quinta-feira, 26 de outubro de 2023

Aconteceu em 26 de outubro de 1947: A colisão do voo Pan Am 923 contra uma montanha no Alasca

Um DC-4 da Pan American semelhante ao do voo 923
Em 26 de outubro de 1947, o avião Douglas DC-4, prefixo NC88920, da Pan American World Airways (Pan Am), operava o voo 923, um voo regular entre Seattle, em Washington, e Juneau, no Alasca, com escala programada no Aeroporto de Annette Island, também no Alasca. 

A aeronave utilizada para o voo foi um Douglas DC-4, quadrimotor a hélice, que estava em serviço desde 1944, acumulando 4.146 horas de voo. Os registros de manutenção indicavam que o avião estava em boas condições de funcionamento, sem falhas ou problemas mecânicos relatados.

Havia treze passageiros e cinco tripulantes da Pan Am a bordo: três tripulantes de cabine e dois comissários. O piloto foi o capitão Alf N. Monsen, um piloto veterano com 13.565 horas de voo. Seu copiloto era o primeiro oficial Laurence A. Foster, outro capitão que servia como copiloto e primeiro oficial devido a reduções de pessoal na Pan Am. O engenheiro de voo foi CL Dunwoody.

A aeronave partiu de Seattle no horário programado às 10h30. Havia 13 passageiros a bordo, junto com 822 libras (373 kg) de carga e 2.500 galões americanos (9.500 L) de combustível. A aeronave estava dentro dos limites de peso e carga e transportava apenas um quarto de sua capacidade normal de 44 passageiros. 

Antes da partida, o Capitão Monsen recebeu um boletim meteorológico do meteorologista da Pan American , que indicava que uma frente fria passaria pela Ilha Annette antes da chegada do voo.

A primeira etapa da viagem transcorreu sem intercorrências, até a aeronave chegar à estação de rádio perto do aeroporto de Annette. A estação de rádio estava localizada a 1,5 milhas (2,4 km) a noroeste do aeroporto. O Controle de Tráfego Aéreo autorizou o vôo para passar sobre a estação de alcance a 7.000 pés e então prosseguir com um pouso normal. O capitão Monsen reconheceu a autorização às 13h38 e relatou sua posição sobre a estação de alcance a 7.000 pés.

Cinco minutos depois, às 13h43, o capitão comunicou-se por rádio com a torre de controle de Annette e abortou sua abordagem. Ele relatou turbulência extrema em altitudes mais baixas e indicou que, em vez disso, continuaria para Juneau sem pousar em Annette. Este foi o último contato rádio realizado com a aeronave. 

Depois que o capitão Monsen comunicou por rádio sua intenção a Juneau, a torre de controle transmitiu uma confirmação por rádio e solicitou a altitude do voo 923. Quando a torre de controle não conseguiu restabelecer as comunicações de rádio, a estação emitiu um alerta de que o voo 923 havia desaparecido. O alerta foi emitido às 14h01.

As operações iniciais de busca e resgate foram prejudicadas pelo mau tempo e pela chegada da frente fria prevista pelo meteorologista da Pan Am. Para complicar ainda mais os esforços de busca foi o fato de que o DC-4 carregava combustível suficiente para retornar a Seattle. 

Um jornal relatou que autoridades da Pan American afirmaram que a aeronave carregava combustível suficiente para continuar voando até as 20h40. 

As operações iniciais de busca foram realizadas pela Guarda Costeira dos Estados Unidos, bem como pelo comando da Força Aérea do Exército no Alasca. O exército enviou B-17 e um C-47 para auxiliar na busca. 

No entanto, a neve, o nevoeiro, os ventos fortes de 45 a 50 milhas por hora (72 a 80 km/h) e as severas condições de gelo ao redor do aeroporto limitaram as habilidades dos pesquisadores e ocultaram completamente a cena do acidente.

Equipes de busca da Guarda Costeira localizaram o local do acidente às 8h45 (PST) do dia 31 de outubro, cinco dias após o desaparecimento do avião. Todos os 13 passageiros e os cinco tripulantes a bordo morreram no acidente.


Os destroços estavam na face norte da montanha Tamgas, um pico de 3.591 pés (1.095 m) aproximadamente 6 milhas (9,7 km) a leste do campo aéreo da Ilha Annette . O DC-4 voou para a montanha aproximadamente 200 pés (61 m) abaixo do cume. Relatórios iniciais indicaram que a cauda do avião era claramente visível na encosta da montanha.

A equipe do CAB enviada ao local para investigar determinou que os destroços estavam soterrados sob uma nevasca significativa em uma parte da montanha de difícil acesso a pé. O CAB determinou que eles não poderiam continuar com a investigação até que a neve derretesse. Em vez disso, os membros da Guarda Costeira e funcionários do CAB retiraram os corpos das vítimas do local, um processo que demorou vários dias devido ao mau tempo.

O Conselho de Aeronáutica Civil iniciou sua investigação às 14h30 do dia 26 de outubro de 1947, menos de uma hora após a última comunicação conhecida com o voo 923. Assim que os destroços foram localizados, os investigadores voaram em um hidroavião para um lago próximo no sopé da montanha Tamgas e acompanhou membros da Guarda Costeira até o local do acidente.

Os destroços do avião foram espalhados por uma área de 20.000 pés quadrados (1.900 m 2) em uma posição 196 pés (60 m) abaixo do cume da montanha. Quando os investigadores chegaram ao local, nevava muito e foi determinado que a investigação não poderia continuar até que a neve derretesse no degelo do verão. A investigação, portanto, foi retomada no final de agosto de 1948, época de degelo máximo na montanha.

Local do acidente

Os investigadores conseguiram coletar pouco dos destroços, a maioria dos quais foi severamente danificada pelo acidente e pelo subsequente incêndio . O único instrumento com configurações legíveis que pôde ser recuperado foi a bússola fluxgate, que foi usada para confirmar a direção da aeronave. 

Marcas de hélice na face do penhasco também confirmaram a direção da aeronave e indicaram que a aeronave estava inclinada com o nariz para cima enquanto tentava subir. As próprias hélices foram quebradas de forma a indicar que estavam funcionando normalmente no momento do impacto. 

Foi impossível determinar, porém, a velocidade da aeronave no momento do acidente devido à falta de instrumentos sobreviventes. Os investigadores também conseguiram determinar que todos os danos ao avião ocorreram durante ou após a queda; não houve indicação de falha mecânica no ar.

As primeiras reportagens dos jornais indicaram que a altura da montanha Tamgas foi mal representada nas cartas da aviação. Esses gráficos indicavam que a montanha tinha 1.100 m de altura. Repórteres que visitaram o local do acidente de avião relataram que a montanha era de fato significativamente mais alta e estimaram a altura real do pico entre 4.000 e 4.100 pés (1.200 e 1.200 m) de altura.

A posição da aeronave e sua orientação para o sul quando o piloto declarou sua intenção de desviar para Juneau, no norte, levaram à especulação de que o piloto havia tentado retornar a Seattle e colidiu com a montanha devido a gráficos defeituosos.


De acordo com o relatório de investigação do CAB, tanto as cartas de aviação da Pan Am quanto as cartas padrão do US Coast and Geodetic Survey indicaram a altura da montanha Tamgas como 3.610 pés (1.100 m). Após a queda, a altura exata da montanha foi recalculada e novas cartas foram emitidas com a altura corrigida da montanha: 3.595 pés (1.096 m). Como a altura real da montanha era na verdade 14 pés (4,3 m) inferior à altura indicada nas cartas, a discrepância na elevação não foi considerada um fator que contribuiu para o acidente.

O boletim meteorológico emitido ao Capitão Morsen antes do voo indicava condições meteorológicas significativamente diferentes daquelas que ele realmente encontrou ao se aproximar da Ilha Annette. O meteorologista da Pan American Airways previu que a frente fria chegaria à Ilha Annette antes da chegada do voo e que as condições seriam de chuva fraca, tempestuosas e nubladas.

Na verdade, esta previsão contradizia o que os Departamentos Meteorológicos dos EUA e do Canadá previam na altura. O meteorologista da Pan American revisou sua previsão às 12h39, mas não houve indicação de que o voo 923 recebeu a informação. A previsão atualizada previa que a frente fria chegaria à Ilha Annette às 16h PST, mas ainda não fazia menção à turbulência.

O CAB, ao analisar os dados meteorológicos disponíveis, determinou que o meteorologista da Pan Am deveria ter sido capaz de prever, com alguma certeza, que haveria turbulência severa em altitudes mais baixas e ventos fortes. Esses dados estariam disponíveis para o meteorologista fazer tal previsão antes ou logo após a partida do voo 923 de Seattle. Tal previsão teria alertado a tripulação sobre as condições meteorológicas que encontraram quando decidiram abortar o pouso no aeroporto de Annette Island.

Vinte e três minutos antes do pouso abortado do voo 923 em Annette Island, um piloto da Força Aérea do Exército voando de Tacoma, Washington, pousou no aeroporto de Annette Island. Ele relatou aos investigadores que encontrou forte turbulência em altitudes mais baixas, que se tornou mais severa à medida que ele descia de 6.000 para 450 pés (1.830 a 140 m). Três horas após o desaparecimento do voo 923, outro avião de passageiros pousou em Annette Field, este vindo de Whitehorse, Canadá.

O piloto relatou gelo entre 9.000 e 7.000 pés (2.700 e 2.100 m) e turbulência abaixo de 6.000 pés (1.800 m) que foi tão severa que quase derrubou os instrumentos de voo do giroscópio . Seis horas após o desaparecimento do voo 923, o piloto da Força Aérea do Exército tentou partir da Ilha Annette, mas encontrou gelo tão severo que foi forçado a retornar ao campo aéreo. 

Os investigadores puderam concluir que havia mau tempo significativo e forte turbulência na área no momento em que o voo 923 tentava pousar na Ilha Annette. Além disso, o boletim meteorológico incorreto do meteorologista da Pan Am deixou o piloto inconsciente da turbulência e dos ventos fortes que encontraria na aproximação. O CAB postulou que turbulência severa ou formação de gelo severo podem ter feito com que o piloto perdesse o controle da aeronave. No entanto, esta não pôde ser declarada a causa definitiva do acidente devido a evidências insuficientes.

Dada a falta de comunicação, testemunhas e provas, o Conselho de Aeronáutica Civil não conseguiu determinar a causa provável da queda do voo 923. Embora a investigação tenha conseguido determinar uma série de fatores que podem ter contribuído para a queda, houve não existem evidências suficientes para determinar uma causa definitiva. 

Para tanto, a declaração oficial de causa provável no Relatório de Investigação de Acidentes diz: "O conselho considera que não há evidências suficientes para determinar a causa provável deste acidente" (Conselho de Aeronáutica Civil, Relatório de Investigação de Acidentes, Súmula #SA-155, Arquivo #1-0099-47. Lançado em 21 de março de 1949).

O voo 923 da Pan Am foi o primeiro acidente de uma aeronave quadrimotora da Pan American. No momento do acidente, foi também o acidente mais mortal na aviação comercial do Alasca. Foi o 31º pior acidente da época, em termos de perda de vidas, e continua sendo o 195º pior acidente em novembro de 2013.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN, baaa-acro e sitnews.us

Hoje na História: 26 de outubro de 1958 - Pan American World Airways inaugura a “Era do Jato”

Boeing 707-121 da Pan American World Airways, N711PA, Clipper America, no Aeroporto Idlewild, Nova York, 26 de outubro de 1958 (Foto: Pan American World Airways)
Em 26 de outubro de 1958, a Pan American World Airways inaugurou a “Era do Jato” com o primeiro voo comercial de um avião a jato americano. 

O Boeing 707-121 'Clipper America', prefixo N711PAda Pan Ampartiu de New York Idlewild (IDL) em um voo de 8 horas e 41 minutos para Paris Le Bourget (LBG), com uma parada de combustível em Gander, Newfoundland (YQX). (O tempo real de voo foi de 7 horas.) A distância foi de 3.634 milhas (5.848 quilômetros). A bordo estavam 111 passageiros e 11 tripulantes.

O Boeing 707 foi desenvolvido a partir do modelo 367–80 anterior, o “Dash Eighty”. É um transporte a jato de quatro motores com asas inclinadas e superfícies de cauda. A borda dianteira das asas é varrida em um ângulo de 35°. O avião tinha quatro tripulantes: piloto, co-piloto, navegador e engenheiro de voo. 

O 707-121 tem 145 pés e 1 polegada (44,221 metros) de comprimento com uma envergadura de 130 pés e 10 polegadas (39,878 metros). O topo da barbatana vertical tem 42 pés e 5 polegadas (12,929 metros) de altura. O 707 é anterior aos aviões comerciais de "corpo largo", com fuselagem de 12 pés e 4 polegadas (3,759 metros).

As primeiras versões eram movidas por quatro motores turbojato Pratt & Whitney Turbo Wasp JT3C-6, produzindo 11.200 libras de empuxo (49.820 kilonewtons) e 13.500 libras (60.051 kilonewtons) com injeção de água. Este motor era uma variante civil da série militar J57. Era um motor turbojato de fluxo axial de dois carretéis com um compressor de 16 estágios e uma turbina de 2 estágios. O JT3C-6 tinha 11 pés, 6,6 polegadas (3.520 metros) de comprimento, 3 pés e 2,9 polegadas (0,988 metros) de diâmetro e pesava 4.235 libras (1.921 quilogramas).

O peso vazio do avião é 122.533 libras (55.580 kg). O peso máximo de decolagem (MTOW) é 257.000 libras (116.573 kg). No MTOW, o 707 exigiu 11.000 pés (3.352,8 metros) de pista para decolar. Sua velocidade máxima é de 540 nós (1.000 quilômetros por hora). Ele tinha um alcance de 2.800 milhas náuticas (5.185,6 quilômetros).

O Boeing 707 esteve em produção de 1958 a 1979. 1.010 foram construídos. Em 2011, 43 707 ainda estavam em serviço.

A Boeing entregou o N711PA à Pan American em 17 de outubro de 1958. O avião foi denominado Clipper America, mas mais tarde foi renomeado como Clipper Mayflower. Foi alugado para a Avianca ( Aerovías Nacionales de Colombia SA)  de 1960 a 1962. Em abril de 1965, o 707 foi atualizado para o padrão –121B. Isso incluiu uma mudança dos motores turbojato para turbofans Pratt e Whitney JT3D-1 mais silenciosos, mais potentes e eficientes, produzindo 17.000 libras de empuxo. As asas foram modificadas para incorporar as mudanças introduzidas com o Boeing 720 e um tailplane mais longo instalado. 

A Pan Ayer do Panamá comprou o Clipper Mayflower em 21 de fevereiro de 1975 que,  posteriormente, foi alugado para  Türk Hava Yolları, a companhia aérea nacional turca, e passou a servir na Air Asia Company Limited (uma unidade de serviço de aeronaves da Air America) e na E-Systems. Após 26 anos de serviço, em agosto de 1984, o "Clipper America"  foi descartado em Taipei.

Boeing 707-121 da Pan American World Airways, N711PA, Clipper America , chegando ao
Aéroport de Paris - Le Bourget , Paris, França, 27 de outubro de 1958 (Foto: © Jon Proctor)
Fonte: thisdayinaviation.com

Por que motores a jato não têm grades para protegê-los do impacto com as aves?

Motores de avião são sujeitos à ingestão de aves e outros objetos, mas isso é raro de acontecer 
Os motores a jato de aviões mais modernos podem sofrer com o impacto de aves ou outros objetos em suas partes internas. Em uma situação rara, o voo 1549 da US Airways colidiu com bando de gansos logo após a decolagem de Nova York (EUA), em janeiro de 2009, causando a perda de potência nos dois motores. Essa história foi retratada no filme "Sully: O Herói do Rio Hudson" (2016).

Dado o risco, por que as aeronaves não têm uma tela ou grade na frente do motor para evitar a ingestão de animais ou objetos?

Não é viável


Colocar essas proteções acarretaria mais problemas, além de não resolver a questão.

"Não colocamos a tela, pois o atrito que ela causaria com o ar seria absurdamente elevado, o que ocasionaria uma perda de desempenho inaceitável para um avião moderno", disse James Waterhouse, professor da USP.

Ou seja, embora pudesse, eventualmente, diminuir o risco da entrada de objetos e aves, aumentaria em muito o consumo de combustível. Isso porque, para vencer a resistência criada pela grade, seria necessário mais potência do motor, e isso é não é uma solução eficiente do ponto de vista ambiental e aerodinâmico.

O volume de voos realizados diariamente no mundo é enorme, e essa alteração geraria um gasto de combustível gigante para evitar algo que raramente acontece. Como os aviões comerciais costumam ter pelo menos dois motores, podem voar e pousar em segurança com apenas um deles caso algum seja danificado durante o voo.

Grade criaria outros problemas


Colocar uma grade ou tela na frente do motor aumentaria o peso do avião, o que levaria, também, ao aumento no consumo de combustível. Junto a isso, diminuiria entrada de ar no motor, afetando seu desempenho.

Essa estrutura também precisaria ser elaborada para aguentar as colisões às quais estaria sujeita. Uma ave de pouco mais de um quilo, como um urubu, por exemplo, dependendo da velocidade em que vai de encontro ao avião, pode gerar um impacto de várias toneladas.

Caso vários objetos ou aves tampassem a entrada de ar, o motor se tornaria inútil para o voo, em tese. Ainda, caso a ave ficasse presa na grade, suas penas e outras partes, como asas e patas, poderiam ser arrancadas com a força do vento e irem para dentro do motor de qualquer maneira.

Alguns motores têm proteção


Nos motores turboélice, que são aqueles nos quais uma turbina faz mover uma hélice responsável pela propulsão do avião, pode existir uma proteção na entrada de ar do motor, que é bem menor, o que não afetaria o consumo de combustível de maneira significativa.

Isso é bem diferente do que ocorreria com os motores a jato de aviões como o Boeing 737 ou o Airbus A320, encontrados com mais frequência em voos comerciais no Brasil, nos quais os bocais de entrada de ar são bem maiores.

Desde 2010, o país registrou apenas três acidentes envolvendo a colisão com aves e aviões, segundo dados do Cenipa (Centro de Investigação e Prevenção de Acidentes Aeronáuticos), órgão ligado à Aeronáutica. Todos eles foram com aeronaves de pequeno porte e não houve mortos.

Via Alexandre Saconi (Todos a Bordo/UOL) com informações de James Waterhouse, professor do Departamento de Engenharia Aeronáutica da USP - Foto: Reprodução

'Um único hábito reduz em até 50% o risco de contaminação de fungos e vírus no avião', afirma especialista

Manter a ventilação acima da poltrona aberta ajuda a evitar o contato com germes e reduzir o risco de adoecer pela metade.


Dor de garganta e resfriados depois de uma viagem de avião em geral estão relacionados às baixas temperaturas da aeronave. Mas é muito provável que seja por outro motivo: manter a ventilação acima da poltrona aberta ajuda a evitar o contato com germes e reduzir o risco de adoecer pela metade.

Abrir a ventilação acima da sua poltrona pode ainda beneficiar a pessoa sentada ao lado, mas a proteção não vai muito além disso. Se você estiver sentado perto da janela, por exemplo, alguém no assento do corredor precisará abrir seu próprio filtro de ar.

De acordo com a Agência de Proteção Ambiental dos EUA (EPA), os aviões usam filtros de ar particulado de alta eficiência para remover 99,97% de poeira, pólen, mofo, bactérias e partículas transportadas pelo ar. Segundo Mark Gendreau, diretor médico do Beth Israel Lahey Health e especialista em doenças infecciosas associadas a viagens aéreas, o sistema de ventilação da aeronave é igual ou ligeiramente melhor do que a maioria das salas de cirurgia e hospitais em todo o mundo.

Isso ocorre porque eles conseguem de 15 a 30 trocas de ar por hora, com 50% do ar sendo recirculado e a outra metade vindo de fora do avião. Mesmo que uma companhia aérea troque os filtros com menos frequência do que o recomendado, eles ainda retêm a maioria das partículas, de acordo com a Associação Internacional de Transporte Aéreo.

-- Se você está sentado a dois assentos de uma pessoa, há algum risco, mas não é tão alto quanto você pensa, diz Gendreau. Porém, se o filtro de ar acima de sua cabeça estiver aberto, o risco dessa partícula viral ser um problema é totalmente eliminado.

-- Muitas pessoas não tiram proveito disso, mas o que isso faz é fornecer um pouco mais de turbulência do ar na área em que você está sentado. Se houver uma partícula viral vindo em sua direção, teoricamente ela pode empurrá-la e movê-la rapidamente para fora do seu espaço, continua.

Qual é a aparência de uma aeronave durante a certificação?

O 777X está atualmente em processo de certificação e construiu quatro aviões para esse fim (Foto: Boeing)
A certificação de qualquer aeronave nova requer muitos testes e análises minuciosas para colocar o avião à prova. Mas como fica o interior de uma aeronave durante esse tempo? A resposta depende do que foi testado e de quantos aviões estão participando do processo.

Quase pronto


Fazer uma aeronave é uma tarefa difícil. Após anos de processos de projeto e fabricação, as empresas podem orgulhosamente tirar sua primeira aeronave da linha de montagem. No entanto, este é o único começo de uma nova jornada: o processo de certificação. Talvez a parte mais crítica, novos modelos de aeronaves devem passar por testes extensos e extremos para provar sua segurança aos reguladores globais.

Quando são construídas pela primeira vez, as aeronaves de teste têm apenas uma parte totalmente concluída, o cockpit. A cabine do jato normalmente é deixada vazia para os vários testes que serão realizados, o que significa que o interior se parece com o de um cargueiro temporário. No entanto, isso não demorará muito, pois novos sistemas são ajustados para cada teste.

A cabine da aeronave de teste é deixada vazia para abrir espaço para vários sistemas de teste
(Foto: H. Michael Miley via Wikimedia Commons)
A visão mais comum dentro de uma aeronave de teste são os postos do engenheiro. São conjuntos de assentos e estruturas de servidor que incluem computadores e sensores que rastreiam o movimento da aeronave em tempo real. Durante todos os testes, os engenheiros manterão verificações em sistemas como fluxo de combustível, resposta do motor, eficiência, tempo de resposta e muito mais.

No entanto, embora essa possa ser a visão mais comum, as aeronaves de teste incluem vários outros componentes em toda a fuselagem.

Tudo


Além dos sistemas internos, existem algumas modificações especiais feitas para testar as condições externas. Por exemplo, para testar a turbulência da aeronave e as leituras de pressão estática, a aeronave contém um tubo de plástico de 300 pés que pode ser implantado para fora da cauda, ​​de acordo com a Wired . Isso significaria deixar uma parte da fuselagem sem lacre e não instalar nada na área normal da cozinha.

A aeronave também pode ser equipada com dezenas de tanques de transferência de peso em toda a aeronave para simular a mudança do centro de gravidade com passageiros e passageiros de carga. Esses tanques são preenchidos com água e podem transferir água entre si para alterar o CGI.

O 747-8s inclui tanques de água no convés superior, no nariz da aeronave, para simular
os passageiros (Foto: Olivier Cleynen via Wikimedia Commons)
Cada aeronave terá requisitos diferentes e novos sistemas podem ser adicionados e removidos conforme a necessidade da missão. Considerando que esses aviões passam por tudo, desde voos de longa distância até testes de impregnação a frio , os dados precisos desses sistemas são essenciais para a certificação.

Atualmente, o mais popular em teste é o Boeing 777X. A gigante americana construiu quatro 777-9s para participar do programa de testes , cada um dos quais verifica diferentes partes do avião. Eventualmente, a maioria dessas aeronaves entrará em serviço comercial após serem equipadas com suas respectivas cabines.

quarta-feira, 25 de outubro de 2023

Como saber as diferenças entre as principais variantes do Boeing 747

Do número de janelas e portas aos tipos de motores, veja como você pode diferenciar as diversas variantes do jato jumbo.

Boeing 747-8 da Lufthansa (Foto: Lucas Wunderlich)
Já se passaram incríveis 53 anos desde que o 747 entrou em serviço pela primeira vez com a Pan Am, em 22 de janeiro de 1970. Apesar dos anos que se passaram, o Boeing 747 continua sendo uma das aeronaves mais icônicas e reconhecíveis do mundo. Apelidada de “Rainha dos Céus” e recebendo o apelido de “jumbo jet”, é fácil ver por que a aeronave conquistou tanto amor e carinho da comunidade da aviação. Seus motores quádruplos, tamanho grande, altura imponente e segundo convés corcunda característico permanecem incomparáveis ​​com qualquer outra aeronave.

Ao longo de seus históricos 54 anos de produção, de 1968 a 2022 , o Boeing 747 passou por diversas variações. Do 747-100 original ao mais recente 747-8, o design da aeronave passou por diversas alterações em suas características exteriores, o que poderia tornar a identificação confusa. Veja como saber a diferença entre as principais variantes da aeronave.

Uma introdução às variantes

Boeing 747-100


O Boeing 747 resultou do trabalho de cerca de 50 mil funcionários da Boeing. Chamados de “os Incríveis”, estes eram os trabalhadores da construção civil, mecânicos, engenheiros, secretários e administradores que fizeram história na aviação ao construir o 747 em aproximadamente 16 meses durante o final da década de 1960.

Boeing 747-100, EP-IAM, da Iran Air (Foto: Chris Lofting via Wikimedia Commons)
Original e a primeira iteração do programa Boeing 747, o Boeing 747-100 também foi a primeira aeronave a apresentar um deck duplo parcial, dando-lhe sua aparência distinta e corcunda. A Boeing pretendia inicialmente que o andar superior acomodasse áreas de lounge, de modo que os -100 iniciais produzidos tinham apenas três janelas de passageiros de cada lado. Posteriormente, isso foi atualizado para 10 janelas de cada lado do andar superior. O convés principal também consiste em 5 portas principais.

Boeing 747 SP


A próxima versão foi o Boeing 747SP, abreviação de desempenho especial. Com as seções da fuselagem removidas da proa e da popa da asa, o Boeing 747SP foi projetado para manter uma capacidade maior e ao mesmo tempo ser capaz de pousar e decolar em pistas mais curtas.

Boeing 747SP da Qantas (Foto: Sunil Gupta via Wikimedia Commons)
Semelhante ao andar superior da primeira variante, o Boeing 747SP tinha dez janelas de cada lado. No entanto, a aeronave de desempenho especial apresentava um corpo visivelmente mais curto e tinha apenas quatro portas no convés principal e nenhuma porta lateral.

Boeing 747-200


Continuando o programa Boeing 747 estava o Boeing 747-200, que geralmente era quase igual à primeira variante. Mas como as novas variantes envolvem melhorias, o -200 foi projetado para ser mais potente, permitindo maior alcance e peso máximo de decolagem.

Boeing 747-200 da Air Lanka (Foto: Eduard Marmet via Wikimedia Commons)
O -200 usava o mesmo andar superior da primeira variante, e alguns mantiveram as três janelas de cada lado. No entanto, a maioria dos -200 produzidos foram construídos com a configuração regular de 10 janelas por lado no convés superior, mas nenhum dos -200 tinha portas no convés superior.

Boeing 747-300


As portas só seriam vistas no Boeing 747-300 e depois dele, que foi projetado para melhorar o sucesso do Boeing 747-200, mantendo as melhorias que tinha em relação ao -100, mas também aumentando a capacidade oferecida pelo -200.

Boeing 747-300 da Swissair (Foto: Aero Icarus via Wikimedia Commons)
Seu andar superior apresentava 20 janelas de cada lado, com portas de saída de emergência situadas no meio de ambos os lados, entre a 10ª e a 11ª janelas. Caso contrário, o corpo principal do -300 apresenta um cinco portas semelhante construído na mesma posição das variantes anteriores.

Boeing 747-400


Depois, há o Boeing 747-400, que foi projetado para ser uma melhoria significativa em relação à variante anterior em vários aspectos, incluindo maior alcance, capacidade e eficiência de combustível. Houve também a introdução de glass cockpits digitais em substituição aos medidores analógicos e a retirada do engenheiro de voo.

Boeing 747-400 da British Airways (Foto: Chris Lofting via Wikimedia Commons)
Em muitos aspectos, como por ser a variante mais vendida até o momento, o -400 é considerado o modelo Boeing 747 de maior sucesso fora do programa. O -400 manteve o andar superior estendido da variante -300, que também possui 20 janelas e uma porta de saída de emergência de cada lado. A aeronave também apresentava cinco portas padrão no convés principal.

Boeing 747-8


A maior e mais recente variante do programa Boeing 747 foi o Boeing 747-8. Esta variante foi proposta como concorrente direta do Airbus A380 , que era, na época, apenas um modelo conceito da Airbus. Como tal, grandes atualizações de tamanho e desempenho foram feitas para o -8.

Boeing 747-8 da Korean Air (Foto: tjdarmstadt via Wikimedia)
Apresentando uma versão estendida do já alongado andar superior do Boeing 747-400, o -8 possui 27 janelas de cada lado. As portas de saída de emergência do convés superior também são colocadas após a 10ª janela de cada lado, após a qual estão localizadas as 15 janelas seguintes. Há um espaço entre as 25ª e 26ª janelas, após o qual estão localizadas as duas últimas janelas.

Uma olhada em suas diferentes especificações


Com uma melhor visualização de quão diferente cada variante pode ser imaginada, por exemplo, como o Boeing 747-100 e o 747SP serão notavelmente mais curtos em comparação com a variante Boeing 747-300 em diante, vamos discutir outras diferenças entre os modelos. Desde suas medidas até a envergadura e até os tipos de motores utilizados, pois, como mencionado, o Boeing 747-200 era mais potente.


Infelizmente, não há tantos Boeing 747 voando pelos céus como antes, especialmente para as variantes anteriores, como o Boeing 747-300 e anteriores. Embora algumas companhias aéreas comerciais ainda utilizem seus Boeing 747-400 e 747-8, os jatos jumbo são mais operados por transportadoras de carga.

Edição de texto e imagens por Jorge Tadeu com informações do Simple Flying

Por que as companhias aéreas não voam sobre o Tibete?


O planejamento de rotas aéreas e mudanças operacionais são áreas complexas, mas interessantes. Alguns passageiros seguirão isso de perto, fascinados por onde seu voo os leva, enquanto outros mal percebem enquanto cruzam os céus. Se você seguir o mapa, no entanto, uma coisa que você verá em voos de longa distância para a Ásia é que eles nunca sobrevoam a Região Autônoma do Tibete na China, apesar de seu grande tamanho.

Poucas aeronaves sobre o Tibete


A região em questão é a Região Autônoma do Tibete na China. Esta é uma área escassamente povoada e montanhosa, também conhecida como o planalto tibetano - um nome significativo, dado que a altitude média na região é superior a 4.500 metros.

(Foto: Dennis Jarvis via Flickr)
Por ser escassamente povoada, há poucos voos para ou dentro da região (toda a área representa apenas 0,2% da população da China, para contextualizar). Existem aeroportos internacionais em Lhasa (foto acima) e Xining, e muitos voos agora operam para a China e regionalmente. Mas as companhias aéreas que voam de ou para outros destinos evitarão totalmente a região, apesar de muitas vezes ser a rota mais direta.

Dê uma olhada nesta imagem abaixo do FlightRadar24.com mostrando os aeroportos da região. Você notará que toda a região está vazia de voos, com várias aeronaves rastreando logo acima e abaixo.

(Imagem: FlightRadar24.com)
Então, por que as companhias aéreas fazem isso? Existem três razões principais, conforme explicado em um vídeo do RealLifeLore (abaixo).


Incapaz de descer a uma altitude segura em caso de emergência


A principal razão para as aeronaves evitarem a região é a alta altura média do terreno. Isso é mais de 14.000 pés. As aeronaves, é claro, voam muito mais alto do que isso. Mas o procedimento no caso de uma emergência, como a despressurização da cabine, é descer até 10.000 pés antes de desviar para um aeroporto.

Com terreno tão alto, a aeronave não seria capaz de descer o suficiente. É claro que há oxigênio para os passageiros. Mas este é um suprimento limitado e baseado na suposição de que a aeronave atingirá rapidamente uma altitude segura. Para piorar a situação, existem poucos aeroportos de desvio, e estes podem ser um longo voo de algumas partes da região.

(Foto: Getty Images)
Para evitar uma situação em que o avião não pode descer rápido o suficiente, as companhias aéreas optam por pular completamente a região tibetana. Normalmente, os únicos voos que sobrevoam são aqueles com destino a Lhasa ou aos mais cinco aeroportos da província, o que significa que ainda há algum tráfego. No entanto, como vimos acima no mapa, o espaço aéreo do Tibete está quase vazio em comparação com os céus ao seu redor.

Risco de aumento da turbulência


A turbulência durante um voo é causada por correntes de ar que se movem para cima e para baixo em ondulações e em diferentes velocidades. Isso é afetado por vários fatores, incluindo o efeito de aquecimento do sol, as condições climáticas e as montanhas. As correntes de ar subirão sobre as montanhas, criando fluxos perturbadores.

A turbulência pode acontecer em qualquer rota - como todos nós já experimentamos. Mas nesta região montanhosa alta, é mais provável e pode ser difícil de evitar. Isso seria perturbador para os passageiros e também poderia tornar uma situação de emergência ainda mais perigosa.

Vista do furacão do cockpit (Foto: Getty Images)
Durante tempestades tropicais, os voos podem ser solicitados a passar por cima do sistema de tempestades para evitar o pior da turbulência, embora geralmente eles pulem completamente o voo. No entanto, com montanhas para enfrentar, essa tarefa é extremamente difícil para os pilotos e coloca em risco a segurança dos passageiros. Portanto, com a possibilidade de tempo adverso sempre presente, voar sobre altas montanhas é menos do que ideal para voos comerciais.

Risco de congelamento do combustível de aviação


E não surpreendentemente, o motivo final também está ligado ao terreno montanhoso. As temperaturas são muito mais baixas, o que leva ao risco de o combustível de aviação congelar. O combustível Jet A1 padrão tem um ponto de congelamento de -47 graus Celsius (e Jet A, que é mais comum nos EUA, é ligeiramente superior a -40 graus).

Tais temperaturas raramente são alcançadas, especialmente por períodos prolongados de tempo. Mas em altitude sobre as montanhas já frias, há um risco aumentado disso. Não é um problema significativo para voos mais curtos dentro ou fora da região, mas um longo voo sustentado sobre a área pode ser diferente.

Avião sendo reabastecido na África do Sul (Foto: Getty Images)
Embora isso possa não parecer uma grande preocupação, o congelamento do combustível de aviação pode levar a acidentes graves. Em 2008, o voo 38 da British Airways caiu em Londres Heathrow depois que cristais de gelo se formaram na mistura de combustível e entupiram o motor, fazendo com que o avião caísse perto da pista. Felizmente, não houve mortes naquele dia, mas o incidente ressaltou o quão importante a temperatura pode ser para o fluxo de combustível de aviação.

Portanto, voar sobre o Tibete por horas pode levar a impactos ainda mais desconhecidos na mistura de combustível de aviação, deixando as companhias aéreas em risco de perder seus motores.

Edição de texto e imagens por Jorge Tadeu (com informações de Simple Flying e FlightRadar24.com)

Conheça o avião supersônico mais silencioso (e estranho) do mundo


Aconteceu em 25 de outubro de 1968: O acidente com o voo Northeast Airlines 946


O voo 946 da Northeast Airlines foi um voo doméstico dos Estados Unidos de Boston, em Massachusetts, para Montpelier, em Vermont, com escala para reabastecimento em Líbano, em New Hampshire.


A bordo do Fairchild FH-227C, prefixo N380NE, da Northeast Airlines (foto acima), estavam três tripulantes e 39 passageiros. A tripulação era composta pelo capitão John A. Rapsis, 52 anos (que era piloto da Northeast Airlines desde 1957 e tinha mais de 15.000 horas de experiência em voo), pelo copiloto, John C. O'Neil, 29 (que foi contratado em 1967 e tinha menos experiência) e por uma única comissária de bordo, Betty Frail, 21 (que foi contratada em junho de 1968).

O Capitão John A. Rapsis, membro da US Army Air Corps, durante a Segunda Guerra Mundial
Às 17h42, o voo 946 da Northeast Airlines deixou o Aeroporto Internacional Logan em direção à sua primeira parada no Líbano, New Hampshire. O tempo na hora da decolagem estava bom, com nuvens baixas espalhadas, enquanto os funcionários do aeroporto de Logan, em Boston, alegaram que havia neblina durante a decolagem. 

O National Transportation Safety Board declarou em seu relatório que o voo era "de rotina" até que o avião se aproximou do Aeroporto Municipal do Líbano, que está localizado em um vale, cercado por colinas próximas. 

Às 18h11, os pilotos comunicaram por rádio à torre de controle que estavam executando uma manobra de aproximação padrão antes de se prepararem para pousar. Controle de tráfego aéreo respondeu e deu à tripulação informações sobre o tempo, visibilidade e outras informações sobre as condições do aeroporto.

Momentos depois dessa transmissão, o avião colidiu com a lateral da Moose Mountain e se desintegrou. O impacto matou 32 dos 39 passageiros e os três tripulantes (31 instantaneamente, um depois).

Entre os mortos estavam quatro eram funcionários da National Life Insurance Company que voltavam de uma viagem de negócios, um repórter do Barre Daily Times, seis assistentes sociais do Programa de Treinamento Suplementar do Vermont Head Start em uma viagem de conferência, incluindo Abraham H. Blum, Doutorado em Desenvolvimento Infantil. 

Dez sobreviventes foram levados para o Hospital Mary Hitchcock, pelo menos um em estado crítico, e as autoridades do hospital disseram que não se espera mais feridos. Um dos sobreviventes era a comissária de bordo Betty Frail.

Os feridos foram retirados do local do acidente por helicópteros e levados para o gramado no centro do campus do Dartmouth College , onde carros de bombeiros e outros veículos iluminaram a área gramada para uma pista de pouso de emergência. 

As autoridades militares que participaram da operação de resgate disseram que o mau tempo complicou as coisas. Estava chovendo no local do acidente, com neve em altitudes mais elevadas e temperaturas congelantes eram esperadas.

Pessoas presentes no local disseram que o avião caiu no lado norte da montanha, a cerca de 20 metros do topo. Madeiras pesadas e saliências forçaram a equipe de resgate a caminhar até os destroços. 

Os helicópteros não apenas trouxeram os feridos, mas também transportaram médicos enquanto uma escavadeira lutava para abrir caminho para o avião. Jornalistas que tentavam chegar ao local do acidente em Moose Mountain foram bloqueados na base pela Polícia Estadual de New Hampshire. Apenas a polícia, bombeiros e outras equipes de resgate tiveram permissão para subir a montanha.

Os passageiros que sobreviveram ao acidente estavam na parte traseira do avião e conseguiram escapar dos destroços pela saída de emergência traseira ou pelas fraturas na fuselagem. 

Dois passageiros em particular tiveram sorte de escapar da morte certa. George Collins, um dos cinco funcionários da National Life que embarcaram no voo 946, recebeu um assento na janela, mas trocou de assento com outro passageiro. 

Esse passageiro morreu no acidente e Collins sobreviveu com ferimentos graves. Anne Foti deveria estar no voo 946, mas em vez disso cancelou o voo de última hora às 12h00 de sexta-feira (várias horas antes de o avião decolar de Boston). No entanto, a namorada de Terry Hudson, a residência de Janet Johnson ficava a apenas 13 km do local do acidente quando o acidente ocorreu. 

O acidente foi testemunhado por um caçador de cervos e residentes próximos que chamaram a polícia e o corpo de bombeiros. Momentos depois, as equipes de resgate começaram a procurar corpos e sobreviventes, apesar das condições de deterioração. 

Durante sua investigação, o National Transportation Safety Board informou que o avião estava voando 600 pés (180 m) abaixo de sua altitude exigida. Não está claro por que os pilotos tomaram a decisão de voar em baixa altitude, porque tanto a caixa preta quanto o gravador de dados de voo foram gravemente danificados no acidente. 

No entanto, o NTSB sugeriu em sua descoberta em 1970 que os pilotos avaliaram mal sua posição de altitude durante a aproximação e não havia ajudas de navegação na aeronave ou perto do aeroporto.

Funcionários da Comissão de Aeronáutica de New Hampshire acusaram a FAA de ignorar os repetidos avisos sobre a instalação de uma abordagem de navegação ILS no Aeroporto Municipal do Líbano e que a instalação de tal sistema poderia ter evitado o acidente.

O acidente teve um impacto nas dificuldades da Northeast Airlines, já que foi o quinto acidente aéreo em seus 25 anos de história. No momento do acidente, a companhia aérea havia perdido quatro aviões e 38 passageiros e tripulantes. A companhia aérea continuaria a operar de forma independente até sua fusão com a Delta Air Lines na década de 1970.

O presidente da National Life realizou um memorial pelos funcionários que morreram no acidente. Trinta e cinco anos após o acidente, o irmão, a filha, o sobrinho e a sobrinha de Terry Hudson, que morreu no acidente, continuam trabalhando no National Life. Além disso, Edmond Rousse Jr. também começou a trabalhar na National Life.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN, baaa-acro,  enacademic.com e vnews.com

Aconteceu em 25 de outubro de 1938: A queda do Douglas DC-2 da Australian National Airways


E
m 25 de outubro de 1938, o Douglas DC-2-210, prefixo VH-UYC, da Australian National Airways (foto abaixo), batizado "Kyeema", realizava o voo doméstico de Adelaide para Melbourne, na Austrália, levando a bordo 14 passageiros e quatro tripulantes: o capitão, o primeiro oficial, uma aeromoça e um piloto cadete que operava o rádio durante o voo.


O voo decolou de Adelaide às 11h22. Ao entrar na área ao redor de Melbourne, ele se deparou com uma camada de nuvens pesadas, estendendo-se de 1.500 pés (457 m) a 400 pés (122 m) e dificultando a navegação por pontos de referência. Como resultado, a tripulação de voo identificou erroneamente Sunbury como Daylesford por meio de uma lacuna nas nuvens, levando-os a acreditar que estavam 30 quilômetros (19 milhas) atrás de onde realmente estavam em seu plano de voo.

Se a tripulação tivesse feito referência cruzada de sua velocidade de solo com os marcos anteriores, eles provavelmente teriam percebido que não estavam onde pensavam que estavam. Em vez disso, eles ultrapassaram na aproximação final o Aeroporto de Essendon e, incapazes de ver através do nevoeiro pesado, colidiram com o Monte Dandenong, também conhecido como Monte Corhanwarrabul, a algumas centenas de metros do cume, matando todos os 18 a bordo instantaneamente..


Exatamente o que aconteceu nos últimos minutos antes do acidente é questionado. Há alegações de que os pilotos podem ter visto a montanha chegando e tentado desviar a aeronave, inadvertidamente piorando a situação ao se ajustar de uma trajetória de vôo por uma lacuna entre dois picos para uma trajetória diretamente em um deles.


Também há fortes evidências de que os pilotos estavam ficando inseguros quanto à sua posição. De acordo com Macarthur Job, no livro "Disaster in the Dandenongs" (imagem acima), o operador de rádio tinha pedido o controlador em Essendon dar-lhes um rolamento de rádio. Essendon reconheceu e disse-lhes para deixar o transmissor ligado, mas o sinal parou e nenhum contato foi feito. Pensa-se que este é o momento em que Kyeema atingiu a montanha.


Por demanda pública, uma Comissão Real para a causa do desastre foi estabelecida, e o Governo Federal Australiano nomeou um Comitê de Investigação de Acidentes Aéreos sob a presidência do Coronel T. Murdoch DSO, VCE, com o inquérito público começando em 30 de outubro de 1938. 

Por causa do acidente, foram aprovados regulamentos que exigem que os oficiais de verificação de vpo monitorem os voos dos aviões e aconselhem sobre coisas como posição, clima e opções alternativas de pouso. Também foi recomendada a implementação de um sistema de alcance de rádio de 33 MHz para fornecer aos pilotos informações precisas sobre seu curso. 


Eric Harrison (oficial da RAAF) foi membro do tribunal de inquérito sobre o acidente em 25 de outubro do Douglas DC-2avião Kyeema. O relatório do inquérito destacou o major Melville Langslow, membro financeiro do Conselho de Aviação Civil e do Conselho Aéreo da RAAF, pelas críticas a medidas de corte de custos que haviam atrasado os testes de faróis de segurança projetados para tais eventualidades. 


De acordo com o historiador da Força Aérea Chris Coulthard-Clark, quando Langslow foi nomeado Secretário do Departamento de Aeronáutica em novembro do ano seguinte, ele saiu de seu caminho para "tornar a vida difícil" para Harrison, causando "amargura e atrito dentro do departamento", e exigindo que o Chefe do Estado-Maior da Aeronáutica, Vice-Marechal da Aeronáutica Stanley Goble, tomasse medidas para proteger o inspetor de segurança da ira do novo secretário.

O monumento memorial logo acima do local do acidente
Somente 40 anos após o acidente, um memorial para Kyeema e seus dezoito passageiros foi criado no local do acidente.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e theage.com.au

Hoje na História: 25 de outubro - Data que marca três primeiros voos históricos

Voo inaugural do Airbus A380 da Singapore Airlines (Foto: Chris Sloan/The Airchive)
Hoje, na Aviação, celebramos o primeiro serviço doméstico pós-guerra da Japan Airlines (JL), o primeiro voo de receita da Emirates (EK) e o voo inaugural do A380 da Singapore Airlines (SQ).

Examinamos mais de perto esses três voos inaugurais que ocorreram hoje em 1951, 1985 e 2007, respectivamente, e as companhias aéreas que os tornaram possíveis.

Expansão pós-guerra da Japan Airlines


Em 1951, foi inaugurado o primeiro serviço aéreo doméstico do Japão no pós-guerra, usando uma aeronave Martin 2-0-2, chamada Mokusei, e a tripulação arrendada da Northwest Airlines (NW). Sob o nome de Japan Airlines, a transportadora já havia realizado voos de convite em um Douglas DC-3 Kinsei, alugado da Philippine Airlines (PR), entre os dias 27 e 29 de agosto.

Martin 2-0-2 da Northwest Airlines (Foto: Bill Larkins)
A companhia aérea foi criada em 1º de agosto de 1951, quando o governo japonês reconheceu a necessidade de um sistema de transporte aéreo confiável para ajudar o país a se expandir após a Segunda Guerra Mundial. A companhia aérea foi formada com um capital inicial de ¥ 100 milhões e estava sediada em Ginza, Chūō, Tóquio.

Em 1º de agosto de 1953, a Dieta Nacional aprovou o Japan Air Lines Company Act, criando uma nova JL estatal, que herdou todos os ativos e passivos de seu antecessor privado. Em 1953, de Tóquio a Sapporo e Misawa, e a oeste de Nagoya, Osaka, Iwakuni e Fukuoka, a rede JL expandiu-se para o norte.

Em 2 de fevereiro de 1954, a companhia aérea iniciou voos internacionais, transportando 18 passageiros de Tóquio a São Francisco via Wake Island e Honolulu em um Douglas DC-6B City of Tokyo. Os voos entre Tóquio e São Francisco ainda são os voos 1 e 2.

A companhia aérea realiza voos domésticos e internacionais de passageiros e cargas por meio de cinco subsidiárias consolidadas e uma empresa afiliada.

Emirates Airlines se torna uma companhia aérea global


Um dos primeiros Airbus A300 da Emirates Airlines (Foto: Aldo Bidini)
Em 1985, a EK operou seu primeiro voo comercial de Dubai para Karachi usando um Airbus A300 alugado da Pakistan International Airlines (PK). A Emirates foi fundada em 1985 pela Família Real de Dubai como a terceira maior companhia aérea do mundo em termos de receita de passageiros programados, quilômetros voados e número de passageiros estrangeiros transportados.

A Emirates foi uma das companhias aéreas que mais cresceram no mundo no início da década de 1990; a receita cresceu aproximadamente US$ 100 milhões por ano, chegando a US$ 500 milhões em 1993. No mesmo ano, a transportadora transportou 1,6 milhão de passageiros e 68.000 toneladas de carga.

A companhia aérea começou a usar seu novo Airbus A340-500 para voar sem escalas para o Aeroporto Internacional John F. Kennedy (JFK) de Nova York em 2004. Esses voos culminaram na retomada dos serviços aéreos sem escalas entre os Emirados Árabes Unidos e o Estados Unidos, após a retirada dos voos da Delta Air Lines (DL) em 2001.

Em última análise, o maior operador do A380 seria a EK, com o 100º A380 entrando em sua frota em novembro de 2017. Foi anunciado em 18 de janeiro de 2018 que a Emirates havia encomendado 20 A380 com opções para mais 16 . As entregas desse tipo estavam programadas para começar em 2020.

Em 2022, a EK retomou seu serviço A380 Dubai-Perth, marcando um ano de companhias aéreas anunciando planos para reativar suas frotas Superjumbo desativadas. Só o tempo dirá se o A380 encontrou uma nova vida em um mundo pós-pandemia.

Voo inaugural do Airbus A380 da Singapore Airlines


Airbus A380, prefixo 9V-SKA, da Singapore Airlines (Foto: Chris Sloan/The Airchive)
Em 2007, a primeira aeronave A380 Superjumbo, MSN003 (9V-SKA), foi entregue à companhia aérea de bandeira de Cingapura em 15 de outubro, entrando em serviço neste dia com o voo número SQ380, voando entre Cingapura e Sydney. O voo inaugural incluiu 455 passageiros e uma tripulação de 30 pessoas, incluindo pilotos. O voo inteiro durou sete horas.

Os passageiros compraram assentos em um leilão online beneficente, pagando entre US$ 560 e US$ 100.380. Como todos sabemos, a aeronave de dois andares é tão alta quanto um prédio de sete andares, tem uma envergadura quase do comprimento de um campo de futebol e pode acomodar 853 passageiros em uma classe totalmente econômica.

Voo inaugural de Singapore Airlines Airbus A380 (Foto: Chris Sloan/The Airchive)
A Singapore Airlines revelou seu novo interior de cabine na semana anterior ao voo. Ele apresentava 471 assentos em três classes: 12 Singapore Airlines Suites (completas com a primeira cama independente de tamanho normal, TV de tela plana e conexões para laptop); 60 lugares na classe executiva (que foram convertidos em grandes flatbeds e também têm uma área de bar com assento); e 399 assentos na classe econômica.

O voo inaugural do A380 foi equipado com quatro motores Rolls-Royce Trent 900, que contribuíram significativamente para a compatibilidade ambiental do tipo. Como tal, o A380 estabeleceu novos padrões ambientais para o transporte aéreo. Segundo o site da empresa, o A380 tinha um consumo de combustível inigualável de menos de três litros por passageiro a cada 100 km. Chris Sloan, da Airways, foi uma das poucas pessoas sortudas a embarcar no primeiro voo inaugural do Airbus A380, o SQ380.

Voo inaugural de Singapore Airlines Airbus A380 (Foto: Chris Sloan/The Airchive)
Em 23 de setembro de 2020, o Airbus A380 final, a ser entregue à EK, saiu do Hangar 40 em Toulouse, linha de montagem do A380 da Airbus.

Como nota final, o SQ ofereceu uma maneira única de dar ao público um vislumbre de como é jantar em seu A380. Estacionados no Terminal 3 do Aeroporto de Changi (SIN), dois dos A380 da SQ receberam cerca de 400 pessoas na experiência Restaurant@A380.

Edição de texto e imagens por Jorge Tadeu (com informações de Airways Magazine)

Hoje na História: 25 de outubro de 1979 - Produção do último McDonnell Douglas Phantom II

McDonnell Douglas F-4E-67-MC Phantom II, 78-0744, o último de 5.057 Phantoms
construídos em St. Louis, 25 de outubro de 1979 (McDonnell Douglas Corporation)
Em 25 de outubro de 1979, o 5.057º e último Phantom II - um F-4E-67-MC, número de série da Força Aérea dos EUA 78-0744 - foi lançado na fábrica da McDonnell Douglas Corporation, Lambert Field (STL), St. Louis , Missouri, e a linha de produção foi fechada.

McDonnell Douglas F-4E-67-MC Phantom II 78-0744 nas marcações da
Força Aérea dos Estados Unidos (Força aérea dos Estados Unidos)
O 78-0744 foi transferido para a Força Aérea da República da Coreia (ROKAF) sob o programa de Vendas Militares Estrangeiras Faisão da Paz II e designado para a 17ª Ala de Caça Tática baseada no Aeroporto Internacional de Cheongju (CJJ). Uma fonte disse que foi “cancelado”, mas faltam detalhes.

Fonte: thisdayinaviation.com

Avião agrícola cai em propriedade rural em Ponta Porã (MS) e piloto morre

Acidente ocorreu na terça-feira (24) no município de Ponta Porã e foi confirmado pela empresa de aviação.

Avião agrícola tombou em lavoura de arroz em Ponta Porã; piloto morreu (Foto: Direto das Ruas)
O piloto Laurentino Zamberlan, de 68 anos, morreu na queda do avião agrícola Neiva EMB-202 Ipanema, prefixo PT-UMB, da Uniagro Aviação Agrícola, na manhã desta terça-feira (24) na fronteira de Mato Grosso do Sul com o Paraguai. 

O acidente ocorreu numa propriedade rural no município de Ponta Porã. A aeronave caiu na lavoura de arroz, na região entre Ponta Porã e Dourados.

Idoso morreu na queda do avião agrícola (Foto: Reprodução)
Em comunicado em suas redes sociais, a empresa Uniagro Aviação Agrícola Ltda. confirmou a queda de uma de suas aeronaves no município de Ponta Porã. A empresa tem sede em Dourados, onde morava o piloto morto no acidente.


A empresa informou que a queda já foi informada aos órgãos competentes e ao centro de controle e que os procedimentos de emergência foram providenciados.

Segundo a Uniagro, as causas da queda são desconhecidas e somente as investigações poderão apontar o motivo. Policiais civis e peritos se deslocaram para a fazenda onde ocorreu a queda. A Seção de Operações Aéreas do Dracco (Departamento de Repressão à Corrupção e ao Crime Organizado) já assumiu as investigações.

Via Campo Grande News e g1