As principais notícias sobre aviação e espaço você acompanha aqui. Acidentes, incidentes, negócios, tecnologia, novidades, curiosidades, fotos, vídeos e assuntos relacionados.
Visite o site Desastres Aéreos, o maior banco de dados de acidentes e incidentes aéreos do Brasil.
O JN ouviu especialistas, que analisam o que fez o avião voar tão baixo até bater na linha de transmissão. O estado da aeronave depois do choque com o chão também chamou a atenção de profissionais.
(Imagem: Reprodução/JN)
O Aeroporto de Ubaporanga, conhecido como Caratinga, tem uma pista de 1.080 metros. A aproximação é feita numa espécie de corredor, com montanhas dos dois lados. E uma linha de transmissão a cerca de 5 km do local.
As investigações indicam que o avião bateu em um desses cabos, um para-raio, que não estava energizado, segundo a companhia elétrica. O que não está claro é por que o avião voava baixo a ponto de bater.
“Ele estava fazendo um voo um pouco abaixo da rampa, por uma decisão que ele achou que deveria ser seguro e manter uma visibilidade horizontal que ele precisava ter", explica Luiz Eustáquio Morterane, instrutor de voo.
"Então ele tem uma altura da montanha mais a altura da torre. Então ele deveria estar voando 300 pés, ou algo em torno de 100 metros, acima da torre", diz Roberto Peterka, especialista em segurança de voo.
Há dois alertas para obstáculos próximos ao aeroporto de Caratinga. O primeiro, de 5 de agosto, destaca a presença de um obstáculo, uma torre. O segundo, de 13 de setembro, aponta para um obstáculo, uma antena. Os documentos, chamados de Infotemp, são emitidos pelo Decea.
Em nota, o Decea, o Departamento de Controle do Espaço Aéreo, comunicou que essas informações são públicas e de conhecimento obrigatório para pilotos que pretendem operar no aeródromo de Caratinga.
A nota destaca que os obstáculos que constam no aviso não são os cabos de alta tensão. E completa: "Pelo falo de a linha de transmissão naquele trecho em que ocorreu o acidente estar além dos limites do Plano Básico de Proteção do Aeródromo, esses cabos não fizeram parte da análise, segundo os critérios da Organização de Aviação Civil Internacional".
"Um piloto que for voar para esse aeroporto, ele vai levantar as informações e vai ver que ali, nas coordenadas geográficas, têm torres e fios de alta tensão", diz Roberto Peterka.
Geraldo Medeiros conhecia as regras da aviação. Era um piloto experiente, com 15 anos de profissão.
Segundo os especialistas, o aeroporto de Caratinga tem outra característica que pode ter influenciado na decisão da tripulação em voar mais baixo. Ele está numa altitude de 600 metros e está muito sujeito aos efeitos das alterações climáticas, como por exemplo o surgimento de nuvens.
“Quando o teto está baixo, as operações visuais ficam um pouco comprometidas, porque existe uma altitude padrão que o avião deve manter para aproximar para o pouso. E um avião a hélice seria mil pés, aproximadamente 300 metros de altitude, no circuito de tráfego para fazer o pouso”, explica Lito Sousa, especialista em segurança aérea.
Imagens de satélite mostram a condição meteorológica de Caratinga no momento do acidente. Das 14h30 às 15h de sexta-feira (5), a cidade estava encoberta por algumas nuvens. Mas nenhuma muito densa que sugerisse um problema de teto para aviação. Não chovia, e o vento era muito fraco, de 18 km/h.
O estado da aeronave depois do choque com o chão também chamou a atenção dos especialistas.
“O fato da fuselagem estar quase íntegra nesse choque, pode indicar uma baixa velocidade no momento do impacto. Velocidade horizontal. Porque se ele tivesse uma velocidade horizontal elevada, os pedaços se fragmentariam muito mais”, argumenta Lito.
Para Luiz Eustáquio Morterane, instrutor de voo que tem 50 anos de aviação, os dados conhecidos até aqui não indicam que um problema mecânico tenha levado o avião a voar em uma trajetória tão baixa, que se revelaria fatal.
“Se houvesse um problema de falha de motor, ele voa muito bem com o outro motor. É um motor turboélice. Eu acho que não está ligado a problema mecânico. E se estivesse ligado a problema mecânico, a decisão do comandante seria ir para um aeroporto de maior assistência, maiores dimensões, para que ele tivesse uma segurança, um apoio de solo maior”, analisa.
Segundo a PM, helicóptero será usado na operação de remoção, que começou na manhã deste domingo (7). Na noite de sábado, aeronave já havia sido retirada da água, onde tinha caído.
Asas foram cortadas para transportar a aeronave (Foto: Polícia Militar)
O avião bimotor que caiu com a cantora Marília Mendonça e outras quatro pessoas será retirado do local da queda, na zona rural de Caratinga (MG), e levado para o aeroporto de Caratinga, onde deveria ter pousado, já no município de Ubaporanga (MG). Os trabalhos começaram por volta das 9h deste domingo (7) e a previsão é que terminem só no fim do dia.
Por causa do peso, as asas serão cortadas para facilitar o transporte, e o avião será levado em partes.
Em uma primeira etapa da operação, um guindaste ajudou a içar o avião de um ponto ao lado da cachoeira, onde tinha caído, para uma área mais alta do terreno.
(Foto: Reprodução/FAB)
Para a segunda etapa, a Polícia Militar informou que será deslocado um helicóptero para auxiliar no procedimento. O helicóptero irá içar os motores do avião para um local próximo dali, de onde o guindaste conseguirá depois sair para ir até o aeroporto.
Um caminhão equipado com guindaste içou o avião do leito do Córrego do Lage (Foto: Super Canal)
Segundo a empresa responsável pela retirada da aeronave, a carcaça do avião deve ser levada ao aeroporto por volta das 18h.
Na noite de sábado (6), a aeronave já havia sido retirada da correnteza da cachoeira, onde caíra na sexta-feira (5), e deixada ao lado. A queda aconteceu a cerca de 2 km do aeroporto de destino, após o avião bater em um cabo de distribuição de energia.
(Foto: Divulgação/Fervel Auto Socorro)
Confira as etapas de remoção do avião:
No sábado, foi retirado da correnteza;
No domingo, foi puxado para a parte mais alta do terreno por um guindaste;
Para facilitar o transporte, as asas foram cortadas;
Helicóptero levará as asas e os motores para local próximo;
Caminhão com guindaste levará o avião em partes até o aeroporto.
A empresa dona da aeronave, PEC Táxi Aéreo, foi autorizada a recolher os destroços após o trabalho de perícia da Polícia Civil e do Centro de Investigação e Prevenção de Acidentes Aeronáuticos (Cenipa) feito no local do acidente.
O Cenipa informou que uma segunda etapa da perícia será realizada no hangar onde o avião ficará. Ainda segundo o órgão, todas as evidências iniciais que poderiam ser usadas na investigação já foram retiradas da aeronave.
O órgão confirmou, no sábado, que o avião bimotor não possuía caixa-preta, mas foi encontrado um spot geolocalizador, que será confrontado com o plano de voo e poderá ajudar a entender as causas do acidente.
“Ainda não fizemos nenhuma análise, nosso serviço aqui agora é procurar evidências. Então, ela é uma evidência que será analisada em outro momento. Esse geolocalizador dá coordenadas geográficas, posições no terreno por onde essa aeronave pode ter passado”, explicou o tenente-coronel Oziel Silveira, chefe do Cenipa III.
Também no sábado, a Polícia Civil confirmou que o segundo motor da aeronave foi localizado a cerca de 200 metros de distância do local do acidente.
Segundo a Companhia Energética de Minas Gerais (Cemig), antes da queda, a aeronave atingiu um cabo de uma torre de distribuição da empresa. Pilotos que sobrevoaram a região próximo ao momento do acidente e também testemunhas disseram que o avião "rasgou" fios de alta tensão ligados a uma torre próximo ao local.
A aeronave estava com a documentação em dia e tinha autorização para fazer táxi aéreo, de acordo com a Agência Nacional de Aviação Civil (Anac)..
Em um voo internacional rumo a Londres, o jornalista Buck Williams (Kirk Cameron) e o piloto Rayford Steele (Brad Johnson) se veem no meio do mais incrível acontecimento da história. De repente, sem qualquer tipo de alerta, dúzias de passageiros simplesmente desaparecem no ar. Mas isso não é tudo. Logo fica claro que milhões de pessoas estão desaparecendo. E a medida que o caos e a anarquia tomam conta do mundo, esses dois homens partem em rumos diferentes numa busca desesperada por respostas.
Baseado no livro de grande sucesso nos EUA, 'Deixados Para Trás' é repleto de suspense, ação e aventura. Um filme envolvente que leva você a uma viagem através de um dos mais misteriosos livros da Bíblia, O Livro do Apocalipse.
Acabar com esses mitos supercomuns sobre aviões sem dúvida fará com que você se sinta mais seguro sempre que voar.
Não se deixe enganar por todas aquelas cenas assustadoras de aviões nos filmes
De todas as coisas que seu comissário de bordo não lhe dirá , talvez a mais curiosa seja que viajar de avião agora está mais seguro do que nunca. Na verdade, em 2017 não houve fatalidades resultantes de acidentes de companhias aéreas comerciais , e uma rápida olhada nas estatísticas compiladas pela Rede de Segurança da Aviação revela que, mesmo que as viagens de avião tenham se tornado cada vez mais comuns, o número de acidentes fatais está em uma tendência decrescente. Consequentemente, muitas das histórias assustadoras e avisos preocupantes que você ouviu não são mais verdadeiros (ou nunca foram, em primeiro lugar).
Agora, vá em frente e tente abrir a porta da cabine
Você pode ter ouvido histórias de passageiros que ameaçam sair no meio do voo pela porta de uma cabine e temem que algo terrível possa acontecer a todos a bordo. O fato é que a porta de uma aeronave comercial não pode ser aberta durante um voo, de acordo com Dan Boland, piloto de linha aérea e fundador do site de viagens Holidayers. Fazer isso exigiria "força sobre-humana". Para os fãs de mistério que se perguntam como conciliar isso com a história do sequestrador, DB Cooper (que em 1971 pode ou não ter saltado de paraquedas no meio do voo da liberdade entre Portland e Reno), podemos dizer apenas que em 2018, ninguém está saindo de um avião comercial no meio do voo. Dê uma olhada nas reais razões por trás dessas estranhas regras de segurança para aviões .
Não se preocupe com esses pequenos buracos na janela
Boland nos garante que ninguém jamais foi sugado para fora de um avião por causa de um buraco na janela - ou em qualquer outro lugar. Primeiro, os aviões são projetados com pequenos orifícios nas janelas; eles regulam a pressão da cabine. Em segundo lugar, mesmo um buraco não planejado (como um buraco de bala) não representaria perigo, diz Boland. “Você teria uma lufada de ar para dentro da cabine, seguido por máscaras de oxigênio caindo. Então você notaria que fica mais frio e mais alto. Mas é isso. Sem perigo de ser sugado.” Descubra onde fica o assento mais seguro em um avião - e outras informações sobre aviões que você sempre quis saber .
Falando em máscaras de oxigênio...
Teóricos da conspiração dirão que as máscaras de oxigênio não têm nenhum suprimento de oxigênio. Eles estão errados, de acordo com Boland. “No caso raro de um avião perder pressão, você perderia a consciência em 45 segundos e morreria em minutos”, e sabemos que não é o que acontece. Dito isso, sua máscara fornece apenas cerca de 12 minutos de oxigênio, de acordo com Bobby Laurie, comissário de bordo que virou especialista em viagens e apresentador do The Jet Set . No entanto, é tempo mais do que suficiente para o piloto descer a uma altitude respirável. Não perca os 7 recursos de avião ocultos que você nunca soube que existiam .
Outra teoria da conspiração sobre o oxigênio é desmascarada
Algumas pessoas acreditam que as cabines dos aviões estão deliberadamente com pouco oxigênio para acalmar os passageiros e deixá-los sonolentos, mas nada poderia estar mais longe da verdade, diz Boland. “Os pilotos compartilham o mesmo ar que os passageiros, então se isso fosse verdade, estaríamos adormecendo também.” As verdadeiras razões para a fadiga durante o voo têm mais a ver com tédio, movimento e o fato de que a pressurização da cabine torna um pouco mais difícil para os pulmões humanos usarem oxigênio. O cheiro também não ajuda; para se manter limpo, nunca faça essas coisas no banheiro de um avião.
Desligue seu dispositivo portátil, mas não pelo motivo que você pensa
Manter o celular ligado durante a decolagem e o pouso não interfere na navegação do avião, diz Boland. O verdadeiro motivo de você ter que desligar seus dispositivos é que você deve prestar atenção durante a decolagem e a aterrissagem - para o discurso de segurança e no caso de algo dar errado que exija sua ação ”, diz Matt Guidice, operador de voos de Matt , um serviço de assinatura de e-mail para viagens baratas. Aqui estão mais coisas que as companhias aéreas escondem de você .
Não, você não vai ver chovendo xixi e cocô
É hora de acabar com o boato desagradável de que os pilotos esvaziam os resíduos do banheiro durante o voo, disse Boland à Reader's Digest.“ O único lixo que podemos despejar fisicamente no avião é a água, e apenas através da cozinha do comissário de bordo.” Fazer o contrário correria o risco de algo grudar na aeronave e causar problemas de navegação”. Além disso, é totalmente desagradável e não acontece.
Sim, os vasos sanitários são uma droga quando você dá descarga, Boland admite. Mas é verdade que se você enrubescer enquanto está sentado, suas entranhas serão sugadas para fora de você? Heck, não. A única maneira isso pode nunca acontecer é se você fosse de alguma forma “milagrosamente” formar a vedação perfeita da pele do lugar enquanto o rubor eram contínuos. Nenhum destes é possível. Na verdade, os assentos sanitários são projetados para evitar a formação de uma vedação perfeita.
O ar da cabine não é seu inimigo
Uma pesquisa recente conduzida pela Honeywell descobriu que quase metade dos entrevistados tinha a impressão de que o ar da cabine causa doenças nas pessoas, provavelmente porque recicla os germes das pessoas. Embora Boland admita "o ar seco da cabine suporta a propagação de germes", o fato é que o ar é trocado uma vez a cada três minutos, com "60 por cento reciclado por meio de filtros de grau hospitalar que removem 95 por cento das bactérias e 40 por cento dedicados ao resfriamento dos computadores e porões de carga. Estas são as 11 coisas que viajar de avião causa ao seu corpo .
Pilotos não têm paraquedas
Embora os germes possam ser transportados pelo ar antes de serem filtrados da cabine, você pode ter certeza de que seu piloto não estará no ar em nenhuma circunstância. “Por que as pessoas acreditam que os pilotos têm paraquedas?” Boland se pergunta. “Mesmo se o fizéssemos, não poderíamos escapar de uma aeronave no meio do voo” (como discutido anteriormente), “e, além disso, nosso trabalho é proteger e levar nossos passageiros com segurança para o seu destino.”
Não há apenas um piloto
“Este é o seu capitão falando”, você ouve pelo alto-falante e talvez pense: “Uau, esse é o único cara que pode pilotar este avião”. Errado, diz Boland. Tanto o capitão quanto o primeiro oficial (também conhecido como piloto e copiloto) são pilotos totalmente licenciados, totalmente capazes de pilotar o avião. “A única grande diferença entre os dois pilotos é que o capitão geralmente tem mais experiência/antiguidade na companhia aérea e, em última análise, é o responsável pela tripulação e pela segurança dos passageiros.” Estes são os 5 botões que você espera que seu piloto nunca precise tocar.
O piloto automático não pilota o avião
Um dos mistérios mais antigos das viagens aéreas envolve o funcionamento do piloto automático. “Muitas pessoas têm a impressão de que os aviões são realmente pilotados por piloto automático”, observa Guidice, mas isso simplesmente não é o caso. O piloto automático é essencialmente uma forma muito avançada de GPS, fornecendo informações e suporte em relação à direção e posição, mas sempre há um ser humano no controle do avião.
Os pilotos não evitam realmente o Triângulo das Bermudas
Por falar em navegação, as pessoas ainda têm a impressão de que o Triângulo das Bermudas está fora dos limites para aeronaves, disse Boland ao Reader's Digest. “Apesar de este local ter uma má reputação de aeronaves desaparecendo ou caindo, não faria sentido bloquear as companhias aéreas de transportar passageiros de e para os países da área e em voos que exigem essa rota para evitar grandes desvios.” A teoria de Boland sobre por que os aviões desapareceram dentro do chamado Triângulo das Bermudas é o clima tropical combinado com vastas extensões de oceano. Confira os pedidos mais loucos que os passageiros fizeram nos aviões .
Tempestades com raios não derrubarão seu avião
Embora as condições climáticas tropicais em vastas extensões do oceano possam não ser as melhores para voar, não há realmente nada a temer sobre os raios, diz Boland, que voou em aeronaves que foram atingidas por um raio em algum ponto ou outro. “Nossa mais nova aeronave foi atingida por um raio em uma semana” e não sofreu danos permanentes. A maioria dos membros da tripulação está realmente alheia aos raios, graças aos pavios de raios que são construídos nas asas e na cauda para dissipar a eletricidade. Certifique-se de não ser pego fazendo uma dessas 18 coisas que você nunca deve fazer em aviões .
Espaços de rastreamento secretos são fictícios
Você sabe como os aviões nos filmes parecem vir equipados com espaços de rastreamento e passagens secretas que convenientemente escondem terroristas, traficantes de drogas e passageiros clandestinos? É, não. Isso não é uma coisa, diz Boland. “Antes de cada voo, a cabine e a equipe de solo verificam se há itens suspeitos em toda a aeronave, portanto, quaisquer espaços secretos tornariam esta tarefa ainda mais cansativa.” Os únicos locais que são bons para “se esconder” no avião são os membros da tripulação para descansar durante voos longos (e eles não são realmente “secretos”).
Na verdade não é mais fácil ficar bêbado em voo
Embora você possa querer parar de beber enquanto estiver voando, não é porque você pode ficar bêbado com mais facilidade, diz Boland. “A razão pela qual alguns acreditam que isso seja verdade é devido à náusea/tontura causada pela desidratação, que é mais pronunciada durante a altitude de cruzeiro.” Desidratação não é igual a um zumbido melhor, então provavelmente é "melhor não beber muito a bordo se você quiser evitar sentir-se cansado e desidratado ao chegar ao seu destino". Além da bebida, certifique-se de nunca comer esses 13 alimentos em um avião .
Aviões pequenos não são mais perigosos
Você provavelmente já ouviu que pequenos aviões particulares são mais perigosos do que grandes aviões comerciais. Na verdade, tem muito mais a ver com o piloto do que com o avião, segundo William Herp, CEO da Linear Air Taxi, especializada em conectar viajantes com operadores comerciais de aviões a hélice de três a oito passageiros. “Aviões a hélice voados em operações comerciais têm um recorde de segurança igual a quatro vezes melhor do que os mesmos aviões pilotados por pilotos particulares”, disse Herp ao Reader's Digest, citando a Federal Aviation Administration e o National Transportation Safety Board .
Você não precisa ser rico para voar pequeno
Acha que não pode voar em um avião pequeno? Pense novamente, diz Doug Gollan, fundador e editor-chefe da privatejetcardcomparisons.com , um guia do comprador para programas de cartão de jatos particulares pré-pagos. Usando um desses programas (incluindo JetSuiteX, Surf Air e Tradewind Aviation), você pode voar por aproximadamente o mesmo preço que pagaria a uma linha aérea comercial convencional. “Você tem acesso gratuito à internet sem fio, bebidas e lanches, mas não precisa chegar uma hora antes.” Pode não ser fácil encontrar uma dessas ofertas sozinho, mas elas estão por aí.
Sua tripulação de cabine não vai limpar depois de você
Seja honesto agora: você é uma daquelas pessoas que enfia o lixo no bolso do assento à sua frente, supondo que sua tripulação de cabine limpará o avião entre os voos? Bem, temos novidades, graças à ex-comissária de bordo que virou especialista em viagens, Laurie. “Os aviões não são limpos após cada voo”, garante a Reader's Digest. “Eles são limpos profundamente uma vez por dia.” Então, quando seu comissário de bordo vier pedir seu lixo, faça um favor a todos no próximo voo e jogue fora esse lixo. Certifique-se de conhecer essas regras de etiqueta do avião que você sempre deve seguir.
As regras de bagagem de mão não são tão malucas quanto você pode pensar
Sim, nos últimos 17 anos houve um aumento na segurança dos aeroportos, mas há muitas coisas que você pode levar na bagagem de mão que provavelmente acha que não pode, diz a escritora de viagens Nina Thomas, cuja postagem no blog O tópico lista lâminas de barbear descartáveis, facas e garfos de plástico, pentes de metal, isqueiros descartáveis, pinças, abridores de garrafas de vinho, latas de aerossol e cortadores de unhas como algumas das coisas inesperadas que você pode levar na bagagem de mão.
Em 6 de novembro de 1929, a aeronave Junkers G 24, prefixo D-903, da Lufthansa (foto acima), batizada de 'Oberschlesien', operava um voo internacional regular de passageiros de Croydon, Reino Unido, para Berlim, na Alemanha, com escala intermediária em Amsterdã, na Holanda, levando a bordo quatro passageiros (três ingleses e um indiano) e quatro tripulantes alemães.
A aeronave decolou às 09h54. Poucos minutos após a decolagem do Aeroporto de Croydon, com destino a Berlim, com uma parada intermediária em Amsterdã, a tripulação encontrou condições de neblina. O tempo estava bastante ruim. O Capitão então decidiu retornar a Croydon e reduziu sua altitude para manter um contato visual com o solo.
Ao voar nas proximidades de Godstone, a aeronave atingiu o topo de algumas árvores no Parque Marden e caiu em uma área arborizada. A aeronave explodiu em chamas.
Três membros da tripulação e três dos quatro passageiros morreram no acidente. O segundo piloto, Príncipe Eugen de Schaumburg-Lippetambém, escapou dos destroços, mas ficou gravemente ferido.
O passageiro inglês Glen Kidston escapou dos destroços em chamas e extinguiu as chamas ao rolar na grama, sofrendo ferimentos leves. Kidston deu o alarme e relatou o acidente ao aeroporto de Croydon. Ele foi tratado no Hospital Caterham Cottage.
O fogo foi extinto pelos bombeiros de Caterham. O pessoal da RAF de Kenley ajudou a polícia local a recolher os restos mortais dos falecidos e transportá-los para um necrotério em Caterham.
O piloto Von Schaumburg-Lippe morreu no dia seguinte ao acidente devido aos ferimentos sofridos no acidente. Depois de ser tratado de seus ferimentos, Kidston voltou para Croydon, onde fez um curto voo, antes de retornar para casa em Grosvenor Square, em Mayfair, Londres.
Um inquérito foi aberto em Caterham em 8 de novembro. Depois de ouvir as provas de identificação, foi adiado até 22 de novembro, quando se esperava que Kidston estivesse em condições de depor.
O inquérito foi retomado conforme programado. Foram apresentadas evidências de que a aeronave estava voando a uma altitude de 300 metros (1.000 pés) antes de descer a uma altitude de 30 metros (100 pés) acima do nível do solo. No momento do acidente, a aeronave estava voando na direção norte. Von Schaumburg-Lippe havia sido lançado para longe da aeronave no acidente. Um veredicto de "morte acidental" foi devolvido em todos os casos.
No dia 6 de novembro de 2002, o Fokker 50, prefixo LX-LBG, da Luxair, levando a bordo 19 passageiros e três tripulantes, se acidentou na aproximação ao Aeroporto de Luxemburgo, batendo com a barriga no chão e explodindo em chamas, matando 20 pessoas das 22 a bordo, salvando-se apenas o capitão e um passageiro, tornando este o pior desastre aéreo da história de Luxemburgo.
Enquanto a pequena nação lutava com a tragédia, os investigadores descobriram que uma série de eventos desconcertantes ocorrera a bordo do avião condenado, culminando com o capitão acidentalmente colocando os dois motores em marcha à ré!
Havia apenas um problema: isso deveria ser impossível? Várias camadas de proteção existiam para evitar exatamente esse cenário. Então, como isso aconteceu? Isso poderia acontecer de novo? Como se viu, aplicar impulso reverso no ar foi muito mais fácil do que qualquer um pensava - e não demoraria muito para que essa falha de design insidiosa ocorresse uma segunda vez, com resultados ainda mais mortais.
O primeiro voo do LX-LGB, a aeronave envolvida no acidente (Wikimedia)
Luxair é a transportadora da bandeira do Grão-Ducado de Luxemburgo, uma pequena nação europeia espremida entre a França, Alemanha e Bélgica. A companhia aérea, que é parcialmente propriedade do governo de Luxemburgo, é - e historicamente tem sido - a única companhia aérea comercial de passageiros registrada no país e, desde sua fundação em 1962, tem um histórico de segurança quase impecável, com quase nenhum acidente ou incidente, fatal ou não.
No início dos anos 2000, sua frota consistia em vários Boeing 737 e um número semelhante de Fokker 50s duplo turboélice construído na Holanda, projetado para voos regionais mais curtos.
O Fokker 50 é uma versão modernizada do antigo Fokker F27 Friendship, que foi introduzido pela primeira vez em 1958. A versão atualizada, que entrou em serviço em 1987, apresentava motores novos e mais eficientes, bem como aviônicos modernos e instrumentos de cabine.
A rota do voo Luxair 9642 (Google)
O voo 9642 da Luxair era um serviço Fokker 50 regular de Berlim, Alemanha, para o Aeroporto Findel na cidade de Luxemburgo. Na manhã do dia 6 de novembro de 2002, o voo estava com menos da metade da capacidade, com passageiros reservados em apenas 19 dos 50 assentos do avião. No comando estavam dois pilotos, o capitão Claude Poeckes e o primeiro oficial John Arendt, que somavam 3.300 horas de experiência no tipo de aeronave. A tripulação também incluiu um único comissário de bordo, elevando o número total de pessoas a bordo para 22. Depois que os passageiros embarcaram, o vôo 9642 partiu de Berlim às 7h40 e sumiu na escuridão da manhã.
Às 8h35, com 55 minutos de voo, os pilotos primeiro checaram o Serviço de Informação de Terminal Automatizado, ou ATIS, para adquirir um boletim meteorológico atualizado para Luxemburgo. O que eles descobriram foi desanimador: devido à forte neblina, pois a visibilidade no aeroporto era de apenas 275 metros, abaixo do mínimo da empresa Luxair de 300 metros para o Fokker 50. A melhoria foi considerada improvável, então a tripulação se resignou à quase certeza de que o voo seria atrasado na rota ou desviado.
Eles discutiram seus planos para o pouso: eles deveriam tentar uma abordagem? Onde eles deveriam ficar? Quando eles deveriam considerar o desvio? Mas o capitão Poeckes não decidiu o curso de ação e nenhum preparativo foi feito para uma abordagem, uma vez que eles não esperavam fazê-la tão cedo.
A visibilidade no aeroporto Findel esteve abaixo do limite desde que o voo decolou (AET)
Às 8h58, o voo 9642 chegou a um waypoint chamado Diekirch, onde vários outros aviões estavam circulando em um padrão de espera enquanto aguardavam para pousar em Luxemburgo. Mas o padrão de espera estava ficando cheio e o controlador de tráfego aéreo queria começar a limpar alguns dos aviões.
O avião na melhor posição para deixar o padrão e tentar uma aproximação era o voo 9642, então o controlador instruiu a tripulação a descer a 3.000 pés e voar em um rumo para interceptar a linha central de aproximação.
O controlador não sabia que a visibilidade era muito baixa para um Fokker 50 pousar porque os pilotos não o informaram. Como a visibilidade permaneceu abaixo de 300 metros, os pilotos do voo 9642 foram pegos desprevenidos pelas instruções, e o primeiro oficial Arendt perguntou: "O que eles estão fazendo conosco, segurando, ou é para uma abordagem? ”
Como parecia que o voo 9642 estava sendo liberado para iniciar sua abordagem, os pilotos agora tinham que lutar para deixar o avião pronto, o que os levou a pular o briefing de aproximação usual.
Às 9h01, o controlador removeu qualquer possível confusão, liberando especificamente o voo 9642 para se aproximar do Aeroporto Findel.
“Oh Deus, eles estão nos trazendo antes de todos os outros,” Arendt comentou, expressando sua surpresa com a liberação.
A tripulação repassou rapidamente a sequência de aproximação: depois de chegar a 3.000 pés, eles nivelariam até chegar ao radiofarol denominado ELU (uniforme Echo Lima), conhecido como "correção de aproximação final", após o que iniciariam sua descida final para o pista.
Embora eles pudessem tentar uma aproximação com menos de 300m de visibilidade, eles seriam obrigados a abandonar a aproximação se a visibilidade não melhorasse acima do mínimo no momento em que alcançassem a correção de aproximação final.
O Capitão Poeckes estava ciente disso e às 9h02 ele disse: “Diga a ele se na Echo não tivermos 300 metros, que então daremos uma volta e voaremos para Diekirch”. Em seguida, o voo 9642 travou o sinal do sistema de pouso por instrumentos do aeroporto e se alinhou com sucesso com a pista.
Momentos depois, o controlador informou que a visibilidade havia piorado para 250 metros. Só agora Arendt disse ao controlador que isso era um problema. "Uh, isso é uma cópia do Luxair nove seis quatro dois", disse ele, "mas precisamos de trezentos metros para a abordagem."
“Digamos que continuemos para ELU, se não tivermos nada, então ehhh…” disse Poeckes.
"Sim", disse Arendt. Ele agora retirou a lista de verificação de abordagem anterior e correu para completar todas as etapas antes de chegar ao ELU.
Reconstituição do voo com ELU e a localização atual destacados (AET)
Às 9h04, o voo 9642 chegou sobre a ELU com visibilidade relatada ainda abaixo do mínimo. O capitão Poeckes disse, “Sim, bem, nós fizemos uma aproximação errada,” e eles continuaram voando a 3.000 pés em vez de descer.
Mas o primeiro oficial Arendt não pareceu entender a mensagem, pois continuou com a lista de verificação antes da abordagem. O último item dessa lista de verificação era remover a parada de marcha lenta, o que ele realizou sete segundos depois que Poeckes pediu uma volta.
Como a posição do acelerador afeta a saída e a direção do empuxo (autor)
A parada de marcha lenta no solo é um dispositivo que impede fisicamente as alavancas do acelerador de se moverem abaixo da marcha lenta, a configuração de potência mais baixa que fornece impulso para frente.
Voo ocioso é a configuração de potência mais baixa usada em voo; a ociosidade do solo é semelhante, mas ainda mais baixa. A zona entre a marcha lenta em voo e a marcha lenta em solo é conhecida como alcance no solo. Abaixo do alcance do solo está o regime reverso.
O regime reverso e o alcance do solo são juntos conhecidos como “alcance beta”, no qual os aceleradores não controlam mais a saída de potência, mas controlam diretamente o passo das pás da hélice. Ao mudar o passo das pás da hélice para menos de zero grau, é possível gerar o empuxo reverso, que é usado para ajudar a desacelerar o avião na aterrissagem.
Embora a capacidade de produzir empuxo reverso seja crítica para fazer o avião parar depois de pousar, ela pode ser catastrófica se usada no ar. Para evitar que o empuxo reverso seja acionado durante o voo, um processo de ativação de três etapas é usado.
Primeiro, o piloto deve puxar o batente da marcha lenta no solo, que permite o movimento da alavanca do acelerador da marcha lenta no solo para o regime reverso, preparando o sistema para ativação rápida do empuxo reverso no pouso.
No entanto, uma parada secundária impede que os aceleradores entrem na faixa de solo até que a aeronave toque o solo. Assim que o sistema antiderrapante do avião detecta que há peso nas rodas ou que as rodas estão girando a uma velocidade de pelo menos 20 nós, ele envia sinais aos solenóides de parada de marcha lenta localizados dentro dos dois motores; uma vez que eles são ativados, a parada secundária é removida.
O piloto pode então puxar o seletor da faixa de solo (anexado à alavanca do acelerador) para mover os aceleradores de volta através da faixa de solo e na posição de empuxo reverso. Portanto, para o empuxo reverso engatar em voo, ambos os solenóides de parada de marcha lenta de voo devem falhar simultaneamente, um piloto deve remover deliberadamente a parada de marcha lenta no solo e, em seguida, um piloto deve levantar o seletor de faixa de solo e puxar os aceleradores de volta para a posição reversa. Em teoria, o sistema deveria ser totalmente à prova de falhas.
Dez segundos depois de Poeckes dar a volta por cima, o controlador informou ao voo 9642 que a visibilidade era agora de 300 metros, tecnicamente dentro dos limites para o pouso. Isso fez com que Poeckes mudasse de ideia sobre abandonar a abordagem, já que agora era possível pousar.
Como resultado, Arendt continuou com a lista de verificação de pouso, estendendo os flaps e baixando o trem de pouso. Mas eles continuaram nivelados por algum tempo depois de passar pela ELU, e agora estavam 300 pés acima da rampa de deslizamento para a pista.
Para perder altitude mais rápido, Poeckes reduziu a potência para voar em ponto morto, mas Arendt disse algo que isso não funcionaria. No entanto, Poeckes conhecia um truque para reduzir um pouco mais o empuxo.
Na verdade, existem duas paradas de marcha lenta: uma que é acionada pelos solenóides de parada de marcha lenta, e outro que é removido quando o seletor de alcance de solo é levantado. Levantando o seletor de alcance de solo, foi possível mover os aceleradores um pouco mais para trás, até a parada eletrônica, uma técnica proibida em voo, mas que os pilotos às vezes usavam em baixas.
Por que o capitão Claude Poeckes ergueu o seletor de alcance de solo (autor)
Quando o trem de pouso é abaixado, o sistema antiderrapante é ativado para que esteja em posição de detectar quando as rodas tocam a pista. No entanto, sem o conhecimento dos pilotos do viol 9642, os sistemas antiderrapantes em todos os Fokker 50s ocultaram uma falha de projeto perigosa: quando o sistema foi ligado pela primeira vez, a interferência eletromagnética entre as duas unidades antiderrapantes poderia resultar em um "giro das rodas" errôneo sinal por um período de cerca de 30 microssegundos.
Isso foi suficiente para enganar os solenóides de parada de marcha lenta de voo fazendo-os pensar que o avião estava no solo, fazendo com que abrissem a parada secundária que evita que as alavancas do acelerador entrem na faixa de solo.
Os solenóides de parada de marcha lenta permaneceriam ativos por 16 segundos após o sinal falso inicial ter sido recebido do sistema antiderrapante. Portanto, durante esse período de 16 segundos, era possível aplicar o empuxo reverso, desde que o batente da marcha lenta já tivesse sido removido.
Acontece que essa parada foi realmente removida no voo 9642 quando o trem de pouso foi abaixado e o sinal falso foi enviado aos solenóides de parada de marcha lenta.
A relação lógica entre o sistema antiderrapante e a parada de marcha lenta do voo (FAA)
Coincidentemente, foi durante essa janela de 16 segundos que Poeckes decidiu que precisava reduzir o empuxo para descer mais rápido e capturar o declive. Quando ele ergueu os seletores de alcance de solo e moveu as alavancas do acelerador para trás, ele esperava que as alavancas parassem na parada secundária, mas como a parada secundária foi temporariamente removida, ele inadvertidamente puxou-os de volta para a parada final na parte inferior do a faixa beta - colocar os motores em marcha à ré, o que era considerado impossível em voo.
Às 9h05 e 19 segundos, o passo da pá da hélice foi reduzido em zero grau e entrou na potência reversa. Os parâmetros do motor, como velocidade da hélice e potência de impulso, começaram a aumentar rapidamente, mas ao contrário. Um barulho alto de repente encheu a cabine e os pilotos sentiram uma desaceleração massiva. "O que é isso?", Poeckes questionou.
Em alguns segundos, os dois pilotos aparentemente perceberam que estavam experimentando empuxo reverso, quando Arendt retraiu os flaps para reduzir o arrasto e Poeckes pressionou os aceleradores para a potência máxima para a frente na tentativa de contornar. Mas ele fez isso muito apressadamente.
No Fokker 50, quando os aceleradores estão na faixa beta, os comandos do acelerador são enviados a um atuador hidráulico que ajusta o passo da lâmina. Quando no regime de empuxo para a frente, onde os comandos do acelerador controlam a saída de potência em vez do passo da lâmina, um sistema separado de contrapesos ajusta automaticamente o passo da lâmina para atingir a saída de potência desejada.
Mas, ao mover-se rapidamente de impulso reverso para impulso para frente, o sistema de contrapeso foi acionado antes que o atuador hidráulico tivesse a chance de retornar as lâminas a um ângulo de inclinação positivo passo reverso de -17 graus. Portanto, ao mover os aceleradores para frente muito rapidamente, o Capitão Poeckes fez com que os dois motores travassem na marcha à ré.
Por que os motores travaram na ré (pilotsofamerica.com)
Com os dois motores gerando potência reversa total, o avião caiu como uma rocha de 2.500 pés enquanto os pilotos lutavam para recuperar o controle.
Poeckes cortou o fluxo de combustível para desligar os dois motores e impedi-los de produzir empuxo reverso, mas havia pouco que ele pudesse fazer para interromper a razão de descida.
O avião perdeu energia elétrica e os dois gravadores de voo pararam de funcionar, embora o gravador de voz da cabine tenha diminuído mais algumas vezes, capturando gritos desconexos: "Isso está ferrado!" "Ah Merda!"
No fundo, o sistema de alerta de proximidade do solo começou a soar, "MUITO BAIXO, TERRENO."
Segundos depois, o voo 9642 da Luxair bateu com a barriga na beira de uma rodovia nos arredores de Luxemburgo. O avião derrapou na estrada e cortou uma fileira de árvores, rasgando a fuselagem e ejetando muitos passageiros.
Os serviços de emergência correram para o local, acompanhados pelo Primeiro-Ministro de Luxemburgo; mas quando chegaram, o fogo já havia consumido grande parte da cabine de passageiros, matando todos dentro.
Passageiros ejetados jaziam espalhados por todo o campo; a maioria estava morta, mas um foi encontrado vivo e levado às pressas para o hospital. Outros três foram retirados dos destroços, sofrendo de queimaduras graves; todos esses logo sucumbiram aos ferimentos.
No entanto, o incêndio poupou a cabine do piloto e, após uma difícil operação de resgate, o capitão Claude Poeckes foi resgatado com vida - um dos únicos dois sobreviventes dos 22 a bordo.
Os bombeiros examinam os destroços após o incêndio ser extinto
(Arquivos de Acidentes de Aeronaves)
A queda abalou o pequeno país, que nunca tinha visto um desastre semelhante antes. Este foi o primeiro acidente fatal para a Luxair e, de longe, o acidente de avião mais mortal a ocorrer em Luxemburgo; na verdade, já haviam se passado 20 anos desde o último acidente aéreo de qualquer magnitude no país. Isso significava que este seria o inquérito mais importante da história da Administração de Investigações Técnicas (AET) de Luxemburgo, que investiga todos os tipos de acidentes de transporte. Para entender completamente o acidente, seria necessária ajuda externa.
Mapa de assentos Fokker 50 LX-LGB (ASN)
Uma análise inicial feita por especialistas de vários países revelou que ambos os motores deram marcha à ré logo antes de o avião cair do céu. Uma análise posterior, mais detalhada, revelou o porquê.
A confusão na cabine fez com que o avião se desviasse acima da rampa de planagem, levando o Capitão Poeckes a tentar usar o seletor de alcance de solo para descer mais rápido.
O primeiro oficial Arendt removeu a parada de marcha lenta no solo de acordo com a lista de verificação, e um sinal falso do sistema antiderrapante removeu a parada secundária, permitindo que Poeckes movesse os aceleradores para o regime reverso acidentalmente.
Quando ele tentou retornar ao impulso para frente, ele o fez rápido demais, fazendo com que os motores travassem na marcha à ré. Depois disso, o avião perdeu força rapidamente, tornando a recuperação impossível. Mas as autoridades sabiam da possibilidade de ativação acidental do empuxo reverso em voo desde 1950, e havia regulamentos para evitá-lo. Então, como isso pode ter acontecido?
Uma vista aérea do local do acidente, com as primeiras marcas de impacto à esquerda (AET)
Para entender o contexto regulatório, os investigadores examinaram o histórico de ativação reversa em voo em aeronaves turboélice. Eles encontraram registros de acidentes e incidentes envolvendo ativação inadvertida de impulso reverso, alguns deles fatais, que remontam a décadas.
Como resultado de alguns acidentes iniciais, as autoridades dos Estados Unidos e da Europa impuseram a exigência de que as aeronaves turboélice tenham algum tipo de travamento ou parada impedindo que os aceleradores entrem no regime reverso, que só pode ser removido por meio de uma "ação separada e distinta pelo equipe técnica."
O design do Fokker 50 foi muito além desse requisito, pois também tinha uma parada secundária que só abriria quando o avião tocasse o solo. Isso foi adicionado após a certificação original do avião devido a problemas recorrentes com os pilotos que tentavam usar o alcance terrestre em voo.
Outra visão aérea dos destroços (AET)
Mas já em 1988, ficou sabendo que a interferência eletromagnética entre as duas unidades antiderrapantes individuais poderia fazer com que enviassem um falso sinal de “rodas girando” se ligassem com uma diferença de 20 microssegundos uma da outra. Isso criaria uma janela de 16 segundos onde o solenóide de parada de marcha lenta de voo ativaria e desengataria a parada secundária.
Em 1992, a Fokker emitiu um boletim de serviço não vinculativo pedindo às companhias aéreas que modificassem suas unidades antiderrapantes para que isso não acontecesse. Tornou a mudança voluntária porque julgou que a probabilidade de a falha realmente resultar na ativação do empuxo reverso ser suficientemente remota para não constituir uma ameaça séria à segurança do voo. Embora algumas aeronaves tenham suas unidades antiderrapantes enviadas ao Fokker para passar pela modificação, o avião Luxair envolvido no acidente não estava entre eles.
Vista aérea dos destroços de outra direção (AET)
A possibilidade de que os aceleradores pudessem travar na marcha à ré se o impulso para frente fosse aplicado muito rapidamente também era conhecida há algum tempo.
Como resultado da queda de 1978 do voo 314 da Pacific Western Airlines em Cranbrook, British Columbia, em que um 737 tentou dar uma volta após a implantação dos reversores de empuxo, resultando em um reversor preso aberto, o Canadá exigiu que todas as novas aeronaves fossem certificadas em o país deve ser capaz de se mover com segurança entre o impulso reverso e o impulso para frente, caso o impulso reverso deva ser cancelado repentinamente.
A capacidade de realizar a chamada “manobra de Cranbrook” é um requisito exclusivo do Canadá. Durante o processo de certificação no Canadá, Fokker informou à Transport Canada que o Fokker 50 não seria capaz de realizar a manobra de Cranbrook, mas a Transport Canada não exigiu nenhuma modificação no projeto porque o Fokker 50 foi baseado no certificado de tipo do Fokker F27, que foi projetado e certificado antes da introdução do requisito. Se o avião fosse capaz de realizar a manobra de Cranbrook, o voo 9642 da Luxair provavelmente não teria caído.
Os bombeiros borrifam espuma na cabine logo após o acidente
(Arquivos de Acidentes de Aeronaves)
A outra metade da história do voo 9642 envolveu fatores humanos. O capitão Poeckes aparentemente usou a técnica estritamente proibida de levantar os seletores de alcance de solo para alcançar uma configuração de empuxo ligeiramente mais baixa, o que ele sentiu que precisava fazer porque o voo havia se desviado acima da rampa de planagem enquanto apenas alguns minutos antes da pista.
Não havia procedimento para interceptar novamente o glide slope de cima depois de passar pela correção de aproximação final, e a coisa mais prudente a fazer seria dar a volta. Na verdade, Poeckes quase fez exatamente isso - mas a leitura de visibilidade atualizada do controlador o fez mudar de ideia.
Entretanto, os princípios da boa pilotagem sustentam que, uma vez que a decisão de dar a volta tenha sido tomada, essa decisão não deve ser revertida por nenhum motivo. A tentativa de retornar ao plano de planagem desestabilizou o que até então tinha sido uma abordagem estável e criou oportunidades para o erro.
Perfil de abordagem do voo 9642 (ASN)
O fato de Arendt ter removido a parada ociosa no solo sete segundos inteiros depois que Poeckes pediu uma volta também sugeria uma falha na comunicação da cabine. Apesar do chamado de seu capitão, Arendt parecia acreditar que eles estavam continuando a abordagem, quando os procedimentos adequados determinaram que uma volta havia começado e a lista de verificação de abordagem anterior deveria ser abandonada.
Essa falta de coordenação parece ter se originado do caráter inesperado da abordagem, que deixou os pilotos confusos e despreparados. Em retrospecto, eles deveriam ter reconhecido que não estavam prontos e rejeitado a liberação de aproximação, mas no momento, o desejo de “chegar lá” muitas vezes prevalece sobre o bom senso.
Um guindaste inicia o processo de remoção dos destroços do local do acidente
(Luxembourg Times)
Em 2003, a AET emitiu seu relatório final sobre o acidente, recomendando que a modificação no sistema antiderrapante do Fokker 50 fosse obrigatória; que os tripulantes sejam informados sobre o problema com o sistema antiderrapante até que seja corrigido; que seja impossível selecionar deliberadamente as configurações de empuxo abaixo do voo ocioso enquanto no ar; que a Luxair implemente um programa de monitoramento de segurança de voo para detectar erros recorrentes da tripulação e maus hábitos de voo; que as autoridades luxemburguesas monitoram o processo de formação da Luxair; e várias outras mudanças.
Como resultado das recomendações, as autoridades holandesas emitiram uma diretiva de aeronavegabilidade exigindo que todos os operadores do Fokker 50 modificassem seus sistemas antiderrapantes de acordo com o boletim de serviço de 1992 até primeiro de maio de 2004.
A Agência Europeia para a Segurança da Aviação também atualizou seus requisitos para que os sistemas de parada de marcha lenta sejam muito mais abrangentes. De acordo com as novas regras, deve ser impossível deliberadamente ou inadvertidamente selecionar uma configuração de empuxo abaixo da marcha lenta durante o voo; os sistemas que evitam isso devem ser suficientemente confiáveis para tornar a possibilidade de falha "remota"; e um aviso deve ser fornecido à tripulação se esses sistemas falharem. Depois de passar pela modificação do sistema antiderrapante, o Fokker 50 atendeu a esse novo e estrito requisito. E a história deveria ter terminado ali - mas, tragicamente, não terminou.
EP-LCA, a aeronave envolvida no acidente do Kish Air (DesertWingPix via JetPhotos.net)
No dia 10 de fevereiro de 2004 - quinze meses após a queda do voo Luxair 9642 e dois meses após a publicação do relatório final - o voo 7170 da Kish Air preparou-se para partir da Ilha de Kish, Irã, para um voo internacional regular para Sharjah nos Estados Unidos Emirados Árabes.
A Kish Air, uma companhia aérea iraniana com base na Ilha de Kish, operou o voo usando um Fokker 50, igual ao que caiu em Luxemburgo em 2002. 40 passageiros e seis tripulantes embarcaram no voo quase cheio, que decolou por volta das 11h00 e prosseguiu sem incidentes em direção a Sharjah. O avião estava programado para passar por modificações em seu sistema antiderrapante em breve, mas o prazo ainda não havia chegado e as obras não haviam sido concluídas.
Conforme o voo 7170 se aproximava de Sharjah, o capitão tentou delegar a abordagem ao primeiro oficial, que resistiu a esta oferta porque não estava confiante em sua capacidade de conduzir a abordagem. Por fim, ele cedeu e voou para se aproximar de Sharjah enquanto o capitão dava conselhos.
No entanto, o primeiro oficial lutou para manter uma velocidade e razão de descida adequadas e logo ficou claro que a aproximação era rápida demais. Para salvar a aproximação, o capitão recuperou o controle e tentou retornar ao planador.
A uma altitude de cerca de 1.000 pés, a tripulação baixou o trem de pouso; eles não sabiam que devido a uma falha nas unidades antiderrapantes, a parada secundária havia sido desativada. Quatorze segundos depois de baixar o trem de pouso, o capitão ergueu o seletor de alcance de solo e tentou reduzir o empuxo até a parada secundária para aumentar a razão de descida.
Mas como a parada não estava no lugar, ele acidentalmente diminuiu o empuxo para aterrar ocioso, colocando os aceleradores na faixa beta. A velocidade de avanço caiu, o arrasto aumentou acentuadamente, um barulho alto encheu a cabine e o avião caiu abruptamente.
O capitão imediatamente empurrou os manetes de volta para impulso para a frente, mas, assim como no voo 9642 da Luxair, a transição foi muito rápida; enquanto o motor certo conseguia retornar ao regime de empuxo para frente, os contrapesos na hélice esquerda puxavam o passo das pás na direção errada, colocando o motor em marcha à ré.
O voo 7170 saiu em espiral do céu e bateu em uma área de terra nua dentro de um conjunto habitacional, onde se quebrou e explodiu em chamas. Testemunhas conseguiram arrastar quatro sobreviventes para fora do avião em chamas, mas o restante dos ocupantes morreram no acidente e no incêndio que se seguiu. Um dos sobreviventes também morreu a caminho do hospital, elevando o número final de mortos para 43.
Oficiais examinam o local do acidente do voo 7170 da Kish Air
(Arquivos do Bureau of Aircraft Accidents)
A queda do voo 7170 da Kish Air foi uma cópia virtual do voo 9642 da Luxair, e sem dúvida teria sido evitada se as modificações no sistema antiderrapante tivessem sido feitas antes. O prazo de primeiro de maio de 2004 era razoável, mas infelizmente não chegou a tempo de salvar aqueles que morreram em Sharjah.
Os investigadores ficaram profundamente frustrados porque, mesmo depois de tudo o que aconteceu, os pilotos ainda estavam usando os seletores de alcance de solo durante o voo e que o Fokker 50s com unidades de controle de derrapagem não modificadas ainda estavam voando passageiros. O acidente do Kish Air foi completamente evitável; aquelas 43 pessoas não tinham que morrer.
Outra visão dos destroços do Kish Air (Arquivos de Acidentes de Aeronaves)
Em maio daquele ano, o restante da frota do Fokker 50 recebeu o upgrade conforme programado e, desde então, não ocorreram mais acidentes recorrentes envolvendo esse tipo de aeronave. Mas acidentes semelhantes envolvendo outros tipos de turboélices continuaram a acontecer.
Mais significativamente, no dia 12 de outubro de 2011, o voo 1600 da Airlines PNG, um de Havilland Canada DHC-8, caiu em Papua Nova Guiné depois que os pilotos aplicaram acidentalmente o empuxo reverso em voo. 28 das 32 pessoas a bordo morreram.
O DHC-8 envolvido no acidente tinha muito menos proteção contra a aplicação inadvertida de empuxo reverso do que o Fokker 50. Em vez de duas paradas, o DHC-8 tinha apenas uma, que os pilotos podiam desativar usando um switch.
Ao reduzir a potência na tentativa de corrigir uma alta velocidade de aproximação, o primeiro oficial pressionou acidentalmente os interruptores do portão de marcha lenta do voo, permitir que os motores entrem no regime reverso; Forças aerodinâmicas então causaram excesso de velocidade nas hélices, destruindo ambos os motores.
Rescaldo da queda do voo 1600 da PNG Airlines
(Arquivos do Bureau of Aircraft Accidents)
A fim de cumprir os regulamentos europeus e norte-americanos, os operadores do DHC-8 poderiam instalar um dispositivo chamado de bloqueio beta que impediria fisicamente a entrada na faixa beta durante o voo, mas em países como Papua Nova Guiné que não adotaram o regras atualizadas, este dispositivo foi vendido como um extra opcional.
Desnecessário dizer que a Airlines PNG não o instalou. Como resultado do acidente, a Transport Canada emitiu uma diretiva de aeronavegabilidade exigindo o uso do dispositivo em todos os DHC-8s.
Ainda assim, outros tipos de aeronaves sem proteção permaneceram: por exemplo, em 2013, 25 pessoas ficaram feridas quando o voo 6517 da Merpati Nusantara Airlines, um Xian MA60 de fabricação chinesa, pousou na pista de Kupang, na Indonésia, após os pilotos terem acidentalmente selecionado o empuxo reverso pouco antes do toque.
Um memorial foi construído ao lado da estrada onde o voo 9642 da Luxair caiu
(Luxembourg Times)
Hoje, quase todas as grandes aeronaves turboélice têm sistemas eficazes para evitar a ativação acidental ou deliberada do empuxo reverso em vôo, e nenhum acidente desse tipo ocorreu desde o acidente do Merpati Nusantara em 2013.
Mas a lição de todos esses acidentes continua importante: os fabricantes nunca devem dar como certo que os pilotos seguirão os procedimentos operacionais padrão. Levou décadas para erradicar a prática de levantar deliberadamente o seletor de alcance de solo durante o vôo, apesar do risco. Que outras técnicas que parecem obviamente perigosas podem realmente ser amplamente utilizadas?
A compreensão de que os humanos são difíceis de controlar deve levar os fabricantes a considerar maneiras de evitar que os pilotos façam insumos que não têm uso prático em qualquer situação normal ou anormal e que podem levar a um acidente.
O quanto a autoridade de controle de um piloto deve ser limitada é um tópico de intenso debate na indústria da aviação, mas a história do voo Luxair 9642 e os acidentes que se seguiram devem servir como um exemplo de um lugar onde um pouco menos de autoridade do piloto poderia ter salvado vidas.
É difícil argumentar que a capacidade de engatar o empuxo reverso em voo tem algum benefício, e o fato de que muitos aviões inicialmente não impediram os pilotos de fazer isso representou uma falta fatal de imaginação por parte dos fabricantes. Por que qualquer piloto tentaria algo tão perigoso? Bem, como se costuma dizer, a vida encontra um caminho.