quinta-feira, 19 de janeiro de 2023

Dois dias, dois vazamentos: dados sensíveis do F-15 postados por fã do game 'War Thunder'

(Foto: Periam Photography/Shutterstock.com)
Uma série de documentos restritos sobre o caça McDonnell Douglas F-15E Strike Eagle foi postado no fórum de um videogame online, War Thunder.

O vazamento ocorre apenas um dia depois que o jogo ganhou as manchetes após a postagem de um usuário que continha um documento restrito sobre o General Dynamics F-16 Fighting Falcon.

O novo vazamento parece ter consistido em vários manuais de software do Programa de Voo Operacional (OFP) para o F-15E, incluindo alguns sobre controles de voo, navegação, direcionamento e sistemas de armas.

As informações fornecidas na postagem indicam que os documentos foram originalmente publicados entre 1998 e 2000 e pertenciam à suíte OFP 3. A suíte foi atualizada várias vezes nas últimas décadas e não está claro se a antiga ainda está em uso.

Os documentos foram publicados no fórum do War Thunder em 18 de janeiro de 2022, pelo usuário RanchSauce39. A postagem foi excluída pela Gaijin Entertainment, indica a discussão no fórum.

Uma captura de tela da postagem foi preservada e divulgada nas redes sociais; algumas capturas de tela dos manuais, compartilhadas por RanchSauce39, também foram postadas no mesmo tópico, pois os usuários argumentaram se continham materiais classificados.


Os moderadores do fórum pareciam concordar que, embora os documentos fossem desclassificados, sua publicação era restrita e proibida tanto pela lei dos Estados Unidos quanto pelas regras do fórum. A AeroTime não teve chance de confirmar isso.

O vazamento anterior continha documentos desclassificados, mas também restritos, e consistia em um manual de voo detalhando o uso do míssil ar-ar avançado de médio alcance AIM-120 (AMRAAM) no F-16.

Era significativamente menor em escala do que o último vazamento do F-15 e continha documentos em uma variante mais antiga do F-16.

Base de fãs preocupantemente apaixonada


War Thunder – um jogo online no qual os jogadores usam vários veículos militares para lutar entre si – é conhecido por seus jogadores compartilharem informações confidenciais online.

Os usuários geralmente obtêm e publicam os materiais na tentativa de convencer os desenvolvedores do jogo a ajustar o desempenho dos veículos representados no jogo.

Manuais restritos e outros documentos sobre os tanques Challenger, Leclerc e Type 99, o helicóptero de ataque Eurocopter Tiger e outros tipos de tecnologia militar da vida real foram publicados nos fóruns do jogo.

Na maioria dos casos, os documentos foram disponibilizados em outros lugares na internet e republicados por usuários do War Thunder.

As regras do fórum do jogo proíbem a publicação de qualquer tipo de material restrito, portanto, em todos os casos mencionados, os documentos foram removidos pelos moderadores ou pelos desenvolvedores do jogo.

Os desenvolvedores também não baseiam as representações de veículos no jogo em tais materiais, disse Anton Yudintsev, fundador da Gaijin Entertainment, em um comentário ao AeroTime.

“Sempre excluímos postagens contendo informações classificadas ou restritas de nosso fórum o mais rápido possível. Proibimos nossos usuários de compartilhar documentos como este em nossas plataformas. Lembramos repetidamente aos nossos usuários que é ilegal e inútil, então eles nunca devem fazer isso”, acrescentou Yudintsev.

Via Aerotime Hub

O que são voos parabólicos e para que servem?

Os voos parabólicos permitem que os passageiros experimentem a ausência de peso durante as manobras de gravidade zero.

(Foto: NASA)
Voos parabólicos são voos parcialmente de gravidade zero (Zero-G) onde manobras específicas de alto ângulo são executadas. Os voos parabólicos fornecem uma sensação semelhante de gravidade zero que é obtida brevemente ao andar no topo de uma montanha-russa. O piloto tem uma breve sensação de ausência de peso até que a gravidade assuma o controle.

Aeronaves especializadas realizam voos parabólicos, imitando a curva de uma parábola, em movimentos de subida e descida de 45 graus. Os passageiros experimentam 20-25 segundos de microgravidade, seguidos de um aumento de gravidade de até 2 g. Um vôo parabólico típico pode durar de duas a três horas com quase 30 episódios de falta de peso.

Airbus A310 Zero G


A Novespace usa um Airbus A310 especializado para realizar voos científicos e de descoberta em gravidade zero na Europa. Com sede em Bordeaux, na França, a empresa oferece aos pesquisadores e ao público uma experiência de gravidade zero a bordo de suas aeronaves Airbus . Equipas multidisciplinares de vários países europeus partilham o laboratório voador a bordo do A310. As equipes colaboram para compartilhar dados e conhecimento para aprofundar a pesquisa espacial.

(Foto: Novespace)
Os voos Discovery são oferecidos ao público que deseja vivenciar uma sensação de ausência de gravidade semelhante à vivida pelos astronautas no espaço. Os voos Discovery geralmente são limitados a 15 parábolas, onde os passageiros experimentam sensações de gravidade zero.

Etapas do voo


Existem três estágios de um vôo parabólico. O pull-up da parábola, a curva parabólica e o pull-out da parábola. No estágio pull-up, o nariz da aeronave é elevado a cerca de 45 graus por cerca de 20 segundos. Durante esse tempo, os passageiros experimentam hipergravidade (aproximadamente 1,8 g).

No segundo estágio, os pilotos reduzem a potência dos motores e a aeronave entra em uma trajetória parabólica de gravidade zero. Durante esse tempo, os passageiros experimentam ausência de peso por cerca de 20 segundos.

(Foto: Sergey Kohl/Shutterstock)
No estágio pull-out, os pilotos inclinam o nariz da aeronave para baixo em aproximadamente 45 graus. Os passageiros mais uma vez experimentam hipergravidade por cerca de 20 segundos antes que a potência do motor seja aumentada e a aeronave nivele.

Para que são normalmente usados ​​os voos parabólicos?


Cientistas e pesquisadores conduzem voos de gravidade reduzida para testar os efeitos da microgravidade em pessoas e aeronaves. Esses voos são realizados dentro dos limites de segurança da aeronave e dos limites de gravidade possíveis para humanos. Os vôos parabólicos são frequentemente conduzidos para validar instrumentos espaciais e treinar astronautas para suas missões reais no espaço sideral.

Para voos científicos, o ângulo de ataque da aeronave é ajustado com precisão para simular os níveis de gravidade no destino visado. Os pesquisadores testam várias curvas parabólicas para variar a gravidade resultante entre 0 e 1 g.

(Foto: VanderWolf Images/Shutterstock)
Por exemplo, um voo científico que estuda as condições ambientais lunares estimulará os níveis de gravidade lunar (0,16 g) para pesquisa e treinamento de pessoal. Da mesma forma, os níveis de gravidade marciana de 0,38 g também são testados para fins de pesquisa e treinamento.

Os dados obtidos de voos parabólicos podem ser modificados e testados posteriormente para alcançar resultados desejáveis ​​para missões espaciais. A NASA usa esses voos para pesquisar e treinar astronautas que trabalham em várias missões espaciais, incluindo a Estação Espacial Internacional.

Com informações do Simple Flying

Por que ficamos alcoolizados mais rápido no avião?

Beber um uísque dentro do avião pode te deixar nas alturas, literalmente — e mais do que se você bebesse essa mesma dose na sua casa.


Isso acontece principalmente porque o nível de oxigênio no seu sangue está mais baixo devido à pressão atmosférica de dentro da cabine. Mesmo com a pressurização, ela é menor do que estamos acostumados em terra.

Com um nível menor de oxigênio, os órgãos funcionam mais lentamente e a bebida permanece mais tempo dentro de você, aumentando o efeito.

Se você fizesse uma festa em uma montanha de 2 mil metros de altura, também ficaria no mesmo “grau”. E tem mais: como o ar dentro do avião é muito seco, o passageiro pode desidratar mais rápido do que se estivesse tomando uma no solo.

Outra coisa: o álcool demora mais ou menos uma hora para fazer efeito. Aquela segunda ou terceira taça de vinho porque a primeira "não bateu" pode sobrecarregar o fígado, que já está funcionando mais devagar por conta da altitude, e gerar os efeitos da famosa ressaca.

Não quer passar vexame no voo? A dica amiga é ingerir água junto e também evitar comidas muito salgadas. Boa sorte para você que embarcou ao lado de alguém que está a fim de afogar as mágoas.

Como os aviões manobram quando estão no solo?

Aviões usam pequeno 'volante', pedal e até freio para fazer curvas em terra.

Avião manobra no solo com ajuda de uma espécie de volante e dos pedais
(Foto: Divulgação/Airbus)
Quando um avião está no solo, suas manobras são diferentes daquelas realizadas no ar. Se enquanto está voando ele usa, prioritariamente, o manche para movimentar a aeronave, em solo, outros dois dispositivos se tornam fundamentais.

Um deles é o pedal, que ajuda o avião a virar de duas maneiras: direcionando ou freando as rodas. O outro é o " nose wheel tiller" (leme da roda do nariz), que consiste em um volante, só que apenas para o trem de pouso do nariz da aeronave.

Pequeno "volante"


Cabine de um Boeing 747, com destaque para o 'tiller', espécie de volante para facilitar as
manobras no solo (Foto: Divulgação/Christian Junker)
O tiller é mais parecido com o volante de um carro, e é encontrado em aviões maiores. Seu papel é o de girar as rodas do trem de pouso do nariz do avião.

Com ele, é possível que o avião faça curvas mais acentuadas, de até 75º para cada lado, por exemplo. Ele fica localizado próximo da mão esquerda do piloto ou direita do copiloto, pouco abaixo da janela, na maioria das vezes.

Seu funcionamento é como o de um carro, com um sistema de engrenagens atreladas à roda que são acionadas de maneira elétrica ou hidráulica após o piloto manipular o mecanismo na cabine. Em baixas velocidades, ele pode ser utilizado sem problemas.

Conforme a velocidade do avião vai aumentando na decolagem, esse sistema perde sua eficiência, até mesmo pelo fato de que o avião começa a ganhar sustentação e vai saindo do solo.

Em situações como essa, é prioritário que o piloto passe a usar os pedais para manter o controle da guinada do avião.

Pedais


Outra maneira de mudar a direção do avião no solo é o pedal, que também tem função primordial em voo, mas, em terra, se torna essencial para manobrar o avião. Diferentemente de um carro, cada pedal do avião tem duas formas de serem acionados.

Em voo, ao apertar o pedal por inteiro, ele aciona o leme de direção do avião, que é responsável pelo movimento de guinada em torno do eixo vertical da aeronave. Em solo, quando o motor está com uma certa potência, o leme também consegue reproduzir o movimento em voo, mudando a direção do avião.

Já em baixas velocidades, ao apertar o pedal por inteiro, ele pode movimentar a roda do trem de pouso para um lado e para o outro. Esse movimento, entretanto, não é grande, como em um carro, restringindo a curva.

Freio ajuda


Cabine de comando de um Airbus A350 XWB: como o avião consegue manobrar no solo?
(Foto: Divulgação/Joao Carlos Medau)
Em algumas situações, quando se aperta apenas a ponta dos pedais, com a ponta dos pés, eles não movimentam o leme de direção nem o trem de pouso do avião, mas freiam as rodas do respectivo lado onde está sendo acionado.

Assim, se o piloto quiser fazer uma curva para a direita, deve pressionar a ponta do pedal direito para que a roda do mesmo lado freie, enquanto a do lado esquerdo estará livre para girar.

Como a roda ficará parada, o seu atrito com o solo será muito maior do que se estivesse rodando, e isso desgasta o pneu mais rápido. Por isso, essa não é a manobra mais desejada quando se está em solo, costumando-se optar por virar o trem de pouso para o lado desejado.

Por Alexandre Saconi (UOL)

Os comissários de bordo podem usar o hijab?

Companhias aéreas diferentes têm regras diferentes.

(Foto: Saudia)
Tornar-se uma comissária de bordo usando um hijab costuma ser um assunto difícil. Hijab, que significa 'véu', também se refere à cobertura da cabeça usada por algumas mulheres muçulmanas. Significa modéstia e privacidade e apenas revela o rosto. Nos últimos anos, tornou-se mais aceito que as mulheres que usam o hijab podem se tornar comissárias de bordo.

Mais recentemente


A British Airways anunciou seus novos uniformes no início de 2023 e de fato incluiu uma opção para usuários de hijab. Westjet, Air Canada e US Airways também permitem que os comissários de bordo usem um hijab para fins religiosos. 


Anteriormente, você só podia se candidatar a um emprego de comissário de bordo em uma companhia aérea estritamente islâmica, como Rayani Air (agora extinta), Royal Brunei Airlines ou Ariana Afghan Airlines. Claro, companhias aéreas em países muçulmanos como Afeganistão, Indonésia, Egito, Arábia Saudita e Irã sempre aceitaram o hijab como parte do uniforme.

Função do comissário de bordo


A segurança é a preocupação mais importante e as companhias aéreas não permitirão niqabs ou burkas, pois não atendem às diretrizes uniformes . Considerando também que é uma função voltada para o cliente, é importante que o rosto seja visto. No entanto, os hijabs estão se tornando aceitáveis ​​e não são vistos como um comprometimento da segurança ou do serviço. 

Comissárias de bordo da Citilink indonesia (Foto: Citilink Indonesia)
Mesmo no Oriente Médio, o álcool costuma ser servido a bordo da aeronave como parte do serviço de bordo. Isso também pode ser problemático e é considerado 'haram' ou proibido. Nesse caso, cabe ao candidato decidir o que é certo para ele. A maioria das companhias aéreas declara em seus requisitos de recrutamento que os candidatos serão obrigados a servir álcool a bordo e podem ser solicitados a tirar o hijab.

Diretrizes para os uniformes


Os padrões uniformes das companhias aéreas são conhecidos por serem rígidos, pois os comissários de bordo são os representantes da companhia aérea. Companhias aéreas como a British Airways e a Emirates estão mais do que dispostas a trabalhar com indivíduos que desejam usar o hijab para fins religiosos. Eles permitem um hijab especialmente projetado que combina com o uniforme, mas ainda deve ser usado de uma certa maneira e em conformidade com os padrões uniformes.

(Foto: Flyadeal)
Muitas companhias aéreas do Oriente Médio têm uniformes que incorporam chapéu e véu. Isso inclui Oman Air, Emirates, Gulf Air, Saudia e Nasjet. Dão um ar mais modesto; no entanto, eles são retirados após o embarque da aeronave e recolocados pouco antes do desembarque. A Malaysian Airlines não permite hijab como uniforme.

Outras companhias aéreas


Algumas companhias aéreas vêm incorporando ativamente o hijab no uniforme do comissário de bordo há muitos anos. Estes incluem Egyptair, Citilink Indonesia, Garuda Indonesia e Lion Air, embora o hijab não seja usado por todos os comissários de bordo. As companhias aéreas charter, como a Air Atlantic Icelandic, especializam-se no fornecimento de voos para o Hajj e fornecerão coberturas de cabeça para as tripulantes femininas.

Na Arábia Saudita, algumas companhias aéreas, como Flyadeal e Saudia, relaxaram um pouco o uniforme. Em alguns países, como Indonésia e Kuwait, foi sugerido que os uniformes dos comissários de bordo ainda não são conservadores o suficiente. Tanto é assim que alguns voos só têm tripulantes de cabine masculinos a bordo.

Com informações do Simple Flying

Menor avião do mundo media menos que um carro e chegava a 305 km/h


Os céus costumam ser tomados por gigantes. Seja o Antonov An-225 Mriya, o maior avião em capacidade de carga, o Airbus A380, que leva mais passageiros, ou, até mesmo, o Stratolaunch, que tem a maior distância de ponta a ponta da asa, todos lutam pelo título de maior do mundo.

Entretanto, o menor avião tripulado conhecido é um feito nos Estados Unidos com capacidade para apenas uma pessoa, o Starr Bumble Bee II.

Foi criado por Robert H. Starr e tinha asas muito pequenas, o que dava a impressão de que não conseguiria voar. O biplano ainda possuía a pintura em amarelo e preto, lembrando a figura popular de uma abelha.

Bumble Bee II, o menor avião tripulado do mundo, com capacidade para apenas uma pessoa
Suas dimensões são inferiores à de um carro popular, com altura de 1,2 metro, comprimento de 2,69 metros e 1,68 metro de distância de ponta a ponta das asas. Um carro como o Fiat Strada, o mais vendido de 2021, tem largura de 1,73 metro e 4,46 metros de comprimento.

Foi criado por causa de uma rivalidade

O Bumble Bee II foi construído unicamente para cumprir o título de menor do mundo. Esse desejo de seu criador vinha de uma rivalidade com os antigos recordistas na modalidade, Ray and Donald Stits.

Robert Starr havia participado como projetista e piloto de outros dois modelos que tinham o título de menores em tamanho. Um desses projetos foi o Stits SA-2A "Sky Baby", desenvolvido com Ray.

Como não se sentiu devidamente reconhecido pelos seus esforços, ele quis tomar para si próprio esse recorde, desenhando um avião unicamente para essa finalidade, o Bumble Bee I (imagens abaixo).

O Bumble Bee I

Esse avião começou a ser desenvolvido a partir de 1979, e ficou pronto em 1984, batendo o novo recorde. Entretanto, Donald, filho de Ray, produziu o Stits Baby Bird, retomando a marca de menor avião do mundo na sequência.

Persistência para retomar o recorde

À época, Starr não aceitou perder sua conquista, dizendo que o avião concorrente não era capaz de "acomodar um piloto de tamanho normal". Robert não desistiu de seu objetivo e criou o Bumble Bee II.

Ele voou pela primeira vez em 2 de abril de 1988, deixando sua marca até hoje no "Guinness Book", o livro dos recordes, como o menor avião pilotado do mundo.


Acidente quase fatal

Cerca de um mês depois do voo que registrou o Bumble Bee II na história, o avião ficou destruído em um acidente. No dia 5 de maio de 1988, a aeronave, que era muito difícil de ser controlada, sofreu uma queda, e sua estrutura ficou completamente danificada.

Robert Starr, que pilotava o avião naquele momento, ficou seriamente machucado, mas se recuperou tempos depois. Em 1990, o projetista doou o Bumble Bee I ao Museu aeroespacial Pima, nos Estados Unidos.

Ficha Técnica

  • Nome: Starr Bumble Bee II
  • Primeiro voo: 2 de abril de 1988
  • Capacidade: Uma pessoa (piloto)
  • Envergadura: 1,68 metro
  • Altura: 1,2 metro
  • Comprimento: 2,69 metros
  • Peso vazio: 180 kg
  • Peso máximo de decolagem: 260 kg (incluindo piloto e combustível)
  • Capacidade do tanque: 11,35 litros
  • Velocidade máxima: 305 km/h

Por Alexandre Saconi (UOL) e Jorge Tadeu (Site Desastres Aéreos) - Imagens: Reprodução

quarta-feira, 18 de janeiro de 2023

História: Milagre no voo 85 da Northwest Airlines – Como 4 pilotos salvaram 404 vidas?


Em 9 de outubro de 2002, por volta das 17h40, horário de verão do Alasca, um Boeing 747-400 da Northwest Airlines experimentou um evento de hardover do leme inferior enquanto navegava no FL350. O leme inferior esquerdo desviou para seu limite de descarga sem intervenção da tripulação, o que forçou os pilotos a usar todo o leme superior direito e o aileron direito para manter a altitude e o curso.

Tudo graças aos dois lemes suportados e operados de forma independente (superior e inferior) do Boeing 747-400. Se este fosse um leme, os pilotos não teriam autoridade de controle suficiente para manter o avião na posição vertical contra a força exercida pelo leme. É um dos poucos jatos comerciais da Boeing com leme dividido, fato que pode ter ajudado a evitar um incidente grave.

Detalhes do voo


O Boeing 747-400, com matrícula N661US, realizava o voo Northwest 35 do Aeroporto Metropolitano de Detroit Wayne County, nos Estados Unidos, para o Aeroporto Internacional de Narita, no Japão, com 386 passageiros e 18 tripulantes a bordo. A aeronave envolvida foi o protótipo Boeing 747-400 construído para testes de voo como N401PW. Posteriormente, foi entregue à Northwest Airlines, o cliente de lançamento do 747-400 em 8 de dezembro de 1989.

Enquanto navegava no FL350, a aeronave rolou abruptamente para uma margem esquerda de 30 a 40 graus. Inicialmente, o capitão Geib acreditou que havia ocorrido uma falha no motor e recuperou a aeronave rapidamente. No momento do incidente, o capitão Frank Geib e o primeiro oficial Mike Fagan haviam acabado de assumir o controle da aeronave, permitindo que o capitão sênior John Hanson e o primeiro oficial David Smith descansassem. O capitão sênior Hanson sentiu a aeronave realizando uma manobra muito estranha e sentiu que algo estava errado. Quando o interesse do capitão aumentou, a tripulação em repouso recebeu a chamada de emergência da cabine. Há um carrilhão que eles podem tocar. E quando o sinal soar, significa que precisamos de você imediatamente no cockpit. Hanson entrou novamente na cabine e viu o capitão Gibe segurando a pressão total do leme com a perna direita.

“O leme inferior tinha ido inexplicavelmente e repentinamente para a esquerda. Normalmente era limitado pela aeronave a seis graus de lançamento do leme em altitude, e o leme passou de zero a quase dezoito graus em menos de um segundo”, declarou o Capitão John Hanson.


Desvio para Ancorage



Pouco depois de todos os membros da tripulação entrarem na cabine, o capitão Hanson percebeu que o piloto automático não iria lidar com isso e desligou o piloto automático. A tripulação do cockpit passou a pegar o manual de operação do cockpit, que é um manual vermelho projetado para cobrir todas as emergências que a tripulação possa encontrar. Infelizmente, a situação em que se encontrava o voo 85 não constava no manual.

Nesse ponto, a tripulação declarou emergência e iniciou um desvio para Anchorage. No entanto, quando a tripulação decidiu declarar emergência, o avião estava em uma zona morta de comunicação entre a América do Norte e a Ásia. Incapaz de declarar uma emergência enquanto sobrevoava o Mar de Bering, a tripulação contatou outro voo 19 da Northwest Airlines, que ajudou o voo 85 a declarar a emergência por estar mais perto do Alasca.

Embora a qualidade não fosse tão boa, eles conseguiram entrar em uma teleconferência com a equipe da Northwest Airlines em Minneapolis-St. Paul via rádio HF. Infelizmente, ninguém na teleconferência poderia sugerir uma maneira de trazer o leme de volta. A única sugestão que o Flight 85 recebeu foi do gerente de treinamento, que sugeriu adicionar um pouco de velocidade extra à final.

Tendo observado toda a situação minuciosamente, o capitão Hanson pensou e decidiu assumir o controle da aeronave.

“Sendo o capitão sênior, assumindo a responsabilidade, se alguém vai arranhar meu avião, quero que seja eu. E eu disse a Frank que ele fez um trabalho fabuloso com a recuperação inicial, estava fazendo um bom trabalho pilotando, mas que eu exerceria meu direito de voltar ao assento. A reação de Frank foi: não tenho problemas com isso”, disse o capitão John Hanson.

Pouco depois de declarar emergência e iniciar um desvio para Anchorage, a tripulação decidiu fazer uma reunião com a tripulação de cabine. A tripulação convidou o comissário, que é o principal comissário de bordo e intérprete, até a cabine e fizeram uma reunião. A tripulação informou a situação e decidiu informar os passageiros sobre o problema. Pela próxima hora e meia, a tripulação usou lemes superiores opostos, ailerons e empuxo diferencial para manter o controle da aeronave e evitar que ela rolasse para a esquerda.

A pista 6R de Anchorage foi escolhida pela tripulação para realizar o pouso de emergência. “A única desvantagem era que, se você chega perto da pista e decide que não parece bom e vai dar a volta, você está indo direto para uma cordilheira. E é cerca de - apenas cerca de sete ou oito milhas fora do final da pista.

“Então a resposta para isso foi, faça certo da primeira vez. Não saia por aí”, explicou o capitão Hanson.

Aterrissagem



Enquanto a tripulação se preparava para a aproximação, eles decidiram usar o leme montado na parede esquerda do cockpit, muito parecido com o volante do seu carro, para virar a roda do nariz enquanto o F/O ia agarrar a alavanca de controle. A tripulação usou o empuxo assimétrico do motor para manter o avião alinhado na pista. Isso significava que eles reduziram a potência do motor no lado direito e adicionaram potência no lado esquerdo. Nesta ocorrência, contra-atacou a deflexão do leme.

O capitão Hanson se estabilizou como pôde e colocou a aeronave bem no ponto de pouso, baixou o nariz para a pista e tentou desviar. Ele então soltou o volante e disse: “Mike, você entendeu, eu agarrei o leme”.

No pouso, a aeronave desviou para a esquerda. Os pilotos usaram os freios certos e os três reversores de empuxo disponíveis - o reversor nº 2 estava inoperante para parar a aeronave. Eles ultrapassaram a cabeceira da pista a 185 nós – cerca de 30 nós mais rápido do que um pouso típico de um B-747-400. Eles haviam ajustado os freios em um ajuste de freio automático muito alto porque a aeronave ainda estava tentando desviar. A aeronave foi desviar até o ponto até que o leme não estivesse mais em vigor.


Testemunhas oculares no Aeroporto Internacional Ted Stevens, em Anchorage, disseram que as rodas e os freios eram todos vermelho-cereja de tão quentes. O controlador de solo de Anchorage informou aos pilotos que todas as rodas do lado esquerdo da aeronave estavam brilhando em vermelho devido à parada de energia máxima. Eles esperaram que os freios e as rodas esfriassem antes de serem rebocados até o portão. Todos os 404 passageiros e tripulantes expiraram e desembarcaram do 747 sem nenhum ferimento, com os passageiros agradecendo e elogiando os tripulantes por sua louvável pilotagem. Ao chegar ao portão, a tripulação inspecionou a cauda e viu que o leme inferior ainda estava totalmente desviado para a esquerda.

Os tripulantes do voo 85 receberam o Prêmio Superior de Aeronaves no Banquete Anual de Prêmios de Segurança Aérea da ALPA por sua habilidade em pousar um Boeing 747 com um leme rígido. O Superior Airmanship Award é um prêmio da aviação concedido pela Air Line Pilots Association (ALPA).

O presidente da ALPA, capitão Duane Woerth, destacou que essa era uma daquelas situações que comprovam o velho ditado: “o vôo não termina até que você esteja no portão com o freio de estacionamento acionado”.

Investigação do NTSB


O National Transportation Safety Board (NTSB) lançou uma investigação sobre este evento que revelou que a carcaça de alumínio forjado (manifold) do módulo de controle de potência do leme inferior foi fraturada, permitindo que o pistão do amortecedor de guinada se deslocasse além de sua posição normal. Isso resultou em uma entrada de comando totalmente à esquerda para a válvula de controle principal, levando os dois atuadores para a posição do leme totalmente à esquerda. Os investigadores do NTSB examinaram o gravador de dados de voo, que mostrou uma deflexão inicial não comandada do leme inferior de 17,5 graus para a esquerda. No entanto, como a aeronave desacelerou durante a aproximação e pouso, a deflexão aumentou subsequentemente para 32 graus (total) de deflexão esquerda para o restante do voo.

Durante uma entrevista com o investigador encarregado do NTSB, o capitão disse que ele e o primeiro oficial executaram os procedimentos de emergência disponíveis, mas nenhum deles conseguiu corrigir o problema. Ele explicou que como a velocidade diminuiu durante a aproximação para pouso, o leme inferior desviou mais para a esquerda. Durante a aproximação e pouso, a tripulação usou potência diferencial para auxiliar no controle direcional.

Resposta da tripulação do cockpit


Comentando sobre o voo 85, o capitão Hanson disse: “Esta foi uma aplicação clássica de CRM [gerenciamento de recursos da tripulação]. Fomos abençoados e sortudos por termos um reforço total [da tripulação de voo]. Tínhamos quatro pilotos para trabalhar juntos no cockpit. Tínhamos um excelente grupo de comissários de bordo a bordo; isso se tornou importante mais tarde porque informamos isso como uma emergência 'vermelha', o que significa que há pelo menos uma chance sólida de você ter que evacuar. Não tínhamos certeza se conseguiríamos manter o avião na pista.”

O capitão Hanson afirmou: “O programa CIRP vale 10 vezes o que nos custa. Só posso imaginar o quão importante é o programa CIRP para os pilotos que têm resultados menos bem-sucedidos em suas situações.”

O Programa de Resposta a Incidentes Críticos (CIRP) é um programa que usa colegas e cônjuges de pilotos (ou seja, pilotos especificamente treinados e certificados para fornecer suporte no gerenciamento de estresse de incidentes críticos) para ajudar outros membros da tripulação de voo - incluindo investigadores de acidentes e suas famílias a se recuperarem de um acidente, incidente ou outra situação estressante. Ele é projetado para fornecer educação pré-incidente e serviços de intervenção em crise pós-incidente/acidente.

Imagem dos membros da tripulação do voo 85 da Northwest (Foto via Wikimedia)
O primeiro-oficial Fagan agradeceu a “Deus por estar conosco na cabine de comando naquela noite” e “ao departamento de treinamento da Northwest por nos dar um treinamento tão bom”.

O primeiro-oficial Dave Smith disse que gostaria de agradecer a “todos os representantes da ALPA por sua dedicação e sacrifício… a esta profissão e pela causa da segurança”.

Após o incidente, a Boeing emitiu o Boletim de Serviço de Alerta 747-27A2397, datado de 24 de julho de 2003, que recomendou aos operadores que realizassem uma inspeção ultrassônica dos módulos de controle de potência do leme inferior e superior pertinentes.

A Federal Aviation Administration (FAA) também emitiu um Aviso de Proposta de Criação de Regras (NPRM), “Diretiva de Aeronavegabilidade; Boeing Model 747-400, -400D e -400F Series Airplanes”, publicado no Federal Register em 28 de agosto de 2003, o que tornaria essa inspeção obrigatória nos modelos de aeronaves afetados. Uma proposta de substituição a esta diretiva foi publicada no final de 2008.

Edição de texto e imagens por Jorge Tadeu via Sam Chui com NTSB , ALPA e Wikimedia

Vídeo: Maior avião do mundo quebra novo recorde; assista

Maior que um campo de futebol, o Stratolaunch Roc voou por seis horas acima do deserto em seu 9º teste; assista ao vídeo.

(Imagem: Divulgação/Stratolaunch)
O gigantesco Stratolaunch Roc, maior avião do mundo após o Antonov An-225 Mriya ser destruído na guerra entre Rússia e Ucrânia, bateu o recorde de tempo no ar na última sexta-feira (13). A aeronave que voou por seis horas acima do deserto de Mojave, na Califórnia, Estados Unidos, em seu 9º teste, possui:
  • 117 metros de envergadura – maior que um campo de futebol
  • 73 metros de comprimento
  • 15 metros de altura
  • 6 motores Pratt & Whitney PW4056 turbofan com 252.4 kN
“Nossa incrível equipe continua progredindo em nosso cronograma de testes e é por meio de seu trabalho árduo que nos aproximamos mais do que nunca da separação segura e de nossos primeiros testes de voo hipersônico”, declarou Zachary Krevor, CEO e presidente da Stratolaunch.


Hipersônico Talon da Stratolaunch


Esses voos serão seguidos em breve por testes hipersônicos, com o Roc levando o banco de testes Talon-A da empresa, um veículo movido a foguete capaz de transportar cargas úteis personalizáveis ​​e atingir velocidades acima de Mach 5. O novo maior avião do mundo poderá lançar vários veículos hipersônicos em uma única missão.

(Imagem: Divulgação/Stratolaunch)
Para essa função, a aeronave faz uso de um pilão, responsável para carregar e soltar o Talon-A. Durante este sétimo voo, um pilão recém-instalado foi testado, juntamente com as características de manuseio do avião.


A Stratolaunch integrou recentemente o TA-0, o primeiro hipersônico de testes Talon-A, indicando que o transporte e o lançamento desses veículos podem ser testados em breve. Em paralelo, está sendo realizada a integração do sistema para o veículo de testes de voo hipersônico TA-1 e para um terceiro, TA-2 – primeiro veículo reutilizável da empresa. A Stratolaunch espera que os serviços de voo hipersônico estejam disponíveis para clientes governamentais e comerciais já no ano que vem.

Aconteceu em 18 de janeiro de 1988: 108 mortos na queda do voo 4146 da China Southwest Airlines


O voo 4146 foi operado pelo Ilyushin Il-18D, prefixo B-222, da China Southwest Airlines (foto abaixo), que caiu perto de Chongqing, na China, com a perda de todos os 108 passageiros e tripulantes.


O voo 4146 era um voo doméstico regular de passageiros do Aeroporto Internacional de Pequim, para o Aeroporto de Chongqing, em Chongqing, com 98 passageiros e uma tripulação de dez pessoas a bordo. 

Quando o voo 4146 se aproximou de Chongqing, o motor número quatro da aeronave (o motor externo na asa direita) pegou fogo. O fogo queimou o suporte do motor e o motor caiu da asa da aeronave. Isso causou uma perda de controle da aeronave. 

O avião atingiu uma linha de energia e duas casas de fazenda antes de explodir em chamas. Todos a bordo do Ilyushin Il-18 morreram no acidente. Os passageiros consistiam em 104 chineses, três japoneses e um britânico.

O incêndio do motor foi resultado de um vazamento de óleo. O motor foi desligado e sua hélice embandeirada devido a fortes vibrações. 


No entanto, o motor de arranque/gerador instalado no motor sobreaqueceu a tal ponto que queimou o tubo de fornecimento de óleo a alta pressão para embandeirar a hélice. Quando a tripulação embandeirou a hélice, o tubo estourou e o óleo que vazou pegou fogo. 


Não muito depois da queda do voo 4146, a Administração da Aviação Civil da China ordenou verificações de segurança que encontraram problemas mecânicos que levaram ao encalhe de pelo menos 17 aeronaves. A queda do voo 4146 foi atribuída à má manutenção.

Por Jorge Tadeu (com Wikipedia e ASN)

Aconteceu em 18 de janeiro de 1988: Erro no pouso deixa 11 mortos no voo 699 da Aeroflot

O voo 699 da Aeroflot foi um voo programado, operado por um Tupolev Tu-154B, do Aeroporto Domodedovo, de Moscou, ao Aeroporto Internacional de Turkmenbashi, que caiu ao se aproximar de seu destino. A aeronave fez um pouso muito pesado e quebrou, após uma abordagem mal executada por um copiloto inexperiente.

Um Tupolev Tu-154B-1 similar ao acidentado
A aeronave acidentada foi o Tupolev Tu-154B-1, prefixo CCCP-85254, operado pela Aeroflot, que voou pela primeira vez em 1977 e teve um total de 1.589 horas de vo acumuladas em 8.082 ciclos.

Após um voo sem intercorrências de Moscou-Domodedovo, a tripulação iniciou uma abordagem noturna para o aeroporto de Krasnovodsk. A visibilidade foi reduzida devido à noite combinada com nuvens até 400 metros. 

O copiloto era o piloto no comando e completou a aproximação a uma velocidade de 270 km/h com flaps baixados a 28°. 

Durante o último segmento, os flaps foram abaixados a um ângulo de 45° quando a razão de descida aumentou para 10 metros por segundo. A 30 metros de altura, o copiloto não teve contato visual com a pista, mas o comandante decidiu continuar a aproximação. 

A uma velocidade excessiva de 275 km/h, a aeronave pousou 3 metros à esquerda do eixo da pista. Ele quicou, rolou por algumas centenas de metros e parou na pista principal, quebrado em dois. 

Onze passageiros morreram, 120 pessoas ficaram feridas, enquanto outras 15 escaparam ilesas.

A transcrição da conversa na cabine nos momentos finais do voo:


A investigação concluiu que a aeronave estava em condições de uso no momento do acidente, sem falhas significativas. A tripulação ficou sob os holofotes e foi considerada uma grande falta de gerenciamento de recursos da tripulação e habilidades para realizar uma abordagem desafiadora.

O piloto encarregado permitiu que um copiloto inexperiente realizasse a aproximação sem supervisão de perto, o que resultou em uma aproximação instável e pouso muito pesado estimado em 4,8g. A aeronave quebrou e 11 passageiros foram atirados da fuselagem e mortos.

A principal causa do acidente foi a má gestão dos recursos da tripulação do Piloto Encarregado, que falhou em monitorar de perto o Piloto Voador, que tinha experiência e habilidade limitadas.

Por Jorge Tadeu (com Wikipedia, airdisaster.ru e ASN)

Aconteceu em 18 de janeiro de 1986: Queda de avião na Guatemala deixa 93 mortos


Em 18 de janeiro de 1986, o Sud Aviation SE-210 Caravelle VI-N, prefixo HC-BAE, alugado da SAETA e operado pela Aerovías Guatemalacolidiu com uma colina ao se aproximar do Aeroporto de Santa Elena, em Flores, na Guatemala após um curto voo do Aeroporto Internacional La Aurora da Cidade da Guatemala. Todos os 93 passageiros e tripulantes a bordo morreram, tornando-se o pior desastre aéreo da história da Guatemala.

A aeronave envolvida no acidente foi fabricada em 1960 e convertida para um padrão da série 6N em 1962. A SAETA adquiriu a aeronave em 1975. A Aerovías da Guatemala arrendou-a da SAETA em 1985 em resposta ao número crescente de turistas que visitam a Guatemala.

O voo de 40 minutos estava levando turistas guatemaltecos e estrangeiros da Cidade da Guatemala para o Aeroporto de Santa Elena, em Flores, cerca de 170 milhas (274 km) a nordeste da Cidade da Guatemala. Flores é um ponto de parada comum para visitas à antiga cidade maia de Tikal. 

A aeronave decolou na manhã de sábado às 7h25, horário local, do Aeroporto Internacional La Aurora, na Cidade da Guatemala, com 87 passageiros (entre eles o ex-Ministro das Relações Exteriores da Venezuela, Sr. Arístides Calvani, sua esposa e duas filhas) e 6 tripulantes a bordo. 

Após aproximadamente 30 minutos, a aeronave foi autorizada a pousar no Aeroporto de Santa Elena. No entanto, a primeira aproximação foi muito alta e a aeronave ultrapassou a pista.

Em sua segunda abordagem, a aeronave caiu e pegou fogo a cerca de 8 km do aeroporto. O último contato da torre de controle com a tripulação ocorreu às 7h58,33 minutos do voo de 40 minutos, sem relatos de quaisquer anomalias. 

O acidente matou todas as 93 pessoas a bordo: 87 passageiros e 6 tripulantes. A aeronave foi completamente destruída no acidente.


Vários camponeses que viviam em cidades próximas ao local do acidente disseram que viram o jato voar através da névoa e depois ouviram uma explosão. 

Bernardo Chávez chegou ao local onde a aeronave caiu e viu que ela estava dividida em duas e pegando fogo. Ele tentou resgatar alguns cadáveres, mas foi impossível, uma vez que estrondos foram produzidos quando os tanques de gasolina explodiram.

A Força Aérea da Guatemala foi ao local para realizar um trabalho de resgate, o que foi muito difícil devido à inacessibilidade do setor, e extraiu os corpos, alguns deles irreconhecíveis.


Uma investigação realizada sobre o acidente não foi capaz de determinar a causa exata do acidente. A baixa cobertura de nuvens pode ter feito com que os pilotos perdessem a orientação e caíssem.

Por Jorge Tadeu (com Wikipedia, ASN e Prensa Libre)

Aconteceu em 18 de janeiro de 1969: Queda do voo 266 da United Airlines na Baia de Santa Monica, na Califórnia


Em 18 de janeiro de 1969, o voo 266 (UA266) da United Airlines, operado pelo Boeing B727-22C, com o número de registro N734U
era um voo regular do Aeroporto Internacional de Los Angeles, Califórnia, para o Aeroporto Internacional General Mitchell, Milwaukee, Wisconsin, via Aeroporto Internacional de Stapleton, Denver, Colorado com 32 passageiros e seis tripulantes a bordo.

A tripulação do voo 266 era o capitão Leonard Leverson, 49, um piloto veterano que estava na United Airlines há 22 anos e tinha quase 13.700 horas de voo em seu crédito. Seu primeiro oficial foi Walter Schlemmer, 33, que tinha aproximadamente 7.500 horas, e o engenheiro de voo foi Keith Ostrander, 29, que teve 634 horas. Entre eles, a tripulação teve mais de 4.300 horas de vôo no Boeing 727.

O avião, que havia decolado quatro minutos antes do Aeroporto Internacional de Los Angeles, estava tentando retornar, após um aviso de incêndio no motor número um, quando o acidente ocorreu, aproximadamente às 18h21.

Após o impacto, as seções do UA266 afundaram a uma profundidade de 950 pés no Oceano Pacífico, na Baia de Santa Monica, em Los Angeles, na Califórnia, nos EUA. 


As equipes de resgate (na época) especularam que ocorreu uma explosão a bordo do avião. Três horas e meia após o acidente, três corpos foram encontrados no oceano junto com partes da fuselagem e uma mala postal dos Estados Unidos carregando cartas com aquele carimbo do dia. 

A esperança era fraca para os sobreviventes porque os voos domésticos da United não carregavam balsas salva-vidas ou coletes salva-vidas. Um porta-voz da Guarda Costeira disse que parecia "muito duvidoso que pudesse haver alguém vivo".

Várias testemunhas viram o voo 266 decolar e relataram ter visto faíscas emanando do motor # 1 ou da parte traseira da fuselagem, enquanto outras afirmaram que um motor estava pegando fogo.

Os medidores da cabine foram destruídos. Todos os três motores foram recuperados em 11 de fevereiro, o gravador de dados de voo (FDR) e gravador de voz da cabine (CVR) entre 21 de fevereiro e 04 de março.

Em 13 de janeiro de 1969, apenas cinco dias antes da queda do voo 266 da United, um DC-8 da Scandinavian Airlines na aproximação final para Los Angeles International também caiu na baía de Santa Monica. O jato partiu ao meio com o impacto, matando 15. Trinta pessoas sobreviveram em uma parte da fuselagem que permaneceu flutuando.

O National Transportation Safety Board (NTSB) determinou que a Causa Provável, “deste acidente foi a perda de orientação de atitude durante uma noite, partida de instrumentos em que todos os instrumentos de atitude foram desativados por perda de energia elétrica. ”A causa provável do NTSB continuou a dizer:“ O Conselho não foi capaz de determinar (a) por que toda a energia do gerador foi perdida ou (b) por que o sistema de energia elétrica de reserva não foi ativado ou não funcionou."

Mas foi isso o que aconteceu ou foi um simples caso de confusão provocada pela inexperiência técnica?

Em 1972, quase quatro anos depois, os pilotos do voo 401 da Eastern se fixaram em uma lâmpada indicadora a bordo. Sem saber, com a atenção desviada, eles casualmente voaram o avião L1011 para o Everglades, na Flórida. 

E se a “perda de orientação de atitude” do UA266 não fosse o resultado de uma perda de potência, mas sim porque a tripulação simplesmente perdeu o foco no trabalho em questão: pilotar a aeronave - como o Eastern 401?

A aeronave B727 entrou em serviço em 1963. Havia três membros da tripulação de voo: Capitão (CP), primeiro oficial (FO) e segundo oficial (SO). O CP e o FO pilotaram a aeronave; o OE monitorou os diversos painéis dos sistemas. 

O B727 tinha três geradores, um em cada motor. Após a partida do motor, cada gerador foi sincronizado e, em seguida, amarrado manualmente ao ônibus; o SO teve que ativar propositalmente o gerador. Um gerador de motor poderia alimentar o avião e teria que ser amarrado manualmente.


A causa provável do acidente consistiu em opinião, não em fato; para isso, era confuso. Todos os instrumentos de atitude foram desativados por perda de energia elétrica. Poucas evidências sugeriam uma perda de energia elétrica; isso era pura teoria. Em vez disso, o relatório demonstrou uma má gestão do sistema elétrico da aeronave e um grupo de investigadores que não estavam familiarizados com o B727.

O relatório AR-70/06 também mostrou por que investigadores experientes em manutenção não apenas teriam entendido o que aconteceu com a energia elétrica, mas também teriam percebido o que o SO estava fazendo ou, mais importante, não estava fazendo. Por quê?

Porque os Segundos Oficiais da United eram pilotos, mas sua função no 727 era como um técnico a bordo. Investigadores pilotos ou engenheiros não entenderiam as questões técnicas dos sistemas elétricos de aeronaves. 

O Segundo Oficial registrou apenas 40 horas no 727; seu trabalho era executar o painel de sistemas, solucionar problemas de sistemas em voo. Ele recebeu treinamento técnico básico. Com 40 horas (talvez 12 a 20 voos), era improvável que ele já trabalhasse em muitos sistemas adiados, calculasse uma carga de combustível, trocasse geradores ou ajustasse manualmente a pressão da cabine. Certamente, nunca em uma situação de alto estresse.

Considere as últimas palavras do SO: “Não sei o que está acontecendo”. Confusão simples e clássica. O Capitão e o Primeiro Oficial estavam voando em condições de baixa visibilidade e alto estresse, possivelmente desorientados. 

Um incêndio no motor nº 1; contato esporádico com LAX; um Segundo Oficial com problemas no painel de sistemas. Ambos os pilotos teriam dividido a atenção do voo para ajudar o Segundo Oficial - sentado atrás deles - a descobrir o problema no painel. 

Eles podem ter perdido qualquer direção do Controlador de Partida (DC) do tráfego aéreo (ATC). Os pilotos perceberam que o ATC estava ligando? Se houver falta de energia, o modo de espera pode ter sido selecionado, a bateria usada para transmitir no rádio # 2.

O relatório AAR-70/06, declarou na descoberta 14: “Os motores nº 2 e nº 3 estavam desenvolvendo potência no impacto.” 

Os desmontagens do motor após o acidente mostraram que os motores número (#) 2 e # 3 estavam produzindo empuxo no impacto; portanto, o gerador nº 2 fornecia energia elétrica o tempo todo. 

O Segundo Oficial desconectou por engano a ligação do 'bus'? O OS não fechou o empate no 'bus'? Ele não selecionou 'GEN 2' no seletor Essential Power? Ele desconectou acidentalmente os 'bus' que alimentavam o CVR e o FDR?

A transcrição do CVR mostrou procedimentos desorganizados de desligamento do motor entre o alarme de incêndio (18h18:30) e o corte do CVR (18h19:13,5). 

Nesses 43,5 segundos, o FO devolveu os controles ao CP? Quem estava pilotando a aeronave na decolagem? Por que o FO teve de perguntar ao CP se ele deveria retardar o acelerador # 1? Os agentes extintores de motor nº 1 foram usados? 

Às 18h18: 45, um alarme fora de configuração ou alarme de decolagem soou quando o acelerador # 1 foi retardado. A buzina foi a única indicação de que a tripulação tentou desligar o motor # 1 e não havia evidências de que o gerador # 2 foi selecionado.

Mais importante, foi a questão do 'tempo posterior indeterminado', quando o CVR e o FDR estavam offline. Foi momentâneo? 30 segundos? Um minuto? 

Às 18h19:13,5, o CVR, o FDR e o alvo do transponder são interrompidos. O DC declarou que o UA266 não respondeu às instruções do curso. O cronômetro do ATC mostrou que o UA266 desapareceu (impacto) do escopo em duas varreduras [de radar] - quatro segundos cada às 18h20min30. 

O CVR registrou nove segundos antes do impacto, que foi um segundo mais as duas varreduras. O CVR parou por um minuto e vinte e cinco segundos. O DC disse que dirigiu uma curva à direita, mas UA266 virou à esquerda e aumentou a velocidade. Foi o 'aumento de velocidade' do UA266 em que a descida em ângulo íngreme que o UA266 foi encontrado atingiu? UA266 sabia que eles estavam descendo?

Em 0,5 segundo após a retomada do CVR, alguém disse, "campos fora." Os investigadores acreditaram que o SO comentou sobre o campo elétrico do gerador nº 2, mas se a energia elétrica tivesse sido restaurada, por que o campo do gerador estaria 'desligado'? 

Além disso, quem falou “campo fora” não foi identificado. 'Campo' poderia ser o aeroporto ou 'campo elétrico'. Os investigadores não sabiam. O “campo fora ” poderia significar que eles tinham acabado de descobrir os problemas de comunicação com o LAX. Houve estresse no discurso das tripulações? 

Painel do 727
Pela transcrição, o OS nunca disse que a energia foi restaurada. Alguém notou o retorno da energia ou a falta de energia? A tripulação pode não saber se os rádios, CVR, FDR ou energia foram perdidos, pois o FO ou CP nunca comentou sobre a recuperação do instrumento.

1,5 segundos após o retorno do CVR, o SO declarou: “Vamos nos complicar”. Dois segundos depois, o SO disse: “Não sei (o que está acontecendo).” 

Pergunta: Se o SO não conseguisse selecionar o Gerador 2 no Essential Power, os instrumentos permaneceriam energizados? O FDR e o CVR teriam ficado offline? Em sua confusão com o gerador 2, ele cortou acidentalmente a energia dos barramentos que alimentam os gravadores?

Nos últimos cinco segundos, o FO declarou: “Continue subindo Arn [CP], você está a mil pés.” Dois segundos depois, o FO disse: “Puxe-o para cima”. Um segundo depois: IMPACTO.

Nesses últimos cinco segundos, o CP e o FO voltaram toda a atenção para o voo, como o Eastern 401? 

O ângulo em que a aeronave atingiu a água sugeriu que eles não estavam cientes de sua atitude; a chamada repentina, “Puxe para cima”, sugeriu que nenhum dos pilotos estava focado em sua taxa de descida ou ângulo de inclinação. 

A tripulação desligou o motor # 1 sem quaisquer procedimentos, sem lista de verificação. A tripulação poderia ter colocado inadvertidamente a configuração da aeronave sem perceber? 

Para responder à pergunta do sistema Standby, “(b) porque o sistema de energia elétrica de reserva não foi ativado ou não funcionou”, se a tripulação não soubesse que havia um problema de energia, eles não teriam selecionado Essential Power to Standby. Era provável que o CP e o FO focalizassem a atenção no painel do jovem SO e depois ficassem desorientados ao olhar para trás, assim como o Eastern 401.

A retrospectiva é 20/20; isso é claramente entendido. No entanto, acidentes como esses devem ser reexaminados e ensinados por/para agências de investigação para as lições não aprendidas, particularmente erros cometidos que poderiam ter evitado acidentes posteriores. UA266 representou lições não aprendidas para agências de investigação:

A causa provável era inútil em 1969 e é inútil hoje. A análise da causa raiz sempre deve ter sido buscada como objetivo.

Os relatórios de investigação de acidentes transformaram-se em pedaços de opiniões, não em análises factuais. Adivinhar pode ter economizado tempo, mas não é possível medir quanto custam as opiniões dos amadores para a indústria da aviação.

Os dados de CVR e FDR, analisados ​​durante a investigação de acidentes, devem receber análise de especialistas por investigadores de aviação experientes.

Cockpit de um 727
UA266 representou lições não aprendidas para a indústria: Uma oportunidade de melhorar o gerenciamento de recursos da cabine (CRM), um conceito criado na década de 1950. A resposta da tripulação do UA266 ao incêndio do motor # 1 foi desarticulada, descoordenada. O CRM deveria ter sido o foco principal.

Melhores listas de verificação e desafios de piloto para piloto para as tripulações de vôo para lidar com eventos importantes, como encerrar um incêndio no motor ou falhas de comunicação de rádio.

Análise aprimorada do procedimento ATC para perdas de comunicação com qualquer aeronave em qualquer estágio do vôo, seja decolagem, cruzeiro e pouso.

Treinamento técnico aprimorado para todos os pilotos, especificamente para o SO, cuja experiência na vida real foi como piloto, não como técnico.

Imagine quais acidentes posteriores poderiam ter sido evitados se algumas lições reais tivessem sido implementadas no relatório de acidentes UA266. Conforme mencionado em Acidentes de Aeronaves e Kobe Bryant  CVRs e FDRs são ferramentas; se não forem usados ​​corretamente, nada mais são do que pesos de papel. A pós-tragédia da UA266 foi que os dados não foram analisados ​​corretamente por quem entendia a cultura e o treinamento das companhias aéreas.

Por Jorge Tadeu (com danieltenace.com, ASN e Wikipedia)