Mostrando postagens com marcador Como Funciona. Mostrar todas as postagens
Mostrando postagens com marcador Como Funciona. Mostrar todas as postagens

segunda-feira, 11 de março de 2024

Quais mecanismos permitem que as aeronaves dirijam durante o taxiamento no solo?

Como um avião se move antes de decolar.

(Foto: Jaromir Chalobala/Shutterstock.com)
Aviões, grandes e pequenos, são obras de engenharia incríveis, permitindo que os humanos viajem de um lugar para outro com mais rapidez e segurança do que qualquer outro meio de transporte. Como muitos leitores sabem, os testes exigidos antes de uma aeronave ser certificada para voar com passageiros são extensos. No entanto, por esta razão, podemos descansar tranquilamente a bordo enquanto somos transportados para praticamente qualquer destino que possamos imaginar. Mas como exatamente uma aeronave se move antes mesmo de tentar subir aos céus?

A resistência inicial


À medida que uma aeronave sai do portão do aeroporto, ocorre uma orquestra de eventos envolvendo o(s) piloto(s), o motorista do rebocador e os wing walkers Existem vários motivos pelos quais um avião comercial não usaria o empuxo reverso para recuar , mas geralmente, um poderoso rebocador é usado para mover a aeronave para trás. Aqui, a comunicação por sinais manuais é essencial para garantir que o rebocador gire corretamente para colocar o nariz na direção desejada pelos pilotos.

Durante o táxi


Assim que o avião estiver pronto para manobrar até a pista, o piloto terá várias ferramentas à disposição. Alguns deles podem depender do tipo de aeronave, já que um pequeno avião de aviação geral, um grande avião comercial e um caça a jato são todos projetados para finalidades diferentes.

Um Airbus A321XLR taxiando em Hamburgo (Foto: Wirestock Creators/Shutterstock)
Localizado nas nadadeiras traseiras da aeronave está um leme, uma superfície de controle que permite a rotação em torno do eixo vertical. Como explica o Flightradar24, isso é semelhante a girar o volante de um carro para a esquerda ou para a direita e, como tal, o leme pode ser uma ferramenta útil, com algumas aeronaves dependendo principalmente dele.

A frenagem diferencial e o empuxo referem-se à aplicação de uma ação específica em um lado da aeronave para afetar seu movimento. O primeiro auxilia principalmente aeronaves com trem de pouso tipo triciclo com freios em ambos os lados, que podem ser operados de forma independente. Ao frear de um lado, o piloto pode executar curvas em torno do eixo normal do avião, embora só deva ser usado quando os motores estão com potência baixa ou em marcha lenta para não desgastar os freios.

O empuxo diferencial pode ser usado em aeronaves que possuem motores montados nas asas em ambos os lados, como um avião bimotor a pistão ou turboélice. Ao aplicar maior empuxo em um motor do que no outro, o piloto pode dirigir a aeronave com eficácia em uma direção específica.

(Foto: Alexandre Rotenburg/Shutterstock)
Alguns jatos executivos menores e aeronaves a hélice da aviação geral podem tirar proveito da “direção da roda do nariz”, onde a roda do nariz é conectada aos pedais do leme. Outros aviões podem ter uma roda de nariz que pode girar, mas não tem conexão direta com os pedais do leme, então os pilotos podem optar por usar a frenagem diferencial para fazer a roda e, portanto, a aeronave se moverem.

Grandes aeronaves comerciais utilizam um método de manobra denominado direção do leme. Uma pequena roda, chamada leme, pode controlar a direção que o nariz aponta à medida que a aeronave avança. Isso facilita uma experiência de conversão particularmente suave e controlada, incluindo curvas fechadas em pistas de táxi. Como menciona o Flightradar24, muitas companhias aéreas possuem regulamentações relativas ao leme, limitando ou proibindo seu uso em velocidades mais altas em solo.

Por último, especialmente para caças e um número limitado de aviões civis, a vetorização de empuxo é um método de dirigir uma aeronave no solo. É aqui que o piloto pode controlar os bicos do motor para mudar a direção do escapamento, permitindo manobras no solo e no ar, o que é muito útil para curvas fechadas e ajustes rápidos de direção.

sábado, 9 de março de 2024

Vídeo: Teste de asa de um Boeing 777

Uma asa do Boeing 777 é testada até a destruição, quebrando com 154% da carga limite projetada.

Por que a maioria dos aviões é pintada de branco?


Você já reparou que as pinturas dos aviões da Gol, Latam e Azul têm algo em comum? Todas elas têm o uso predominante da cor branca. E isso não é por acaso, nem por achar a cor bonita. A maioria dos aviões é pintada de branco não só no Brasil, mas no mundo todo! Conheça os motivos pelos quais o branco é tão utilizado na pintura das aeronaves.

A pintura das três grandes do Brasil segue o mesmo padrão, e não houve mudança do esquema quando a TAM virou Latam

O esquema de cores “Eurowhite”


O eurowhite é o esquema de cores onde a maior parte da fuselagem do avião é pintada de branco, com as outras cores relegadas para a cauda do avião ou em detalhes como ponta das asas e motores.

Ele se tornou comum nos anos 70, motivado pela elevação dos custos das companhias aéreas com a alta do petróleo. Buscando alternativas para economizar, elas passaram a adotar o padrão que custa menos para manter, além de ter outras vantagens operacionais. A Air France foi uma das primeiras companhias a adotá-lo, em 1976.

Avião da Air France com o esquema Eurowhite de cores na fuselagem
Desde então a maioria das companhias aéreas migrou para o esquema, que hoje se tornou praticamente o padrão universal do mercado.

Custo menor da pintura branca


Os aviões saem da linha de montagem com duas cores: verde para aeronaves com fuselagem de metal ou bege para as aeronaves de fuselagem de material composto. O verde vem da aplicação de uma camada do anticorrosivo cromato de zinco. Já o bege é a cor adotada nos materiais compostos. A partir daí, cada companhia aérea decide qual vai ser a pintura aplicada.

Boeing saindo da linha de montagem
Nesse ponto o custo começa a influenciar a escolha: cada camada aplicada representa um custo extra e para pintar um avião de outras cores que não o branco é preciso utilizar mais camadas, elevando o custo final da pintura – e de sua manutenção.

O custo extra não é só do material, mas do número de horas que o avião fica no hangar, já que cada camada de tinta tem que secar por pelo menos 12 horas para que a próxima possa ser aplicada. Veja como é trabalhoso o processo de repintura no vídeo abaixo:


Uma pintura nova de um Boeing 777, como esse acima da Emirates, pode custar entre US$ 100.000 e US$ 200.000 dependendo do número de cores escolhidas.

Peso menor da pintura branca


Cada camada de tinta adiciona não só custo à conta final, mas também peso à aeronave. E mais peso significa maior consumo de combustível. Um Boeing 737 pode ter um acréscimo de até 300 kg no seu peso dependendo da pintura escolhida. Cores claras permitem camadas mais finas de tinta e um avião mais leve.

Em janeiro, por exemplo, a American Airlines divulgou que trocaria a tinta cinza usada em seus aviões e com isso conseguiria economizar 3,8 milhões de litros de combustível por ano!

O branco retém menos calor


Quem já teve que esperar para um avião sair da posição de embarque sob o sol de verão sabe que uma aeronave pode se tornar uma sauna. E se ela tiver pintura escura o problema é ainda pior.

A cor branca, como aprendemos na escola, reflete a luz do sol, tornando mais barato para refrigerar uma aeronave em solo. Pra quem não sabe, na posição de embarque a energia para ligar o ar condicionado do avião vem de geradores externos chamados de GPU (Ground Power Unity – unidade de energia de solo).

A pintura branca facilita a manutenção


O branco aumenta a visibilidade de rachaduras, vazamentos de óleos e corrosões na fuselagem do avião. Isso permite que a manutenção possa agir rápido, reduzindo o tempo em solo do avião.

Aviões brancos facilitam o repasse e revenda


A maioria das companhias aéreas adquire seus aviões através de empresas de leasing aeronáutico. Adotar uma pintura branca ajuda na hora da negociação do preço, porque a empresa que aluga terá um custo menor para achar um novo operador temporário ou definitivo. Basta pintar a cauda e aplicar a nova pintura.

Boeing 747 pintado de branco, à espera do próximo operador

Companhias Aéreas na contramão


Se por um lado são inegáveis as vantagens econômicas de se pintar um avião de branco, por outro o marketing pode pesar na hora da escolha das cores dos aviões. A low cost americana Spirit, por exemplo, escolheu um amarelo super chamativo para pintar suas aeronaves. Impossível não notar seus aviões no meio do mar de branco que se vê nos aeroportos.

Low cost americana Spirit optou pelo amarelo para se destacar
Já a Breeze, nova companhia aérea de David Neeleman, fundador da Azul, também nadou contra a maré e vai adotar um bonito esquema de azuis que certamente fará com que ela se destaque quando estiver operando (desenho do mestre GianFranco Betting).

A novata Breeze tem uma das pinturas mais bonitas da atualidade
Confira algumas na nossa lista das 11 pinturas de avião mais bonitas do mundo.

quarta-feira, 6 de março de 2024

Privadas de aviões soltavam cocô pelos ares - é raro, mas ainda acontece


Uma das dúvidas comuns sobre aviação é se os aviões despejam dejetos dos banheiros em voo sobre as cidades logo abaixo. Realmente isso acontecia no passado, mas a prática mudou há algumas décadas (por volta dos anos 50 do século passado).

Hoje os banheiros contam com um reservatório para os dejetos, que é esvaziado toda vez que o avião pousa. O volume desses tanques e dos reservatórios de água são constantemente monitorados pela tripulação, pois, se houver algum problema, será preciso pousar o quanto antes.

Podem ocorrer vazamentos e, se isso acontecer, os dejetos chegam ao solo em formato de gelo azul. São casos raros, dizem as empresas (veja mais detalhes no final deste texto).

Imagine como deve ser um verdadeiro incômodo um vazamento de fezes e urina em um ambiente fechado a milhares de metros de altitude. Por isso, existem sensores nos tanques do avião que avisam se houver qualquer problema com eles.

Localização da válvula para retirada de dejetos e limpeza do tanque do avião (Foto: Alexandre Saconi)

Para onde vai tudo?


Inicialmente, ao ser apertado o botão da descarga, é formado um vácuo que suga os dejetos para o tanque do avião. Quando ele está no ar, esse vácuo é formado pela diferença de pressão entre o lado de dentro e o de fora da aeronave. Quando está em solo, é acoplado um equipamento que auxiliará nessa sucção.

Esses dejetos vão para tanques onde ficam armazenados durante todo o voo. A quantidade e as dimensões dos tanques variam de acordo com o tamanho e capacidade de cada avião.

No caso do A320, utilizado nas rotas domésticas da Latam, o tanque fica na parte traseira do avião, sob o assoalho, e tem capacidade para até 170 litros.

Tanque de dejetos de um A320, localizado sob o assoalho (Foto: Alexandre Saconi)
Para esvaziar esse reservatório, quando o avião está em solo é acoplado um equipamento que retira esses dejetos por meio da gravidade. Geralmente, um pequeno caminhão é o responsável por este serviço, que também inclui injetar um pouco de água no tanque para a limpeza e adicionar desinfetante.

Em seguida, esse material é levado para ser tratado antes de voltar à natureza. No geral, os aeroportos e centros de manutenção possuem estações de tratamento onde os dejetos são depositados.

Gelo azul


Os aviões não despejam mais o seu esgoto no ar durante o voo. Os dejetos ficam armazenados até o pouso. Entretanto, há registros de vazamentos que formaram pedras de gelo azul que caíram sobre casas e pessoas no decorrer dos anos.

O gelo é formado pelo líquido e pelos dejetos que eventualmente vazaram dos tanques. A cor azul é típica do material desinfetante utilizado.

Como os aviões voam em altitudes mais elevadas, esse material vai se acumulando e congelando. Quando é feita a aproximação para o pouso, ele pode se soltar e cair sobre casas ou pessoas, mas isso é raro de acontecer.

Limpeza do tanque de dejetos de aviões: o esgoto desce por um cano para outro reservatório
para ser descartado (Imagem: Divulgação/Força Aérea dos EUA)

Curiosidades

  • Um A320 conta com um tanque de 170 litros para receber os dejetos.
  • Um Airbus A330 possui dois tanques com 400 litros cada. Já um Boeing 777 tem três tanques, enquanto um 747 possui quatro desses reservatórios de dejetos.
  • A quantidade de água necessária para dar a descarga é baixo, próximo ao de um copo.
  • Antigamente, os banheiros dos aviões funcionavam como banheiros químicos, como aqueles de grandes eventos.
  • Durante o pouso, a pressão dentro do sistema de dejetos aumenta, podendo jogar no ar bactérias e germes do esgoto do avião. Por isso o desinfetante é tão importante, até mesmo para evitar que esses organismos se espalhem pelo ar.
  • Os banheiros dos aviões modernos não são capazes de sugar e prender uma pessoa. Isso pode ter ficado no imaginário popular devido a cenas da cultura pop, mas o sistema não consegue prender uma pessoa no assento.
Válvula para retirada de dejetos e limpeza do tanque do avião, localizada na parte
de trás da aeronave (Imagem: Alexandre Saconi)
Via Alexandre Saconi (Todos a Bordo/UOL*Com matéria publicada em 03/01/2021 - 
**Fonte: Marcos Melchiori, gerente sênior do Latam MRO (Maintenance, Repair and Overhaul, ou Centro de Manutenção, Reparo e Revisão)

domingo, 3 de março de 2024

Como o Concorde conseguiu voar de forma supersônica?

Hoje marca um aniversário muito especial na história da aviação. Há 54 anos, hoje, em 2 de março de 1969, o icônico avião supersônico da Aérospatiale e BAC conhecido como 'Concorde' subiu aos céus pela primeira vez. Embora a aeronave fosse um símbolo de luxo que apenas os clientes e empresas mais ricos podiam pagar para viajar, seu design futurista e recursos supersônicos inspiraram fãs em todo o mundo. Vamos dar uma olhada no que exatamente o tornou capaz de um voo supersônico sustentado.

O Concorde é, sem dúvida, um dos aviões comerciais mais icônicos a enfeitar os céus do mundo
(Foto: Eduard Marmet via Wikimedia Commons)

Como surgiu o Concorde


O Concorde foi o produto de uma colaboração franco-britânica entre os fabricantes BAC e Aérospatiale. Suas origens remontam a mais de uma década antes de seu primeiro voo. A primeira reunião do comitê formado pelo engenheiro aeronáutico galês Sir Morien Bedford Morgan para estudar o conceito de transporte supersônico (SST) ocorreu em fevereiro de 1954. Ele entregou seus primeiros relatórios ao Arnold Hall do Royal Aircraft Establishment (RAE) um ano depois.

Enquanto isso, no final dos anos 1950, a Sud-Aviation da França estava planejando sua própria aeronave SST, conhecida como Super-Caravelle. Depois que ficou claro que esse projeto era semelhante ao conceito britânico, a parceria franco-britânica que produziu o Concorde foi formada no início dos anos 1960. No final da década, a aeronave fez seu primeiro voo de teste.

Competidores supersônicos


No entanto, quando o Concorde subiu aos céus em 2 de março de 1969, seu concorrente soviético, o Tupolev Tu-144, já o havia feito em dezembro anterior. Pensava-se que um projeto americano, o maior e mais rápido Boeing 2707, também proporcionaria concorrência no mercado supersônico. No entanto, a Boeing cancelou isso em 1971 antes que seus protótipos pudessem ser concluídos.

O Technik Museum Sinsheim na Alemanha é o lar de exemplos do
Concorde e do Tupolev Tu-144 (Foto: Jake Hardiman/Simple Flying)
Dos dois designs supersônicos que chegaram à produção, o Concorde teve uma carreira muito mais longa e bem-sucedida do que sua contraparte soviética. Depois que o primeiro protótipo do Concorde fez seu primeiro voo de teste saindo de Toulouse em março de 1969, o primeiro exemplar construído na Inglaterra saiu de Bristol um mês depois. No entanto, os voos de teste supersônicos não ocorreram até outubro daquele ano. Mas o que exatamente permitiu o Concorde voar tão rápido?

Design de asa


Quase tudo sobre a aparência do Concorde é visualmente impressionante e muito diferente dos aviões subsônicos de então e agora. Talvez um dos aspectos mais evidentes de seu design sejam as asas. Eles eram conhecidos como delta ogival, referindo-se à curva ogiva em sua borda de ataque que diferia dos designs de bordas retas em jatos de combate.

Foto de arquivo do primeiro voo do Concorde saindo de Toulouse, França,
em 2 de março de 1969 (Foto: André Cros via Wikimedia Commons)
A razão para a popularidade da asa delta entre as aeronaves militares é que seu projeto resulta em inúmeras vantagens que conduzem ao voo supersônico em alta altitude. Como tal, o Concorde fez uso deste projeto para lucrar de forma semelhante. Por exemplo, as asas eram mais finas do que nos designs contemporâneos de asa aberta, o que reduzia seu arrasto.

Além disso, as ondas de choque que o Concorde produziu ao voar em velocidades supersônicas resultaram em alta pressão abaixo das asas. Isso proporcionou elevação extra substancial sem aumentar o arrasto. Desta forma, chave não apenas em termos de velocidade, mas também em altitude. 

As impressionantes asas em forma de delta ogival do Concorde o distinguem instantaneamente dos aviões subsônicos contemporâneos (Foto: Jake Hardiman/Simple Flying)
A elevação adicional ajudou o Concorde a atingir alturas significativamente maiores do que os aviões subsônicos . Aqui, ele poderia lucrar com a resistência mínima do ar mais rarefeito para voar supersonicamente da maneira mais eficiente possível.

Tecnologia do motor


Os motores que foram encontrados abaixo das impressionantes asas ogivais delta do Concorde também foram cruciais para conceder ao Concorde suas lendárias habilidades supersônicas. A aeronave ostentava quatro turbojatos Rolls-Royce / Snecma Olympus 593 Mk610. Eles foram baseados nos motores Rolls-Royce Olympus encontrados nos bombardeiros estratégicos Avro Vulcan da RAF.

Os motores do Concorde foram derivados dos do bombardeiro estratégico Avro Vulcan, conforme visto no centro da fotografia (Foto: Jake Hardiman/Simple Flying)
Muito parecido com o Concorde, o Vulcan voava em grandes altitudes e exibia um design de asa delta. Seus motores, originalmente conhecidos como Bristol BE 10, foram os primeiros turbojatos de fluxo axial de dois carretéis do mundo. Os motores Olympus 593 do Concorde também apresentavam recursos de reaquecimento na forma de pós-combustores. Essa tecnologia proporcionou maior empuxo na decolagem e durante o voo supersônico.

Quando funcionando "a seco" (sem os pós-combustores), cada um dos quatro motores do Concorde produziu 31.000 lbf de empuxo. No entanto, com os pós-combustores ligados, também conhecidos como funcionamento 'molhado', isso aumentou mais de 20%, totalizando 38.050 lbf de empuxo por motor.

O Concorde era uma aeronave comparativamente leve, com um MTOW de 185 toneladas em comparação com 333 toneladas do Boeing 747-100. Como tal, sua tecnologia de motor fez uma grande diferença ao permitir que ele "supercruisse" a mais de duas vezes a velocidade do som. O Concorde normalmente navegaria a cerca de 2.158 km/h (1.165 nós), logo abaixo de sua velocidade máxima de Mach 2,04.

O Concorde foi proibido de voar supersônico sobre a terra devido à poluição sonora de seu estrondo sônico (Foto: Getty Images)

Tinta especial


Mesmo os detalhes aparentemente menores como a pintura usada no Concorde foram fatores-chave para melhorar seu desempenho. Especificamente, a tinta branca do Concorde era deliberadamente altamente reflexiva. Isso permitiu que ele desviasse parte do calor que surgiu durante o voo supersônico.

A capacidade de desviar esse calor foi crucial para evitar o superaquecimento e danos à sua estrutura de alumínio. Como tal, o Concorde foi capaz de navegar em velocidades supersônicas por longos períodos de tempo sem comprometer sua segurança ou integridade estrutural. Por esse motivo, um Concorde promocional azul com libré Pepsi só podia voar em supersônico por 20 minutos de cada vez.

O F-BTSD em sua pintura Pepsi de curta duração (Foto: Richard Vandervord via Wikimedia Commons)

Nariz ajustável


O nariz ajustável e inclinado do Concorde também foi um fator para melhorar seu desempenho, tanto em cruzeiro quanto em pouso. Como é evidente pelo perfil lateral acima, quando seu nariz estava apontando diretamente para longe da cabine, deu à aeronave um perfil frontal incrível e aerodinâmico com área de superfície mínima e, consequentemente, arrasto. Isso, por sua vez, facilitou velocidades mais altas.

No entanto, ao pousar, o Concorde tinha um ângulo de ataque muito alto . Se o nariz tivesse permanecido na configuração pontiaguda ao tocar o solo, seus pilotos teriam visibilidade mínima. O mesmo pode ser dito para as operações de táxi e decolagem. Como tal, seu nariz pode ser abaixado em um ângulo de 12,5 ° para melhorar a visibilidade antes do pouso. Isso foi reduzido para 5 ° no toque para evitar danos potenciais quando a roda do nariz atingiu o solo.

O Concorde pousou em Farnborough em 1974, com o nariz inclinado como
sua marca registrada (Foto: Steve Fitzgerald via Wikimedia Commons)

O fim de uma era


No geral, seis protótipos e 14 exemplos de produção do Concorde foram produzidos entre 1965 e 1979. O tipo entrou em serviço comercial em 21 de janeiro de 1976 e desfrutou de uma brilhante carreira de 27 anos. No entanto, infelizmente, todas as coisas boas têm um fim.

A queda do voo 4590 da Air France em Paris, em julho de 2000, afetou significativamente a reputação de segurança da aeronave. Então, no ano seguinte, os ataques de 11 de setembro geraram uma desaceleração em toda a indústria da aviação comercial. Esses fatores, juntamente com os crescentes custos de manutenção, tornaram o Concorde economicamente inviável para a British Airways e a Air France.

O Concorde fez seu último voo comercial em 24 de outubro de 2003. Isso pôs fim a uma era inspiradora de viagens aéreas supersônicas, como nunca foi vista desde então. A travessia transatlântica mais rápida do Concorde (Nova York-Londres) registrou a impressionante velocidade de duas horas, 52 minutos e 59 segundos. Será interessante ver se os designs supersônicos futuros serão capazes de igualar, ou mesmo superar, essa conquista incrível.

Via Simple Flying

terça-feira, 27 de fevereiro de 2024

Como funciona o sistema de combustível de uma aeronave

O sistema de combustível é um dos sistemas mais importantes de uma aeronave.

(Foto: santi lumbulob)
O sistema de combustível é um dos sistemas mais críticos de qualquer aeronave. Desde o armazenamento, canalização e distribuição, até à sua pressão e temperatura, o combustível passa por vários subsistemas e componentes antes de ser utilizado para combustão. O combustível armazenado na aeronave deve ser canalizado de forma precisa e eficiente para os motores e sistemas de apoio.

Uma variedade de medidores, transmissores e sensores são instalados no sistema de combustível para obter leituras de combustível em todo o sistema. Este artigo se aprofunda no sistema de combustível da aeronave, seus componentes e funcionalidades, conforme destacado pelo Blog da Associação de Proprietários e Pilotos de Aeronaves.


Os tanques de armazenamento de combustível e o sistema de ventilação


Na maioria das aeronaves de grande porte, o combustível é armazenado nas asas , embora algumas aeronaves também possuam tanques no corpo central, ou na fuselagem central, chamados de tanques centrais. Além disso, as aeronaves widebody possuem tanques extras na cauda ou no estabilizador horizontal, que são usados ​​para controlar o centro de gravidade da aeronave durante voos de longa distância.

O armazenamento de combustível nas asas ajuda a evitar tensões de flexão nas asas. Por esse motivo, o combustível do tanque lateral é utilizado por último durante o vôo. Por exemplo, se uma aeronave tiver um tanque central, o combustível do tanque central será usado primeiro, antes de o combustível ser drenado das asas.

Além disso, em aeronaves maiores, o tanque lateral é dividido em tanque externo e interno. Neste caso, o combustível do tanque interno é usado antes do combustível do tanque externo. Isto novamente ajuda a aliviar as tensões na asa.

Vista da asa de um Boeing 737 (Foto: Tom Boon)
Além dos tanques de armazenamento, existem tanques presentes no sistema de combustível conhecidos como tanques de compensação, que também fazem parte do sistema de ventilação de combustível. Todos os principais tanques de combustível da aeronave estão conectados ao tanque de compensação através de um tubo de ventilação.

Durante as manobras da aeronave, qualquer combustível que sai dos tanques cai no tanque de compensação através do tubo de ventilação. Posteriormente, quando a aeronave nivela, o combustível do tanque de compensação é retornado por gravidade aos tanques principais.

Diagrama do tanque de combustível da Airbus (Imagem: Airbus)
O tanque de compensação também é ventilado para a atmosfera para liberar combustível se houver transbordamento de combustível. É, ao mesmo tempo, dotado de ar comprimido que ajuda a pressurizar os tanques principais de combustível, o que os mantém com uma ligeira pressão positiva.

Isso evita a evaporação excessiva. À medida que a aeronave sobe cada vez mais, a pressão atmosférica reduzida diminui o ponto de ebulição do combustível, o que faz com que ele evapore. Quando os tanques são alimentados com pressão positiva, o combustível é impedido de sofrer pressão reduzida. A pressão positiva também ajuda a evitar o desenvolvimento de vácuo nos tanques à medida que os motores retiram combustível dos tanques.

Diagrama da asa do Airbus A380 (Imagem: Airbus A380 FCOM)

O funcionamento interno do sistema de combustível


Os tanques de combustível consistem em bombas de tanque ou bombas auxiliares de combustível que podem ser controladas pelo piloto. Na maioria dos casos, cada tanque possui duas bombas, que são alimentadas pelo sistema elétrico principal da aeronave. A função dessas bombas é bombear o combustível dos tanques de combustível para a bomba de combustível principal acionada pelo motor, que então bombeia o combustível para o próprio motor.

Em aeronaves capazes de voar em grandes altitudes, as bombas de tanque são uma necessidade porque a pressão reduzida em altitudes pode causar a fervura do combustível, causando bloqueios de vapor que podem impedir a entrada de combustível na bomba acionada pelo motor.

Diagrama do painel de controle de combustível do Airbus A380 (Imagem: Airbus A380 FCOM)
O tanque de combustível também consiste em válvulas de sucção que permitem que o combustível seja aspirado pelos motores em caso de falha da bomba do tanque. Isso exige que os pilotos desçam para uma altitude mais baixa, o que evita a fervura do combustível em baixa pressão.

Depois que o combustível é bombeado pelas bombas do tanque, ele é encaminhado para a válvula de combustível de baixa pressão (LP), às vezes chamada de válvula spar. A partir daí, o combustível passa pelas bombas acionadas pelo motor. Algumas aeronaves possuem uma bomba de baixa pressão e uma bomba de alta pressão, acionadas pelo compressor de alta pressão do motor.

Antes de o combustível ser encaminhado para os principais componentes do motor, ele passa pelo trocador de calor combustível/óleo e pelo filtro de combustível. O trocador de calor mantém o combustível a uma temperatura ideal, enquanto o filtro bloqueia quaisquer detritos no combustível. Depois de passar pelo trocador e pelo filtro, o combustível é bombeado pela bomba de alta pressão para os bicos de combustível na câmara de combustão.

O combustível também é usado para acionar os atuadores de sistemas como as palhetas variáveis ​​do estator dentro dos motores usando sinais hidráulicos de combustível. Em algumas aeronaves, o combustível também é utilizado para resfriar os geradores elétricos.

Airbus A380 VER Diagrama (Foto: Airbus A380 FCOM)
Em operações normais, o tanque esquerdo fornece combustível para o motor esquerdo e o tanque direito fornece combustível para o motor direito. Em caso de falha do motor, o motor restante pode ser abastecido com combustível do outro lado usando uma válvula de alimentação cruzada. Por exemplo, se o motor direito falhar, o combustível do tanque esquerdo poderá ser direcionado para o motor direito quando a válvula de alimentação cruzada for aberta.

A alimentação cruzada também pode ser usada para equilibrar o combustível no ar entre os tanques. Para realizar este procedimento, os pilotos podem desligar as bombas dos tanques laterais do lado mais leve e abrir a válvula de alimentação cruzada. Isso permite que o tanque mais cheio abasteça ambos os motores. Uma vez alcançado o equilíbrio entre os tanques, as bombas dos tanques laterais podem ser ligadas novamente e a válvula de alimentação cruzada pode ser fechada.

Painel aéreo do Airbus A319 (Foto: Linus Follert/Wikimedia Commons)
O combustível para a Unidade de Potência Auxiliar (APU) é normalmente alimentado por um dos tanques laterais. Possui uma bomba própria que liga automaticamente quando a sequência de inicialização da APU é iniciada. Se a bomba APU apresentar mau funcionamento, as bombas do tanque de abastecimento poderão ser ligadas.

Procedimentos de reabastecimento


Os pontos de reabastecimento na maioria das aeronaves de grande porte podem ser encontrados sob as asas, embora, em algumas aeronaves, estejam na barriga lateral. Este ponto é chamado de acoplamento de reabastecimento e é onde a mangueira do coletor de combustível é conectada. Este tipo de abastecimento é conhecido como abastecimento sob pressão, pois o combustível é entregue aos tanques em alta pressão.

Boeing 787 da Virgin Atlantic recebendo combustível (Foto: Virgin Atlantic)
Para controlar o reabastecimento, está disponível um painel de controle. Neste painel, o operador pode discar ou pré-definir a quantidade de combustível necessária. Uma vez conectada a mangueira, as válvulas de reabastecimento se abrem e o abastecimento é iniciado, sendo todo esse processo automático.

Durante o reabastecimento, os tanques externos são abastecidos primeiro e, uma vez cheios, o combustível transborda para o tanque interno e para o tanque central. Quando o nível de combustível atinge o valor selecionado, as válvulas de reabastecimento são fechadas e o abastecimento é interrompido.

Painel de reabastecimento do Airbus A320 (Foto: Anas Maaz)
A maioria dos fabricantes também fornece um meio de abastecer a aeronave manualmente usando a gravidade. Para isso, pontos de reabastecimento manual estão localizados nas asas. No reabastecimento manual, o abastecedor controla o reabastecimento, sendo recomendado abastecer os tanques laterais antes de abastecer os tanques centrais. A principal desvantagem deste tipo de reabastecimento é que pode demorar muito para concluir o processo de abastecimento.

Como é medida a quantidade de combustível?


Para medir a quantidade de combustível, são utilizados capacitores. O capacitor consiste em duas placas que são alimentadas com corrente elétrica CA.

Diagrama de indicação de combustível do Boeing 737 (Imagem: Boeing 737 FCOM)
O fluxo de corrente nesse circuito depende de quatro fatores. Eles são:
  • O nível de tensão aplicada.
  • A frequência do fornecimento.
  • O tamanho das placas do capacitor.
  • A constante dielétrica.
Os primeiros três fatores (tensão, frequência e tamanho da placa) permanecem fixos, e o único fator que muda é a constante dielétrica. Isto porque, num determinado momento, a constante dielétrica pode ser ar, combustível ou uma mistura de ar e combustível.

À medida que o capacitor fica encharcado de combustível, há um aumento na corrente, que é comparada a um capacitor de referência com ar como dielétrico. A diferença entre essas duas medições pode então ser usada para obter uma indicação muito precisa do combustível.

O principal problema deste sistema é que ele não consegue compensar a temperatura. A Gravidade Específica (SG) ou densidade do combustível é inversamente proporcional à temperatura, ou seja, quando há queda de temperatura, o volume do combustível diminui e causa erros na indicação do combustível. Da mesma forma, quando há aumento de temperatura, o volume de combustível aumenta.

Diagrama do tanque da asa (Imagem: aeronavesystemstech)
Para resolver este problema, são utilizados compensadores. São sondas colocadas no fundo dos tanques de combustível para garantir que estejam sempre cobertos de combustível. Se houver uma redução na temperatura que faça com que o SG suba, o compensador aumenta o fluxo de corrente para o circuito indicador de combustível para corrigir a medição errada pelos capacitores de medição de combustível.

Com informações de Simple Flying

segunda-feira, 26 de fevereiro de 2024

Como os pilotos dominam a arte precisa de taxiar uma aeronave

O regime de táxi de um voo envolve o movimento terrestre da aeronave em sua potência.

Boeing 777 da United Airlines taxiando (Foto: Kevin Hackert)
Depois de recuar do portão de embarque, a aeronave deve manobrar em espaços apertados entre os edifícios do terminal e entrar na pista de táxi. No caminho para a pista desejada, as aeronaves frequentemente cruzam outras pistas ativas ou inativas. O mesmo acontece depois que a aeronave pousa e está a caminho do portão.

Você já se perguntou como os pilotos realizam regimes de táxi, que podem durar quase 30 minutos em aeroportos grandes e movimentados? Quanta energia é necessária para a taxação e qual o papel que os controladores de solo desempenham nas manobras seguras do aeroporto?

O regime de táxi é parte essencial do voo, envolvendo o movimento terrestre da aeronave em sua potência. Os procedimentos de táxi variam de acordo com o tamanho e tipo da aeronave. A roda do nariz é completamente dirigida com os controles do leme para a maioria das aeronaves menores, mas isso fornece apenas alguns graus de movimento da roda do nariz para aeronaves grandes. O resto deve ser compensado com uma alça separada chamada leme.

Este artigo se aprofunda no regime de taxiamento de aeronaves e nas etapas essenciais envolvidas no processo, conforme destacado pela AN Aviation Services.

O sistema de direção da roda do nariz


A direção da roda do nariz da maioria das aeronaves de grande porte é acionada hidraulicamente e o sistema de direção consiste em atuadores de direção e uma válvula de controle. Quando a pressão hidráulica é fornecida aos atuadores através da válvula de controle, a roda do nariz gira.

Na maioria dos sistemas, existem dois atuadores. Numa curva para a direita, o macaco do atuador direito se estende e o macaco esquerdo se move para dentro, fazendo a roda do nariz girar para a direita. Numa curva à esquerda, o macaco do atuador se estende enquanto o macaco direito se move, fazendo com que a roda gire para a esquerda.

Assim que a curva desejada é feita e o piloto libera a cana do leme, a válvula de controle bloqueia o fluido para os atuadores, o que centraliza automaticamente a roda do nariz. O sistema de direção também possui uma válvula de desvio de segurança que normalmente é fechada pela pressão hidráulica do sistema hidráulico principal da aeronave.

Quando a pressão é aplicada à válvula, ela é empurrada para baixo. Se, em caso de perda de pressão hidráulica, a válvula for aberta por uma mola, isso permite que o fluido hidráulico flua livremente para os atuadores. Esta ação coloca a roda do nariz no modo rodízio.

Diagrama de Direção de Aeronave (Imagem: Oxford ATPL)
Quando no modo caster, a roda funciona como a de um carrinho de compras, e os pilotos podem taxiar a aeronave usando empuxo/potência diferencial do motor ou frenagem diferencial. Muitas aeronaves podem ser despachadas com um sistema de direção da roda do nariz inoperante, desde que o modo caster funcione. No entanto, pode ser um desafio pilotar uma aeronave grande no modo caster.

Da mesma forma, uma válvula de derivação da direção da roda do nariz pode ser aberta para reboque. Em operações normais, esta válvula está fechada, mas pode ser operada movendo uma alavanca de desvio de reboque na roda do nariz.

Quando a alavanca está posicionada para reboque, o fluido hidráulico passa pelos atuadores e o guincho pode mover a roda conforme necessário. Quando a alavanca de desvio é movida para a posição de reboque, o pessoal de terra ou o engenheiro deve colocar um pino de desvio na alavanca, que trava a alavanca na posição.

(Foto: Anas Maaz)
Esta é uma etapa essencial porque, durante a partida do motor, o sistema de direção da roda do nariz recebe pressão hidráulica. Se a alavanca de desvio de reboque se mover, a válvula de desvio fecha, permitindo que seja exercida pressão hidráulica total no sistema de direção.

Com a cana do leme na posição central, se o caminhão de reboque girar o volante nesse ponto, o mecanismo de autocentralização do volante do nariz tentará centralizar a roda do nariz. Isso pode quebrar a barra de reboque e até mesmo causar ferimentos às pessoas próximas.

Assim que o motor ligar e a aeronave estiver pronta para taxiar, o engenheiro deverá remover o pino de bypass e mostrá-lo aos pilotos. Isto dá aos pilotos uma indicação de que o pino foi removido.

Boeing 787 da Air Tanzania (Foto: Swissport)

A técnica do táxi


A técnica correta de táxi é uma habilidade essencial de pilotagem. Nos títulos a seguir, examinaremos algumas técnicas de taxiamento.

Quanta potência do motor é necessária para um táxi?

Ao taxiar em um avião a jato, o impulso em marcha lenta é mais que suficiente para manter a aeronave em movimento. No entanto, durante a partida do táxi, é necessário um impulso de ruptura para superar o atrito estático entre as rodas e o solo. Jatos médios a pesados ​​começam a se mover quando cerca de 20 a 25% do empuxo do motor é aplicado. O empuxo deve estar ocioso assim que a aeronave começar a se mover.

Aeronaves Fokker 100 da Austrian Airlines taxiando (Foto: Renatas Repcinskas)
O empuxo acima da marcha lenta só é necessário se a aeronave parar durante o táxi. A aplicação excessiva de empuxo durante o taxiamento deve ser evitada, pois pode causar danos por explosão de escapamento e danos por objetos estranhos (FOD). Em curvas fechadas, pode ser usado impulso/potência diferencial. Por exemplo, se desejar virar à direita, o motor esquerdo pode ser acelerado um pouco mais que o direito.

O uso do leme

A cana do leme deve ser utilizada suavemente ao iniciar as curvas, pois o movimento excessivo da cana pode causar oscilações, o que pode ser bastante desconfortável para os passageiros. Quando estiver em uma curva, a curva deve ser continuada para que a cana do leme nunca seja neutralizada.

Durante uma curva, a aeronave perde energia naturalmente, portanto, pode ser necessário empuxo adicional. É essencial adicionar esse impulso prontamente para garantir que a aeronave não pare na curva. Se ele parar, será necessário muito impulso do motor para completar a curva. Também pode ser um pouco embaraçoso e estranho se a aeronave parar no meio da curva.

Seguindo a linha central

Durante o táxi e em qualquer fase do voo, deve ser utilizada uma referência adequada para garantir que a aeronave esteja na linha central. Isso varia de aeronave para aeronave. Normalmente (isso funciona para a maioria das aeronaves), manter a linha central entre as pernas do piloto garante o rastreamento correto da linha central.

Diagrama da linha central do Airbus FCTM (Imagem: Airbus FCTM)
O método de sobreviragem

Este método é utilizado em aeronaves grandes ou com fuselagens comparativamente longas, como o Airbus A321, onde a roda do nariz fica longe da posição sentada do piloto em tais aeronaves.

As rodas principais da aeronave poderiam cortar a curva se o piloto virasse perfeitamente na linha da pista de táxi. Em uma pista de táxi estreita, isso poderia fazer com que as rodas principais dentro da curva saíssem da pista de táxi. Para evitar que isso aconteça, a técnica de sobreviragem pode ser usada.

Durante a sobreviragem, o piloto deve deixar a aeronave viajar à frente da linha central da pista de táxi. Dessa forma, a roda dianteira tende a seguir próximo à borda externa da curva ou da pista de táxi, permitindo que a roda principal permaneça bem dentro da pista de táxi. As fotos abaixo mostram a diferença que o método de sobreviragem faz.

Diagrama de taxiamento da Airbus
Uso dos freios

As aeronaves atuais são equipadas com freios de carbono, que são sensíveis ao número de acionamentos dos freios. Muitas aplicações de freio podem causar o aquecimento dos freios, portanto os pilotos devem evitar pisar nos freios com frequência durante o táxi.

A maneira correta é deixar a aeronave acelerar e, quando atingir cerca de 30 nós (a velocidade máxima recomendada de táxi para a maioria das aeronaves), os freios devem ser acionados até que cerca de 10 nós sejam alcançados.

Então, a aeronave deverá acelerar novamente. Desta forma, o número de acionamentos dos freios pode ser reduzido significativamente. Os freios aquecidos são menos eficientes na parada da aeronave, o que é essencial durante uma decolagem rejeitada.

Qual piloto taxia a aeronave

Na maioria das companhias aéreas, o capitão taxia a aeronave. Esta é uma tradição antiga, pois, nas aeronaves mais antigas, a cana do leme só era disponibilizada para o capitão do lado esquerdo. Como o taxiamento pode ser bastante desafiador em aeroportos movimentados, muitas companhias aéreas ainda preferem delegar o trabalho de taxiamento ao capitão.

Boeing 747-400F da Singapore Airlines Cargo taxiando em Mumbai (Foto: BoeingMan777)
As aeronaves modernas estão equipadas com perfilhos em ambos os lados. Por esse motivo, algumas companhias aéreas permitem que primeiros oficiais experientes taxiem. Algumas companhias aéreas também não têm problemas com o taxiamento dos primeiros oficiais se o capitão operacional for um instrutor ou examinador da companhia aérea. No entanto, quem quer que esteja taxiando a aeronave, o piloto que não está taxiando deve monitorar e orientar constantemente o piloto taxiando usando as tabelas de táxi relevantes.

Com informações de Simple Flying

Por que o avião voa e não cai? Entenda como funciona uma aeronave

O avião não despenca do ar graças ao equilíbrio entre quatro forças da física: sustentação, arrasto, tração e peso; entenda.

(Imagem: Paul J. Everett/Flickr)
Quem já viu um avião de perto deve ter se perguntado: “como essa coisa enorme e pesada voa sem cair?”. Existe resposta para esta pergunta. E ela envolve vários princípios da Física.

Para começar, o avião voa por conta dos impulsos gerados pelo formato das suas partes (por exemplo: asas, turbinas e pás). O voo também acontece graças aos caminhos que o ar percorre pela aeronave, gerando diferenças de pressão.

Como a física do avião funciona


Na decolagem, o vento bate de baixo e ‘suga’ as asas do avião para cima (Foto: Wikimedia Commons)
O avião sai do chão e permanece no ar, sem cair, por dois fatores: resistência do ar e peso da aeronave. Ao decolar, o vento bate de baixo e “suga” as asas para cima. Isso gera a força necessária para tirá-lo do chão.

Já fora (e longe) do chão, hélices, turbinas e pás móveis geram o impulso necessário para o avião não despencar. Existem quatro forças no voo:

O avião não despenca do ar graças ao equilíbrio entre quatro forças da física (Imagem: UFRGS)

Sustentação


Esta força é o componente vertical da aerodinâmica, que age no centro de pressão. Na prática, ela compensa o peso da aeronave. A aerodinâmica, por sua vez, é uma força perpendicular a asa, resultante da diferença entre as pressões dinâmica (ar em movimento) e estática (em repouso).

Arrasto


É outra força aerodinâmica, que surge devido a resistência do ar. Isso porque, como o nome sugere, ela se opõe ao avanço de um corpo. O arrasto depende de alguns fatores. Entre eles, estão: forma e rugosidade do corpo; e efeito da diferença de pressão entre as partes inferior e superior da asa.

Tração


É a força, originada por algum tipo de motor, responsável por impulsionar a aeronave para frente. Hoje em dia, a aviação dispõe de motores convencionais (que funcionam a quatro tempos, igual os de carros modernos) e motores a reação (turbo-jatos e turbo-fan).

Peso


Este está relacionado à gravidade e é um fator importante na hora decolar e pousar. Um avião muito pesado, por exemplo, precisa de mais pista para decolar. A velocidade é para a sustentação anular o peso. Já na hora de aterrissar, deve-se respeitar a 1ª Lei de Newton (a lei da inércia) – isto é, a tendência dos corpos permanecerem em repouso ou movimento.

Via Pedro Borges Spadoni, editado por Bruno Ignacio de Lima (Olhar Digital) com informações de UFRGS, UFMG e EBC