sea King, e ele estava bem ciente do perigo de não estar pronto para se livrar se algo desse errado. Mas Lanouette tinha uma personalidade submissa e faltava-lhe firmeza para desafiar com eficácia as suposições do capitão Davis sobre a situação. 

Davis era conhecido por sua personalidade forte e passava dez vezes mais horas no S-92A, o que causava um gradiente de autoridade acentuado, onde Davis não levava as preocupações de Lanouette a sério.


Davis também não conseguiu exibir tarefas eficazes e gerenciamento de carga de trabalho durante a emergência. Segundos depois do aviso, ele começou a pilotar o helicóptero, a se comunicar com o controle de tráfego aéreo e a gerenciar a resposta à emergência. 

Enquanto isso, Lanouette não fez nada além de se esforçar para encontrar a lista de verificação por dois minutos e meio. Davis deveria ter entregue a tarefa demorada, mas mecânica, de pilotar o helicóptero para Lanouette enquanto ele usava sua experiência e julgamento superiores para interpretar a lista de verificação e determinar o curso de ação. 

Ele também não aderiu ao princípio de “evitar, navegar, comunicar”, pois passou um tempo valioso envolvido em longas conversas pelo rádio, quando era inteiramente seu direito dizer ao ATC para aguardar enquanto ele estabilizava a situação. 

Em vez disso, ele ficou tão saturado de tarefas que repetidamente ignorou as sugestões indiretas e pedidos de ajuda de Lanouette. Incapaz de se concentrar em tudo ao mesmo tempo, seu cérebro se agarrou a indicações que sustentavam seu curso de ação desejado: retornar ao aeroporto. 

Foi um caso clássico de viés de confirmação. Se Davis e Lanouette tivessem conversado abertamente sobre suas opções, Davis poderia ter percebido que seria perigoso estar a 250 metros se algo desse errado.

O alto número de fatalidades foi resultado direto dessa série de decisões equivocadas. A alta taxa de descida no momento do impacto fez com que as paredes da cabine falhassem, permitindo que o helicóptero afundasse quase imediatamente. Também causou ferimentos graves aos passageiros e tripulantes, o que impediu a fuga de alguns deles.
Mapa dos ferimentos sofridos pelos ocupantes. Observe quantos dos que morreram sofreram ferimentos relativamente leves durante o acidente, mas ainda assim se afogaram
Se eles tivessem pousado com uma razão de descida apropriada, os airbags na parte inferior do helicóptero teriam inflado automaticamente para mantê-lo flutuando, e poderia ter havido tempo suficiente para todos escaparem. Mas o forte impacto destruiu os sistemas de ativação dos airbags e nenhum deles inflou. O fato de Robert Decker sobreviver foi um milagre. 

A fuga de um helicóptero que afundou após um grande impacto como o do voo 91 requer firmeza mental, clareza de pensamento, um forte instinto de sobrevivência e muita sorte. Decker tinha todos esses fatores trabalhando a seu favor, mas apenas porque ele havia passado por um treinamento intensivo de sobrevivência em água fria.

Notavelmente, o outro passageiro que conseguiu escapar também recebeu esse treinamento, enquanto a maioria dos que caíram com o helicóptero não. A água gelada rapidamente roubou-lhes a capacidade de pensar com clareza e prender a respiração, deixando-os sem chance de escapar. 


Como resultado do acidente, a FAA emitiu várias diretrizes de aeronavegabilidade exigindo mudanças no Sikorsky S-92A. O primeiro AD exigiu que os operadores do S-92A substituíssem imediatamente os prisioneiros do copo do filtro de titânio por versões de aço. Nenhum S-92A voou novamente com pinos de titânio. 

A FAA também ordenou que Sikorsky mudasse o manual de voo do S-92A para indicar claramente que o tempo de “funcionamento seco” do helicóptero poderia ser de apenas 10 minutos ou menos; e determinou uma mudança de projeto para o copo do filtro que evitaria que ele falhasse como resultado de uma falha de um pino de montagem. 

A Cougar Helicopters introduziu um novo sistema de gerenciamento de segurança; iniciou um programa que aumentou com sucesso o uso de capacetes entre seus pilotos; alterou sua lista de verificação de advertência de baixa pressão de óleo; e contratou um instrutor de gerenciamento de recursos de tripulação qualificado para ensinar um programa de CRM atualizado. A Sikorsky aumentou o número de pinos do recipiente do filtro de três para seis. 

Os passageiros de helicópteros nos campos de petróleo offshore canadenses receberam aparelhos respiratórios subaquáticos e o treinamento de sobrevivência em quedas de helicópteros foi aprimorado. 

E, finalmente, os pilotos do S-92A agora são ensinados que as leituras da temperatura do óleo podem parecer normais se todo o óleo tiver acabado. 

Além das ações já tomadas, o TSB também emitiu várias recomendações, incluindo que Sikorsky redesenhou a válvula de desvio para ativar automaticamente quando uma perda de pressão de óleo for detectada; e que a FAA exige que todos os helicópteros sigam a regra de corrida sem chuva de 30 minutos. 


A queda do voo 91 da Cougar Helicopters contém lições valiosas para todas as partes da indústria da aviação, desde o perigo de brechas de certificação baseadas em probabilidade até a importância de considerar o pior cenário ao tomar decisões. 

Nenhuma pessoa ou organização foi responsável pelo acidente, que ocorreu devido ao acúmulo de inúmeras falhas interconectadas na FAA, em Sikorsky, na Cougar Helicopters e na cabine do voo malfadado. 

A sequência de eventos também é um lembrete importante para estar vigilante e preparado ao voar a bordo de um helicóptero, seja você um piloto ou passageiro. Os helicópteros têm menos sistemas redundantes e mais pontos únicos de falha do que os aviões. 

Enquanto o desejo natural de um avião é continuar voando, o estado natural de um helicóptero é basicamente um tijolo, exigindo vários sistemas complexos apenas para evitar que caia do céu.

É difícil fazer um helicóptero que atenda ao nível de segurança esperado de aviões de asa fixa, mas se a resposta à queda do voo 91 nos mostra alguma coisa, é que helicópteros mais seguros são possíveis se a indústria estiver disposta a se esforçar.

Edição de texto e imagens por Jorge Tadeu

Com Admiral Cloudberg, ASN e Wikipedia Imagens: Mayday, Transport Canada, Transportation Safety Board of Canada, The Hamilton Spectator, CBC, Vertical Magazine, CTV News, The Globe and Mail e The Telegram. Clipes de vídeo cortesia de Mayday (Cineflix).

Aconteceu em 12 de março de 1950: O desastre aéreo com torcedores em Llandow, no País de Gales

Na foto acima, os passageiros e a tripulação ao lado do Avro 689 Tudor V, G-AKBY,
momentos antes da decolagem
Em 12 de março de 1950, o Avro 689 Tudor V, prefixo G-AKBY, batizado como "Star Girl", de propriedade da Airflight Limited, que operava com o nome Fairflightdecolou do aeroporto de Dublin, na Irlanda, em um voo particular de passageiros para o aeródromo de Llandow, em South Wales, no País de Gales.

O programa do jogo com as equipes
A aeronave tinha 78 passageiros e 5 tripulantes no manifesto. O voo havia sido fretado em particular para uma viagem a Belfast para assistir a equipe Welsh Rugby Union competir contra os irlandeses no Five Nations Championship, no Ravenhill Stadium. 

Os passageiros embarcam no avião no domingo, 12 de março de 1950
A aeronave tinha sido inicialmente reservada para 72 passageiros, mas o avião foi desmontado para acomodar outros seis. As condições meteorológicas estavam claras e nenhum incidente foi relatado após a viagem de ida a bordo da mesma aeronave.

Testemunhas oculares (incluindo um Sr. Russell) afirmam que às 15h05 o Avro Tudor estava se aproximando da pista 28 do aeródromo de Llandow a uma altitude anormalmente baixa e  com o trem de pouso abaixado.


O piloto tentou corrigir a descida aumentando a potência dos motores e conseguiu levantar o avião. A aeronave subiu abruptamente para 100 m (300 pés), atingindo uma atitude de nariz para cima de 35 graus em relação à vertical e, em seguida, a aeronave estolou.

O "Star Girl" despencou em direção ao solo com a ponta da asa direita atingindo o chão primeiro, seguida, por sua vez, pelo nariz do avião e pela asa esquerda, que se separou da fuselagem quando fez contato.

O avião girou no sentido horário e finalmente parou perto de um campo ao lado de Park Farm, perto do pequeno vilarejo de Sigingstone. Não houve explosão com o impacto ou fogo no solo.


Dois passageiros que estavam sentados em assentos adicionais aparafusados ​​na parte de trás da seção traseira se afastaram sem ajuda, e um terceiro homem, que estava no banheiro e ficou inconsciente no momento do acidente, sobreviveu, mas ficou no hospital por quatro meses. 

Mais oito sobreviventes do impacto inicial morreram mais tarde em hospitais de seus ferimentos, elevando o número final de mortos para 80, sendo 75 passageiros e todos os cinco tripulantes.


Entre os que morreram estavam três membros do Abercarn Rugby Football Club. Llanharan RFC perdeu seis membros de sua equipe de jogo. Ambos os clubes lembram as vítimas com simbolismo em seus crachás. 

Em 25 de março, no jogo final do Campeonato de 1950 contra a França no Cardiff Arms Park, a multidão ficou em silêncio enquanto cinco corneteiros soaram uma homenagem ao Last Post à memória dos torcedores que morreram no acidente de avião.


A edição de 13 de março de 1950 do New York Times relatou o seguinte: "Londres, 12 de março - Oitenta homens e mulheres morreram no País de Gales hoje em um acidente de avião, o pior desastre da história da aviação. Três homens sobreviveram. O número de mortos eclipsou o recorde anterior para aviões, estabelecido em 2 de novembro passado, quando um avião de combate colidiu com um avião próximo ao Aeroporto Nacional de Washington, causando a morte de 55 pessoas. Também ultrapassou o número de setenta e três mortos na perda de o dirigível Akron da Marinha dos Estados Unidos ao largo de Barnegat, NJ, em 4 de abril de 1933. As oitenta pessoas perdidas no País de Gales foram para a destruição em um tipo de aeronave - o Avro Tudor britânico - que já havia causado 54 mortes e havia sido banido do serviço de passageiros no aeroporto companhias aéreas internacionais."


O número de mortes de 80 excedeu o total de fatalidade da aviação anterior, que foi de 73 vidas perdidas no dirigível Akron da Marinha dos EUA em 1933. Este recorde seria superado em 20 de dezembro de 1952, quando 87 vidas foram perdidas quando um soldado da Força Aérea dos EUA Douglas C- 124 Globemaster II caiu perto de Moses Lake, Washington. 

No que diz respeito às mortes relacionadas à aviação civil, o desastre do Avro resultou na maior perda de vidas até que 128 morreram na colisão aérea de 1956 com o Grand Canyon. O número de mortos de um avião civil Tudor foi o maior já registrado até 1958, quando uma Super Constelation da KLM caiu na costa da Irlanda, ceifando 99 vidas.

Placa memorial em Sigingstone dedicada em 1990 no 40º aniversário do acidente
Após um tribunal de inquérito presidido por William McNair KC, o Ministério da Aviação Civil anunciou que a causa provável do acidente foi o carregamento da aeronave, que havia deslocado o centro de gravidade consideravelmente para trás de onde deveria estar, reduzindo assim a eficácia dos elevadores.

O Avro 689 Tudor V, G-AKBY, o avião envolvido no acidente
Por Jorge Tadeu (com Wikipedia, ASN e baaa-acro.com)