terça-feira, 23 de março de 2021

Aconteceu em 23 de março de 1994: Voo da Aeroflot 593 - Quem estava pilotando o avião?


No dia 23 de março de 1994, um Airbus A-310 caiu do céu e bateu no fundo da Sibéria, matando todos a bordo. Mas este não foi um acidente comum: na verdade, o filho adolescente do piloto estava no comando quando o avião entrou em seu mergulho fatal. 

A revelação chocante levantou questões sobre a segurança da aviação na Rússia pós-soviética e consolidou o lugar do voo 593 da Aeroflot como um dos mais notórios acidentes de avião de todos os tempos.


O voo 593 da Aeroflot foi operado pelo Airbus A310-304, prefixo F-OGQS (foto acima), em um voo internacional de longo curso de Moscou a Hong Kong com 63 passageiros e 12 tripulantes a bordo. 

Entre esses passageiros estavam o filho e a filha do capitão Yaroslav Kudrinsky, um de um grupo de elite de pilotos altamente experientes da Aeroflot certificados para voar no Airbus A-310 na época. As crianças estavam viajando para Hong Kong por quatro dias, aproveitando as oportunidades oferecidas pela posição de Kudrinsky.


Na metade do voo, enquanto o capitão Kudrinsky estava nos controles, Vladimir Makarov - outro piloto voando como passageiro com as crianças Kudrinsky - trouxe Yana de 12 anos e Eldar de 16 anos para a cabine. Kudrinsky os convidou para mostrar o avião tecnologicamente avançado. 

Antes do 11 de setembro, não era incomum ter convidados na cabine, mesmo que tecnicamente não fosse permitido. Mas, em uma flagrante violação do protocolo atípico de sua experiência e registro de segurança, ele permitiu que Yana se sentasse em seu assento e segurasse a coluna de controle enquanto ele ajustava a direção do piloto automático, dando-lhe a ilusão de que estava virando o avião.


Então foi a vez de Eldar. O capitão Kudrinsky pretendia fazer exatamente a mesma coisa por ele: ajustar a direção do piloto automático, depois pedir a Eldar para virar a coluna de controle, fazendo parecer que ele estava virando o avião sozinho. Mas Eldar estava muito ansioso e tentou se virar antes que seu pai tivesse a chance de mudar o rumo. 

Ele achou os controles pesados, ao contrário do que sua irmã havia experimentado, e segurou a coluna à esquerda em uma tentativa de virar o avião para a esquerda. Isso acionou um recurso inesperado do Airbus A-310: desconexão parcial do piloto automático. 

Virando a coluna de controle contra o rumo definido por 30 segundos, ele fez com que o piloto automático cedesse o controle dos ailerons ao piloto. Eldar agora realmente tinha total controle do ângulo de inclinação do avião.


No entanto, a desconexão parcial não disparou um aviso de desconexão do piloto automático como os pilotos provavelmente esperavam; em vez disso, apenas uma pequena luz de aviso acendeu. Ninguém na cabine percebeu. 

Conforme Eldar movia a coluna de controle de volta para a direita, o avião entrou em uma margem direita rasa. Eldar foi o primeiro a apontar que o avião parecia estar virando para a direita, o que confundiu o capitão Kudrinsky e o primeiro oficial Piskaryov, que pensaram que o piloto automático ainda estava totalmente ativo. 

O visor de direção de repente mostrou uma curva acentuada à direita apontando para trás, por onde vieram, que Makarov e Piskaryov interpretaram erroneamente como um sinal de que o avião estava entrando em um padrão de espera. 

Mas o avião estava alto sobre a Sibéria, longe de qualquer cidade; na realidade, a tela estava simplesmente mostrando o caminho do avião com as entradas de controle atuais.


Por nove segundos, os pilotos tentaram descobrir por que o avião estava virando. Eldar não estava mais dirigindo a aeronave, mas a inclinação foi piorando, até que o avião virou mais de 45 graus. 

O piloto automático tentou compensar a curva usando as funções que ainda conseguia controlar, aumentando o empuxo e apontando o nariz para cima, mas não conseguiu afetar o ângulo de inclinação, que piorava cada vez mais. 

Os passageiros e a tripulação foram pressionados fortemente em seus assentos pelas forças G da curva, deixando Eldar incapaz de sair do assento do piloto e Piskaryov incapaz de alcançar os controles. 

Kudrinsky e Piskaryov tentaram gritar instruções para Eldar, mas isso foi ineficaz. O avião fez uma curva de noventa graus de inclinação lateral e perdeu a sustentação, descendo em um mergulho de mais de 40.000 pés por minuto. 

A forte pressão foi substituída por falta de peso quando o jato entrou em queda livre, envio de itens não protegidos e passageiros voando. O piloto automático se desconectou completamente.


O primeiro oficial Piskaryov reagiu o mais rápido que pôde, aumentando o impulso e puxando a coluna de controle para nivelar o avião. A ausência de peso se transformou em intensas forças G duas vezes mais fortes do que durante a curva fechada, mais uma vez prendendo Eldar no assento do capitão. 

A força do avião saindo do mergulho foi tão grande que Piskaryov perdeu o controle da coluna de controle. O avião subiu abruptamente até perder sustentação e estolar. Neste breve momento de gravidade normal, Eldar conseguiu sair do assento do piloto, permitindo que o capitão Kudrinsky se sentasse nos controles.


Mas era tarde demais; O primeiro oficial Piskaryov corrigiu demais e paralisou o avião. O A310 virou e caiu em um mergulho em saca-rolhas, girando como um pião enquanto mergulhava em direção ao solo. 

O computador de voo teria corrigido o giro e saído do mergulho por conta própria se os pilotos simplesmente largassem os controles, mas eles não sabiam disso. 

Em vez disso, o capitão Kudrinsky moveu o leme para corrigir o giro e começou a puxar para cima para retornar ao vôo nivelado. Embora tenha sido eficaz, ele não conseguiu sair a tempo.


Assim que o avião parecia estar nivelando, eles perderam a altitude. O A310 caiu de barriga para cima em uma floresta nas remotas montanhas Kuznetsk Alatau, 78 km a sudeste de Novokuznetsk. 

O impacto maciço espalhou grandes pedaços do avião por várias centenas de metros, matando todos os 75 passageiros e a tripulação, incluindo o capitão Kudrinsky e seus dois filhos pequenos. Pedaços menores da aeronave foram lançados a até dois quilômetros sobre o vilarejo de Malyy Mayzas, em Mejdurechensk, na Rússia.


Embora as caixas-pretas tenham sido recuperadas logo após o acidente, a revelação de que os filhos do capitão Kudrinsky estavam nos controles não vazou para a imprensa até setembro de 1994. 

Até aquele momento, a companhia aérea havia sido praticamente silenciosa sobre o acidente; quando a notícia estourou, tentou negar, mas foi forçada a mudar de posição após o lançamento da gravação de voz do cockpit. 

Seguiu-se um escândalo e uma longa e severa análise da cultura de segurança da Aeroflot, que estava entre as piores do mundo. 

Clique na imagem para ampliá-la
A Aeroflot vinha sofrendo vários acidentes graves quase todos os anos durante a década de 1980 e continuou a sofrer uma terrível taxa de acidentes no início da década de 1990. 

Na verdade, desde sua fundação em 1923, mais de 8.000 pessoas morreram em acidentes na Aeroflot, cinco vezes mais do que qualquer outra companhia aérea.


Após a precipitação do voo 593, no entanto, as coisas começaram a mudar. No período entre 1946 e 1995, a Aeroflot esteve envolvida em 721 acidentes e incidentes, mas entre 1995 e 2017, esteve envolvida em apenas dez, dos quais apenas dois foram fatais. Isso representa uma queda de 97% na taxa anual de incidentes. 


A queda de 1994 parece ser a gota d'água que quebrou as costas do camelo. Desde o início turbulento da era pós-soviética, a aplicação dos regulamentos melhorou, os aviões soviéticos antigos e inseguros foram eliminados e os pilotos receberam melhor treinamento. Hoje, a Aeroflot é considerada tão segura quanto outras grandes companhias aéreas nacionais.


Mas a investigação também mostrou que a culpa não podia recair apenas sobre os ombros do capitão Kudrinsky. Seu treinamento simplesmente não o equipou para entender como a aeronave se comportaria. 

Ele não sabia sobre a desconexão parcial do piloto automático ou que não dispararia um alarme sonoro. Ele também não sabia sobre o recurso autocorretivo do piloto automático, que poderia ter tirado o avião de seu mergulho em saca-rolhas a tempo de evitar o acidente. 


Se os pilotos tivessem recebido mais e melhor treinamento nos novos modelos de Airbus da Aeroflot, o acidente poderia não ter acontecido. Nenhum piloto hoje permitiria que os convidados sentassem em seu assento e manipulassem os controles, graças à difamação do voo 593 da Aeroflot e às novas regras sobre o acesso à cabine impostas após o 11 de setembro. 

Mas as lições aprendidas sobre a relação entre piloto e avião continuam a ter um efeito significativo. Os aviões agora precisam ter um alarme sonoro se o piloto automático se desconectar parcialmente, e os pilotos na Rússia agora são treinados em modelos de aeronaves ocidentais, bem como pilotos em qualquer outro país.


Os pilotos do voo 593, assim como Yana e Eldar, estão enterrados ao lado dos bombeiros que morreram em Chernobyl. Há muitos que estiveram próximos das vítimas que não são duros com o capitão Kudrinsky. “Posso imaginar o horror que experimentaram em seus últimos momentos”, disse sua viúva. “Ele sabia que não havia apenas todas aquelas pessoas dependendo dele, mas também seus próprios filhos.” 


O pai da vítima do acidente Adrian Deauville professou uma visão semelhante. “Eu posso perdoar os pilotos. Posso perdoar as crianças, porque eram inocentes. Esse homem tinha 39 anos e durante esses 39 teve uma carreira exemplar de aviador. Ele tinha uma família, estava orgulhoso deles, e foram os cinco minutos finais daqueles 39 anos que deram errado.”

Edição de texto e imagens por Jorge Tadeu

Com Admiral Cloudberg, ASN, baaa-acro.com - Imagens: Reprodução 

Por que os pilotos medem a velocidade do ar em nós?

Enquanto a maioria de nós no solo está acostumada a medir a velocidade em quilômetros ou milhas por hora, os pilotos usam uma unidade de medida diferente: milhas náuticas por hora - também conhecidas como nós. Os nós também são como a velocidade dos barcos é medida. Mas por que esta unidade é o padrão, em vez do que estamos acostumados a ver quando estamos dirigindo?

Um Boeing 777 navega a cerca de 518 nós. Isso se traduz em cerca de 960 quilômetros por hora (Foto: Vincenzo Pace)

Uma unidade comum


Quem viaja qualquer tipo de distância - internacionalmente ou até mesmo em um grande país - sabe que várias coisas são feitas de forma diferente dependendo da região. Claro, ao cruzar as fronteiras internacionais, essas diferenças são ainda mais perceptíveis.

Geralmente encontramos diferenças como idioma, moeda e normas sociais em nossa vida diária (não-aviador). Mas para os que estão no cockpit, que precisam lidar com controladores de tráfego aéreo no exterior e outras autoridades, o estabelecimento de padrões para dados críticos como velocidade e altitude garante operações relativamente suaves entre fronteiras e oceanos. Isso foi possível graças ao trabalho da Organização da Aviação Civil Internacional (ICAO).

Em 1947, a primeira assembléia da ICAO adotou uma resolução que recomendava um sistema de unidades padronizado. Conhecido como Anexo 5, o sistema foi adotado em 1948, embora levasse mais algumas décadas para colocar todos na mesma página em termos de unidades comuns.

A ICAO introduziu o Sistema Internacional de Unidades, conhecido como SI do “Système International d'Unités”, como o sistema básico padronizado a ser usado na aviação civil. O metro era a unidade básica de todas as medições do SI que lidam com comprimento.

No entanto, foi reconhecido que algumas unidades não pertencentes ao SI têm um lugar especial na aviação e tiveram que ser mantidas - “pelo menos temporariamente”, observa a ICAO.

“São a milha náutica e o nó, assim como o pé quando é usado na medição de altitude, elevação ou altura apenas. Alguns problemas práticos surgem no encerramento do uso dessas unidades e ainda não foi possível fixar uma data de encerramento.” - ANEXO 5 à Convenção sobre Aviação Civil Internacional, ICAO

O nó é baseado na milha náutica e é uma unidade não SI (Foto: Vincenzo Pace)

Por que nós?


Segundo a Scandinavian Traveller, o uso de nós (kt) facilita a navegação aérea e náutica por ser baseada na milha náutica.

A milha náutica está intimamente relacionada ao sistema de coordenadas geográficas de longitude/latitude e é baseada na circunferência da Terra.

“Imagine que o equador é um círculo dividido em 360 graus (como uma bússola). Cada grau pode ser dividido em 60 partes iguais chamadas minutos. O comprimento de cada um desses minutos é igual a aproximadamente 1 milha náutica. Um nó é igual a 1 milha náutica por hora ou 1,85 km/h.” - Primeiro Oficial Jimisola Laursen, SAS Pilot via Scandinavian Traveller

A HighSkyFlying aponta que na aviação, as rotas aéreas são definidas em termos de waypoints (latitude, longitude), e sua distância é expressa em termos de milhas náuticas. Portanto, o uso de nós fornece uma estimativa rápida dos requisitos de tempo e velocidade para os pilotos.

Além disso, nota-se que o uso de nós é mais simples, pois os números estão dentro de uma faixa menor no que diz respeito à velocidade de aeronaves comerciais - entre 0kt e 400kt.

A aviação divide os nós em vários tipos diferentes: A velocidade do ar indicada é mostrada no indicador de velocidade do ar estático de pitot padrão de uma aeronave. Velocidade real (TAS) - a velocidade em relação ao ar não perturbado e Velocidade no solo (GS) - a velocidade em relação ao solo. Em altitudes mais elevadas, Mach (com base na velocidade do som) é usado (Foto: Vincenzo Pace)

O resultado final


No final das contas, os nós foram essencialmente herdados do setor marítimo e, assim, ganharam destaque à medida que a indústria da aviação se tornou mais proeminente.

Mesmo sendo uma unidade não SI, a ICAO reconheceu que o uso de nós é muito comum para encerrar seu uso. A facilidade de uso, compreensão e história da unidade significam que ela estará em uso em um futuro previsível.

Aeronave da Segunda Guerra Mundial voa novamente para a Marinha dos EUA


Um Douglas DC-3 reconstruído que voou pela primeira vez antes do Dia D, está voando novamente para a Naval Air Warfare Center Aircraft Division (NAWCAD), desta vez equipado com a antena aerotransportada mais avançada do mundo para receber sinais de instrumentos de aeronaves.

Originalmente fabricado em 1944 na fábrica da Douglas Aircraft em Oklahoma City, o C-47 renascido - a versão militar do avião de passageiros e carga DC-3 - foi quase totalmente reconstruído. Agora conhecido como BT-67, ele tem várias vantagens sobre as aeronaves modernas que normalmente carregam instrumentos de teste de voo para os intervalos de teste do Atlântico (ATR) da NAWCAD na Estação Aérea Naval de Patuxent River, em Maryland.

“Mais espaço interior, operação mais barata, alcance muito maior e durabilidade mais longa”, disse Dennis Normyle, arquiteto-chefe da ATR. “Ele pode ficar de oito a 10 horas na estação, um aumento significativo em relação às aeronaves de alcance normal.”

Mais espaço para equipamentos
A ATR emprega aeronaves de longo alcance para apoiar testes offshore, muito além do alcance das instalações em terra. A aeronave capta sinais, conhecidos como telemetria, enviados de instrumentos de medição instalados nos aviões ou outros veículos aéreos em teste. A aeronave de alcance, então, retransmite os sinais de telemetria, junto com os sinais de comunicação, vídeo e GPS de volta para as instalações terrestres do ATR, e registra todos os dados a bordo também.

“Como o BT-67 está voando em altitude, ele pode retransmitir sinais de uma aeronave de teste no horizonte para o ATR”, disse Dan Skelley, engenheiro chefe do projeto.

A adição de equipamento mais significativa do BT-67 para ATR é uma antena de telemetria 'phased array' controlada digitalmente exclusiva que pode rastrear vários alvos ao mesmo tempo. Projetado e construído de acordo com as especificações ATR pela Raven Defense, Albuquerque, Novo México, o Raven Advanced Phased-Array Telemetry Resource (RAPTR) é o primeiro de seu tipo já instalado em uma aeronave, disse Skelley. “É um sistema híbrido com sinais analógicos sob controle digital.”

A antena de telemetria RAPTR
Instalada no nariz da aeronave, a antena consiste em vários elementos receptores minúsculos. “O sistema de controle varia o tempo, ou fase, das saídas dos elementos e os combina de uma forma que permite que a antena rastreie até três alvos”, disse ele.

O BT-67 também carrega uma antena de matriz de tela plana separada montada em um barrilete. A unidade pode rastrear uma única fonte de telemetria girando mecanicamente para seguir um alvo em voo.

“Agora podemos rastrear três alvos”, disse Normyle. “Por exemplo, podemos rastrear um F-18 disparando um míssil, o próprio míssil e o alvo do míssil, tudo ao mesmo tempo. As atualizações futuras irão expandir esse número. ”

A combinação de uma antena 'phased array' e de tela plana quadruplica a capacidade de rastreamento da aeronave de suporte de alcance King Air padrão do ATR. Ele carrega apenas uma única antena de tela plana. “Com a antena mais antiga, temos que tomar uma decisão: qual sinal seguir - uma arma ou um alvo”, disse Normyle. “Agora podemos seguir três e escanear os céus por mais.”

A ATR pagou pelas antenas e consoles de suporte de missão instalados na aeronave. A AIRTec, Inc., da Califórnia, Maryland, comprou o avião e é responsável por todas as operações de voo, armazenamento e manutenção, de acordo com Brady Lesko, diretor de programas de telemetria e segurança da empresa.

O benefício para o ATR é: “Só pagamos quando o usamos”, disse Normyle. “É uma taxa simples pelo serviço.”

Um novo cockpit foi instalado
A Basler Aircraft de Oshkosh, Wisconsin, constrói o BT-67 a partir dos antigos DC-3s e C-47s. “Eles vasculham o mundo em busca de outros em condições reconstruíveis”, disse Skelley. A aeronave ATR é um C-47 das Forças Aéreas do Exército dos EUA reconstruído, usado para treinamento durante a Segunda Guerra Mundial.

Mas as funções dos DC-3s e C-47s durante a guerra iam muito além do treinamento. Os C-47 rebocaram planadores e lançaram paraquedistas atrás das linhas alemãs no Dia D. E os C-47s e os DC-3s transportaram suprimentos durante a guerra sobre o tempestuoso Himalaia, “o Hump”, da Índia à China para lutar contra os japoneses. A versátil aeronave também realizou missões de reabastecimento para a ponte aérea de Berlim durante o bloqueio soviético do pós-guerra.

O Comandante Supremo Aliado, General Dwight Eisenhower, disse que o C-47 foi uma das quatro peças de equipamento mais importantes para vencer a Segunda Guerra Mundial, junto com a escavadeira, o jipe ​​e o caminhão de duas toneladas e meia. “Curiosamente, nenhum desses foi projetado para o combate”, observou ele.


Para sua reencarnação moderna, a Basler remodela completamente a aeronave, alonga a fuselagem 42 polegadas entre a cabine e as asas e substitui a maioria das longarinas longitudinais e outros membros estruturais. O renascido BT-67 também possui um painel de instrumentos digital - um “cockpit de vidro” - tanques de combustível adicionais nas asas e dois motores turboélice no lugar das antigas usinas de pistão radial.

“A Administração Federal de Aviação o considera um novo avião”, disse Lesko, ex-piloto de avião fretado. “Tudo o que resta é a estrutura de suporte da asa que passa pela fuselagem e o trem de pouso.”

O novo BT-67 também melhora a resistência, o alcance e a capacidade de carga que outrora tornaram os DC-3s e C-47s com motor a pistão os aviões mais populares do mundo. Na véspera da Segunda Guerra Mundial, os voos DC-3 representavam 90% do tráfego aéreo internacional.

Levando em conta a relação custo-benefício, Lesko disse que o BT-67 atualizado é superior a qualquer aeronave moderna para a missão de suporte de alcance do ATR. “É muito estável e pode voar a uma velocidade lenta, o que torna mais fácil permanecer em uma área de teste designada”, disse ele. “Você pode fazer 89 nós (92 mph) o dia todo.”

O grande leme de cauda antiquado oferece outra vantagem sobre as aeronaves modernas. “O avião pode fazer curvas 'derrapadas' planas com o leme que mantém as asas niveladas”, disse ele. “Com uma curva inclinada convencional, uma asa desce e pode impedir que os sinais de telemetria atinjam a antena.”

A fuselagem espaçosa também tem muito espaço para consoles de telemetria, estações de controle e as pessoas para operá-los. E é barato de operar. Lesko estima que seja menos de um quinto do custo de uma aeronave de patrulha marítima P-3 com equipamento semelhante e um quarto do custo de um Dash 8, uma aeronave turboélice de passageiros de médio porte.

“Pode não parecer possível que um avião projetado na década de 1930 seja superior às aeronaves modernas para esta missão de suporte de alcance”, disse ele. “Mas é ideal para o papel, embora não pareça muito diferente dos que voavam há 85 anos.”

Via dcmilitary.com - Imagens: Reprodução

Helicóptero Ingenuity tem seu primeiro contato com o ambiente de Marte


O rover Perseverance passou longos meses na viagem com destino a Marte — foi em fevereiro que o veículo pousou na cratera Jezero, levando preso em sua “barriga” o helicóptero Ingenuity, para que essa pequena aeronave tente realizar alguns voos experimentais em Marte. Enquanto não chega o momento de entrar em ação, o Ingenuity foi liberado de seu escudo protetor no último fim de semana, tendo seu primeiro contato com o Planeta Vermelho — o que, claro, foi registrado pelas câmeras do Perseverance.

As informações vêm de uma publicação dos oficiais da NASA, feita na conta do rover no Twitter: “lá se vai o escudo de detritos, e aqui está a nossa primeira visão do helicóptero”, descreveu o tuíte. “Ele ainda está dobrado e preso, então ainda tem algum origami reverso a ser feito antes de colocá-lo no solo”. Antes disso, o rover irá passar alguns dias se deslocando até o “heliponto”, para somente depois posicionar delicadamente o Ingenuity no solo de Marte para voar. Assim, o descarte do escudo é já é uma preparação para esta etapa.

O rover Perseverance da NASA lançou o escudo de destroços que cobria o helicóptero de Marte Ingenuity, um passo em direção ao lançamento e voo do pequeno helicóptero. Esta foto tirada por Perseverance foi tuitada pela conta oficial do rover no Twitter em 21 de março de 2021 (Imagem: NASA / JPL-Caltech)
Ainda não há novas informações sobre o local do “heliponto” e do plano de voo que aguarda o Ingenuity, mas a NASA deverá trazer detalhes em uma conferência que será realizada ainda nesta semana. De qualquer forma, o Ingenuity ainda tem alguns dias pela frente para continuar preso ao rover para se manter protegido, e somente depois vai dedicar um mês marciano — ou seja, 31 dias na Terra — para as atividades relacionadas aos voos.

O Ingenuity é, na verdade, uma demonstração de tecnologia: é que, ao contrário do Perseverance, ele não irá realizar estudos científicos em Marte, mas sim tentar realizar os primeiros voos autônomos já feitos em outro planeta por uma aeronave equipada com rotores. A equipe irá realizar uma primeira tentativa e, dependendo dos resultados obtidos, pode tentar algumas manobras mais “ousadas” com o helicóptero. Se tudo correr bem, o Ingenuity poderá abrir o caminho para novas formas de exploração de Marte no futuro e, por que não, de outros mundos do Sistema Solar.

Depois que os voos do Ingenuity forem finalizados, o Perseverance vai se dedicar aos principais objetivos da sua missão. Assim, ele irá iniciar as investigações na área da cratera Jezero para buscar bioassinaturas que, se existirem, podem estar bem preservadas na região. Além disso, o rover também coletará cerca de 40 amostras, que serão distribuídas em tubos. Estes tubos vão ficar em diferentes lugares, para serem coletados no futuro por uma missão feita em uma parceria entre a Agência Espacial Europeia (ESA) e a NASA.


Fonte: CanalTech/Space.com

Maior aeronave do planeta será 100% elétrica

Ela terá aproximadamente 72 metros de comprimento e utilizará baterias convencionais e
12 motores elétricos (Crédito: Reprodução/Divulgação)
O co-fundador da Google, Sergei Brin, está acelerando o lançamento do seu novo grande projeto: a maior nave aérea do planeta. Esta aeronave será a maior do mundo com um gerador elétrico voador mais potente já criado, segundo o executivo.

Intitulada de Pathfinder 1, a primeira versão da aeronave já foi registrada na Administração de Aviação dos EUA. Ela tem aproximadamente 72 metros de comprimento e utilizará baterias convencionais e 12 motores elétricos para transportar 14 passageiros, segundo matéria do El Confidencial.

Os planos de Sergei Brin, que é a oitava pessoa mais rica do mundo, vão muito além do Pathfinder 1, que acabará por parecer um brinquedo ao lado da versão final da aeronave. O objetivo do co-fundador da Google é criar a maior máquina voadora do mundo, com um comprimento de cerca de 198 metros. Isso seria mais que o dobro do maior avião do mundo — o Antonov An-225 Mriya (84 metros) e o HAV Airlander 10 (92 metros).

As aeronaves da empresa LTA não necessitam de pistas de descolagem e aterragem e podem aterrar diretamente no solo.

Para dar asas a este projeto, a empresa de Brin tem um grande número de vagas de emprego abertas, neste momento, desde técnicos de teste e engenheiros de materiais a programadores e um gestor de programas de hidrogênio.

Com pane em trem de pouso, avião faz pouso de barriga em em Ji-Paraná (RO)

Um vídeo de apenas 10 segundos mostra o momento em que um avião faz um pouso de emergência (de barriga), nesta segunda-feira (22), em Ji-Paraná, em Rondônia.


O piloto da aeronave, um Mitsubishi MU-2B-25, prefixo PT-JGA, de propriedade do senador Acir Gurgacz (PDT/RO), sobrevoou a região do aeroporto para consumir boa parte do combustível e comunicou as equipes em solo sobre uma falha nos trens de pouso. 

O caso ocorreu por volta das 17h. Não há registro de feridos. Entre os tripulantes estava um ex-deputado estadual de Rondônia. O senador não estava a bordo.

Equipes de Bombeiros rapidamente se posicionaram e jogaram um produto na pista, o qual dificulta a combustão, para tentar impedir que o avião pegasse fogo com as faíscas produzidas no atrito da fuselagem com o asfalto.

O procedimento de pouso foi realizado com sucesso pelo piloto e a aeronave aterrissou de barriga, deslizando até parar.


A aeronave teve algumas avarias, porém ninguém ficou ferido. O turboélice está com situação de aeronavegabilidade regular, de acordo com a ANAC, porém ainda não há informações sobre o que teria motivado a pane que impediu que os trens de pouso fossem abaixados.

Via CGN / G1 RO

segunda-feira, 22 de março de 2021

Avião de Donald Trump é fotografado abandonado e sem um dos motores em hangar de Nova York


Recluso em Mar-a-Lago, sua residência-clube na Flórida, desde quando deixou a Casa Branca como ex-presidente dos Estados Unidos, Donald Trump está sem avião particular. Uma foto do Boeing 757 que ele costumava usar antes de sua chegada ao cargo mais importante do mundo foi registrada na semana passada, e na imagem o brinquedo aéreo aparece abandonado em um hangar de Nova York, sem um dos motores, e com o outro parcialmente coberto por um plástico, aparentemente por falta de manutenção.


Trump comprou seu 757 muitos anos atrás, e de segunda mão, o que costuma fazer para conseguir bons preços. Anteriormente, a aeronave fazia parte da frota comercial da American Airlines, que é renovada de tempos em tempos pela companhia. Mantê-lo funcionando e pronto pra decolar a qualquer momento consome cerca de US$ 6 milhões (R$ 33,3 milhões) por ano.


Já na presidência, o antecessor de Joe Biden costumava viajar a bordo do icônico Air Force One, um modelo 747-200 também fabricado pela Boeing que é considerado o mais seguro do mundo entre os aviões. O fato de que Trump anda sumido ao mesmo tempo em que está sem avião está sendo entendido por muitos como um indício de que as finanças pessoas dele podem estar em seus piores dias.

Vídeo mostra momento em que avião é atingido por raio durante voo

Ocorrências desse tipo são mais comuns do que se imagina e as aeronaves estão preparadas para este tipo de evento.


As estatísticas indicam que cada avião comercial é atingido por um raio uma vez a cada 3.000 horas de voo e uma vez por ano. O ELAT, Grupo de Eletricidade Atmosférica do INPE (Instituto Nacional de Pesquisas Espaciais), calcula que aviões comerciais são atingidos por relâmpagos uma vez por ano — e isso durante decolagem ou aterrissagem, quando estão em alturas abaixo de 5 quilômetros do solo.

Mesmo assim não ouvimos falar de aviões caindo por raios. Por quê? Aviões são seguros e preparados para descargas elétricas.

Especialistas aeronáuticos destacam que há efeitos diretos e indiretos quando um raio atinge um avião. Os diretos são danos físicos ocasionados pela passagem da corrente elétrica na aeronave, enquanto que os indiretos são as interferências nos equipamentos eletrônicos devido ao campo eletromagnético que ocorre quando há uma descarga atmosférica.


E ocorrências desse tipo são mais comuns do que se imagina e as aeronaves estão preparadas para este tipo de evento.

As estatísticas indicam que cada avião comercial é atingido por um raio uma vez a cada 3.000 horas de voo e uma vez por ano. O ELAT, Grupo de Eletricidade Atmosférica do INPE (Instituto Nacional de Pesquisas Espaciais), calcula que aviões comerciais são atingidos por relâmpagos uma vez por ano — e isso durante decolagem ou aterrissagem, quando estão em alturas abaixo de 5 quilômetros do solo.

Mesmo assim não ouvimos falar de aviões caindo por raios. Por quê? Aviões são seguros e preparados para descargas elétricas.

Especialistas aeronáuticos destacam que há efeitos diretos e indiretos quando um raio atinge um avião. Os diretos são danos físicos ocasionados pela passagem da corrente elétrica na aeronave, enquanto que os indiretos são as interferências nos equipamentos eletrônicos devido ao campo eletromagnético que ocorre quando há uma descarga atmosférica.


O primeiro geralmente é pontual e sem riscos, sendo inspecionado pelos mecânicos de aeronave quando a tripulação reporta “lightning strike“, enquanto que os efeitos indiretos são resolvidos com uma rápida reinicialização de sistema.

Com efeito, a forma e o tamanho das aeronaves podem atrair as descargas elétricas, mas os resultados, geralmente, não causam danos irreversíveis. Na grande maioria das vezes, o que acontece é que, ao adentrar uma nuvem ou mesmo voar próximo dela, um avião pode intensificar o campo elétrico e dar início a descargas, formando relâmpagos induzidos.

Após formado, o raio pode vir de dentro de uma nuvem, da nuvem ao solo ou mesmo se formar entre duas nuvens.


Desde que um acidente atingiu um Boeing 707 em 1963, nos Estados Unidos, a indústria aeroespacial modificou o projeto das aeronaves. Na época, um raio acertou em cheio o Boeing em pleno voo e ocasionou a explosão do tanque de combustível, resultando na queda do avião e morte de 81 pessoas.

A partir daí, novas pesquisas foram conduzidas e a indústria remanejou o projeto dos aviões, modificando o sistema de combustível para praticamente eliminar os riscos de acidentes como esse.


Hoje, quando um raio atinge uma aeronave, causa, via de regra, no máximo danos parciais na fuselagem e nas antenas externas.

Os sistemas eletrônicos das aeronaves geralmente são blindados para evitar interferências da radiação dos relâmpagos. Além disso, com o avanço das tecnologias aéreas, os pilotos conseguem antever condições climáticas e evitam voar próximos às nuvens carregadas.


Os modelos mais atuais, como o Boeing 787 Dreamliner, E-Jets da Embraer e o Airbus 350, não possuem fuselagem metálica, às vezes optando por materiais leves, como o plástico.

A parte externa é uma cobertura ultrafina de malha de cobre ou mesmo tinta de alumínio espacial — desenvolvida especificamente para conduzir a eletricidade e garantir o efeito da Gaiola de Faraday que faz uma blindagem elétrica da aeronave.

Via MetSul

Aconteceu em 22 de março de 2010: Acidente na aterrissagem do voo Aviastar-TU 1906 em Moscou

O voo Aviastar-TU Airlines 1906 operado por um Tupolev Tu-204 que realizou um pouso duro ao tentar aterrissar no aeroporto Domodedovo, em Moscou, na Rússia, em meio a forte neblina em 22 de março de 2010. 


A aeronave da Aviastar-TU Airlines estava em um voo de balsa* do Aeroporto Internacional Hurghada, no Egito para o Aeroporto de Moscou. Não havia passageiros a bordo e todos os oito tripulantes sobreviveram ao acidente. Quatro membros da tripulação ficaram gravemente feridos e levados para um hospital, enquanto outros sofreram ferimentos leves.

*Os voos de balsa abrangem muito mais do que os voos de entrega e aposentadoria de aeronaves. Toda vez que um avião tem um problema que não pode ser consertado no local, ele geralmente pode obter uma autorização de balsa para levá-lo a um aeroporto em que a manutenção possa ser concluída.

Aeronave



A aeronave envolvida no acidente foi o Tupolev Tu-204-100, prefixo RA-64011, da Aviastar-TU (foto acima), msn 1450741364011. A aeronave voou pela primeira vez como RA-64011 em 25 de março de 1993. Em 3 de setembro de 1993, entrou em serviço com a Vnukovo Airlines . Em janeiro de 2001, foi vendida para a Sibir Airlines .

Acidente


O voo 1906 foi um voo de balsa com apenas oito tripulantes a bordo da aeronave. Às 02h34 hora local (23h34 de 21 de março UTC), o avião pousou com força cerca de 1.450 metros antes da pista 14R no aeroporto de Domodedovo ao tentar aterrissar à noite em meio ao nevoeiro e em condições precárias visibilidade. O METAR para o aeroporto no momento indicava a direção do vento 160° a 3 metros por segundo (5,8 kn) e visibilidade de 100 metros (330 pés).

Quando a aeronave estava na final, os pilotos receberam vários avisos do ATC de que estavam de 1.000 a 2.000 metros à esquerda do curso de pouso, seguido por outro aviso de que estavam muito baixos. 

Os pilotos estavam confusos sobre sua localização e tentavam descobrir com base em relatórios do ATC, o computador de voo e um dispositivo GPS portátil. De acordo com o relatório final da investigação, eles também ignoraram as leituras de altitude automáticas que começaram a 60 m acima do nível do solo e continuaram a cada 10 m. 

Nove segundos antes do impacto, o piloto contatou o ATC para perguntar se eles estavam fora do curso, ainda concentrado em alinhar a aeronave com a pista e não em sua altitude. Os pilotos não fizeram nenhum esforço para interromper a descida.


A aeronave pousou em uma floresta de bétula às 23h35, horário local. Sua asa esquerda se partiu e o casco se partiu em dois. Não houve incêndio.

Os bombeiros chegaram 30 minutos depois. Todos os membros da tripulação, exceto o engenheiro de voo que ficou gravemente ferido, escaparam do avião acidentado por conta própria. 


Eles não puderam explicar imediatamente o motivo do acidente, dizendo que aconteceu muito rápido. Um dos tripulantes (comissário) chegou à rodovia próxima e parou um carro que a levou ao hospital. Três outros tripulantes também chegaram à rodovia e esperaram por uma ambulância.

Os dois pilotos sofreram fraturas e contusões graves; outros dois foram levados ao hospital, onde foram descritos como se encontrando em condições satisfatórias. Os quatro tripulantes restantes foram tratados por ferimentos leves no centro médico de Domodedovo. O acidente resultou na primeira perda do casco de um Tupolev Tu-204 e na primeira perda do casco do Aviastar-TU.


Antes dessa ocorrência, a aeronave já havia se envolvido em outros dois acidentes. Em 14 de janeiro de 2002, a aeronave voava de Frankfurt para Novosibirsk quando teve que ser desviado para Omsk devido ao mau tempo no destino. Na aproximação, os pilotos relataram problemas de abastecimento de combustível, seguido por um apagamento de ambos os motores. A aeronave planou e pousou com sucesso, mas ultrapassou a pista e colidiu com as luzes após a cabeceira da pista. Não houve feridos. A aeronave foi reparada e continuou o serviço. A partir de agosto de 2006, a aeronave foi alugada para várias companhias aéreas russas - Red Wings Airlines, Aviastar-TU, Interavia Airlines e, em seguida, Aviastar -TU novamente.


Em 21 de março de 2010, um dia antes do acidente, a aeronave voava de Moscou para Hurghada com 210 passageiros a bordo, quando teve que retornar a Moscou devido à fumaça na cabine. O acidente foi causado por um aquecedor defeituoso na cabine, que foi prontamente reparado.

Investigação


Apesar do clima adverso, o serviço federal russo de transporte aéreo Rosaviatsia diz que a aeronave conduziu uma aproximação normal e "a tripulação não relatou nenhuma falha, mau funcionamento ou intenção de fazer um pouso de emergência". 


O principal investigador da Rússia disse em 22 de março que o pouso de emergência pode ter sido causado por uma violação das regras de segurança. O método que a tripulação usou para navegar na aeronave é uma via particular para a investigação do acidente.

A Rosaviatsia informou que os gravadores de voo foram recuperados e enviados ao Comitê de Aviação Interestadual (МАK) para análise. Enquanto se aguardava a investigação, a companhia aérea - Aviastar-TU - foi proibida de transportar passageiros e suas operações foram investigadas.


A análise preliminar dos dados de voo mostrou que a aeronave não foi danificada no ar por nenhum incêndio ou explosão, e ambos os motores operaram até o impacto. De acordo com o chefe da Agência Federal de Transporte Aéreo da Rússia, Alexander Neradko, o "fator humano" foi a causa provável do acidente.

Em 30 de março de 2010, foi relatado que a aeronave tinha 9 toneladas de combustível a bordo no momento do acidente. Na aproximação ao Domodedovo, o sistema de piloto automático falhou quando a aeronave desceu 4.200 metros (13.800 pés). A tripulação então voou a aeronave manualmente, mas não comunicou a falha do sistema de autoflight ao Controle de Tráfego Aéreo.


Dois meses antes da queda, o capitão foi punido por uma violação menor (acidentalmente operar spoilers em voo durante a aproximação com os flaps abaixados).

Por Jorge Tadeu (com Wikipedia, ASN e baaa-acro.com)

Vídeo: Air Crash Investigation - USAir Flight 405 (Best Documentary 2016)

(em inglês)

Aconteceu em 22 de março de 1992: Voo 405 da USAir - O assassino branco ataca novamente


Em 22 de março de 1992, o voo 405 da USAir, operado por um Fokker F-28, não conseguiu decolar ao tentar decolar do aeroporto LaGuardia, em Nova York. O avião caiu da pista e caiu em Flushing Bay, matando 27 das 51 pessoas a bordo.

Após este acidente, a Federal Aviation Administration lançou uma revisão da forma como os aviões eram descongelados - uma revisão que a investigação sobre o acidente no voo 1363 da Air Ontario, ocorrido em 10 de março de 1989, já havia recomendado.


O Fokker F28 Fellowship 4000, prefixo N485US, da USAir (foto acima), operando o voo 405 de Nova York a Cleveland se preparava para decolar do Aeroporto LaGuardia. O voo já estava com mais de uma hora de atraso quando chegou ao LaGuardia, e mais atrasos estavam aumentando rapidamente. 

Primeiro, os pilotos optaram por descongelar o avião no portão usando fluido descongelante tipo 1, que ainda era o tipo mais amplamente usado. Mas após o degelo, ocorreu um atraso de 20 minutos porque um dos veículos de degelo quebrou atrás do avião e o impediu de taxiar para longe do portão. 


Quando foi consertado, o fluido de descongelamento havia perdido sua força e os pilotos optaram por descongelar o avião novamente. Finalmente, o avião deixou o portão às 21h00, com uma hora e 40 minutos de atraso, levando a bordo 47 passageiros e quatro membros da tripulação.

Mas o voo logo foi atrasado novamente. Uma das duas pistas do LaGuardia foi temporariamente fechada para que pudesse ser lixada, resultando em uma longa fila de aeronaves esperando para decolar na pista restante. 

Durante os próximos 35 minutos, o voo 405 ficou na fila enquanto uma neve muito leve caiu no aeroporto. Durante esse tempo, os pilotos certamente pensaram no gelo - na verdade, o primeiro oficial John Rachuba acendeu repetidamente as luzes nas asas para que pudesse olhar para trás e verificar se havia contaminação do gelo. 

Ele aparentemente não viu nenhum, comentando com o capitão William Majure: "Parece muito bom para mim, pelo que posso ver." Mesmo assim, se eles quisessem descongelar o avião novamente, eles teriam perdido seu lugar na fila - e isso poderia tê-los colocado de volta na mesma situação mais tarde, se não fizesse com que o voo fosse cancelado completamente .

No final das contas, o gelo estava de fato se formando nas asas à medida que a eficácia do fluido de degelo tipo 1 se dissipava rapidamente. Mas nenhum dos pilotos conseguiu ver o gelo porque a quantidade que se formou, embora certamente perigosa, não era visível da cabine, embora as tripulações da USAir universalmente acreditassem que seria. 

Ilustração de Matthew Tesch em "Air Disaster: Volume 3, de Macarthur Job"
O voo 405 foi finalmente liberado para decolar às 21h35 com seus pilotos totalmente inconscientes de que o gelo nas asas estava aumentando consideravelmente sua velocidade de estol. O Capitão Majure optou por uma velocidade V1 mais baixa do que o normal (ou seja, a velocidade acima da qual a decolagem não pode ser abortada) devido à possibilidade de neve derretida na pista. Isso teria um efeito colateral indesejado. 

No Fokker F28, V1 e VR (a velocidade na qual o nariz é girado para cima) são normalmente os mesmos, mas com um V1 mais baixo, eles agora eram diferentes. Contudo, enquanto o avião acelerava na pista, o primeiro oficial Rachuba instintivamente chamou VR imediatamente após V1, levando o capitão Majure a girar prematuramente. 

A contaminação do gelo já estava reduzindo a capacidade das asas de gerar sustentação, e a rotação inicial pode muito bem ter sido a gota d'água que impediu o avião de decolar. Tanto o gelo quanto a rotação inicial levaram a um ângulo de ataque maior - o ângulo do nariz em relação à corrente de ar - e, subsequentemente, a um estol. 

O voo 405 flutuou apenas alguns pés acima do solo, incapaz de encontrar o elevador para subir. Os pilotos perceberam imediatamente que seu avião não voaria, mas pouco podiam fazer para evitar um acidente. 


A asa esquerda atingiu a pista, lançando fagulhas e arrastando o avião para a esquerda na grama. Ele atingiu vários postes indicadores, tocou brevemente, saltou de volta no ar, atingiu o farol localizador ILS e demoliu uma casa de bombas, que arrancou a asa esquerda. Se partindo enquanto avançava, o voo 405 rolou sobre o quebra-mar e caiu invertido nas águas rasas da Baía de Flushing.


O acidente matou 12 pessoas imediatamente, mas as 39 restantes agora enfrentavam as ameaças simultâneas de incêndio e afogamento. 

Os passageiros e a tripulação na frente do avião viram-se pendurados de cabeça para baixo com as cabeças debaixo d'água. 


O resto do avião pousou em pé meio submerso na baía, mas muito do que estava acima da superfície pegou fogo rapidamente. 

Os passageiros se atrapalharam para soltar os cintos de segurança e escapar pela água gelada. Alguns escalaram o paredão e cambalearam para a pista, enquanto outros se agarraram aos destroços flutuantes e foram resgatados pelos bombeiros que chegaram ao local quase imediatamente. 


Muitos mais nunca conseguiram sair. Além dos 12 mortos no impacto, 15 morreram afogados após o acidente, elevando o número de mortos para 27, enquanto 24 sobreviveram. Entre os mortos estava o capitão Majure, mas o primeiro-oficial Rachuba conseguiu escapar.


Os investigadores descobriram que os pilotos da USAir foram ensinados sobre os perigos da formação de gelo, mas não foram ensinados a formas eficazes de detectá-lo. O simples fato é que a contaminação da asa não pode ser vista com segurança da cabine de qualquer avião. 

Os procedimentos exigiam que os pilotos olhassem da cabine se não tivessem certeza, mas a maioria dos pilotos acreditava que a visão da cabine era igualmente boa. Na verdade, a única maneira de ter certeza se há gelo nas asas é tocá-las fisicamente. 


Mas os pilotos de todos os lugares estavam decolando com gelo nas asas porque muitas vezes era impossível descongelar o avião imediatamente antes da decolagem para que o fluido descongelante tipo 1 tivesse força total.

Isso representou um grande problema no setor de aviação civil - um problema que poderia ter sido resolvido antes. Melhor treinamento em torno do perigo do gelo e uma substância descongelante mais forte foram as duas recomendações que surgiram da queda do voo 1363 da Air Ontario, que poderia ter evitado a queda em LaGuardia.
A USAir treinou seus pilotos para o perigo do gelo, mas não forneceu meios para os pilotos saberem com certeza se seu avião tinha gelo. Quando se decidiu entre decolar com possibilidade de gelo, quando não havia gelo, ou cancelar o voo, os pilotos ficaram compreensivelmente relutantes em cancelar o voo. 

E o voo 405, como todos os outros aviões do LaGuardia naquela noite, foi descongelado usando fluido descongelante tipo 1, que era conhecido por ser ineficaz. O relatório provisório da Comissão Moshansky, incluindo essas recomendações, foi publicado em 1989, apenas alguns meses após o acidente em Dryden, mas de alguma forma a FAA não considerou suas recomendações e o acidente da Air Ontario não foi mencionado no relatório do NTSB sobre o voo 405 da USAir!


Ainda não está claro até hoje porque ninguém nas FAA sabia das descobertas de Moshansky. Anos depois, Moshansky afirmou que enviou o relatório provisório à FAA, mas que provavelmente acabou “enfiado em uma gaveta em algum lugar” e nunca chegou às pessoas certas. 

As descobertas da comissão provavelmente teriam circulado em publicações da indústria, mas na USAir, a companhia aérea em rápido crescimento não tinha meios de comunicação estabelecidos para levar essas informações a pilotos como Majure e Rachuba, que haviam ingressado recentemente na USAir com a aquisição de outras companhias aéreas como Piedmont e Empire. O resultado foi que as lições da queda do voo 1363 da Air Ontario não só não chegaram aos pilotos do voo 405 da USAir, como na verdade nunca saíram do Canadá.

Após a queda do USAir 405, o NTSB recomendou muitas das mesmas coisas que Moshansky recomendara anos antes, e a FAA finalmente entrou em ação. Hoje, todos os pilotos são treinados para tratar a contaminação das asas com o máximo de cautela, especialmente em aeronaves vulneráveis como o Fokker F28. 


O fluido de degelo tipo 1 agora é usado apenas para limpar a neve e, se houver condições de gelo, ele é sempre seguido pelo tipo 4, que pode evitar a formação de gelo por até duas horas após a aplicação. 

E outra recomendação do relatório Moshansky, que as instalações de descongelamento sejam colocadas perto da pista para que os aviões possam descongelar antes da decolagem, também está amplamente implementada (É importante notar que a FAA arrastou os pés nesta recomendação porque a instalação de equipamentos perto da pista representava um perigo em cenários de escoamento da pista. Essa visão foi finalmente abandonada).


As lições dessas duas falhas são de longo alcance. Eles não apenas ajudaram a revolucionar o tratamento da indústria para a contaminação de asas, mas também serviram como um lembrete severo da importância da comunicação. 

Se a comunicação entre a comissão de inquérito no Canadá e as FAA nos Estados Unidos tivesse sido mais padronizada, o relatório Moshansky não teria escapado pelas rachaduras e 27 pessoas poderiam não ter morrido no voo 405 da USAir. 

Hoje, é altamente improvável que a FAA nunca mais esqueceria um relatório sobre um grande acidente - graças em parte ao mundo muito mais interconectado em que vivemos agora.


E, finalmente, esse par de acidentes ressalta o princípio fundamental por trás do motivo pelo qual investigamos acidentes com aeronaves: essa mudança deve vir de cada acidente, para não correr o risco de deixar que aconteça novamente.

Clique AQUI para acessar o Relatório Final do acidente.

Edição de texto e imagens por Jorge Tadeu

Com Admital Cloudberg, ASN, Wikipedia, baaa-acro.com