quinta-feira, 13 de julho de 2023

Aconteceu em 13 de julho de 2009: Incidente grave no voo 2294 da Southwest Airlines - Buracos na Fuselagem


O voo 2294 da Southwest Airlines foi um voo programado de passageiros dos EUA que sofreu uma rápida despressurização da cabine de passageiros em 13 de julho de 2009. A aeronave fez um pouso de emergência no Aeroporto Yeager em Charleston, na West Virginia, sem fatalidades ou ferimentos graves aos passageiros e tripulantes. Uma investigação do NTSB descobriu que o incidente foi causado por uma falha na pele da fuselagem devido à fadiga do metal.


A aeronave envolvida era o Boeing 737-3H4, prefixo N387SW, da Southwest Airlines, (foto acima), com número de série 26602, operando um voo programado entre Nashville, no Tennessee (KBNA), e Baltimore, em Maryland (KBWI), levando a bordo 126 passageiros e cinco tripulantes.

A aeronave decolou e subiu por cerca de 25 minutos, nivelando-se a uma altitude de cruzeiro de aproximadamente 35.000 pés (11.000 m). Por volta das 17h45 (horário da costa leste), a aeronave passou por um evento de descompressão rápida, fazendo com que o alerta de altitude da cabine fosse ativado, indicando uma queda perigosa na pressão da cabine. 

Máscaras de oxigênio para passageiros foram implantadas automaticamente. Os sistemas da aeronave desligaram o piloto automático, e o capitão iniciou uma descida de emergência para colocar a aeronave no ar mais denso para evitar a hipóxia dos passageiros. 

O alarme de altitude da cabine cessou quando a aeronave passou por cerca de 9.000 pés (2.700 m). A tripulação de voo então pousou a aeronave com segurança em Charleston, em West Virginia (KCRW). 

Após o pouso, descobriu-se que a aeronave tinha um orifício de três lados na fuselagem, de 17,4 polegadas (44 cm) de comprimento e entre 8,6 a 11,5 polegadas (22-29 cm) de largura, à frente da borda de ataque do estabilizador vertical, na extremidade traseira da aeronave. 


O acidente foi investigado pela Federal Aviation Administration (FAA) e pelo National Transportation Safety Board (NTSB). A revisão do NTSB dos registros do gravador de voz da cabine e entrevistas pós-incidente, mostrou que a tripulação de voo agiu de forma adequada em resposta à emergência. 


A investigação do NTSB descobriu que o incidente foi causado por uma rachadura de fadiga do metal na pele da fuselagem. 

A aeronave foi entregue à Southwest Airlines em junho de 1994 e, na época do voo do acidente, acumulava aproximadamente 42.500 ciclos de decolagem/pouso e 50.500 horas de estrutura. 

Inspeções altamente ampliadas descobriram que uma longa rachadura de fadiga de metal havia se desenvolvido no limite de dois processos de fabricação diferentes usados ​​pela Boeing na criação do conjunto de revestimento da coroa da fuselagem.

O interior da seção da fuselagem danificada
A modelagem de elementos finitos da Boeing sugeriu que as forças de tensão nesta região limite são maiores devido a diferenças na rigidez, indicando que uma falha era mais provável de ocorrer nesta área após um certo número de ciclos de pressurização-despressurização. 

Após este incidente, em 3 de setembro de 2009, a Boeing emitiu um Boletim de Serviço solicitando inspeções externas repetitivas para detectar quaisquer rachaduras nesta área mais vulnerável da pele da fuselagem. A FAA então emitiu uma Diretriz de Aeronavegabilidade em 12 de janeiro de 2010, exigindo esses requisitos de inspeção.

As críticas anteriores às práticas frouxas de manutenção e inspeção da transportadora, pelas quais a companhia aérea havia sido multada em US$ 7,5 milhões em 2008, ecoaram rapidamente.

Em 1º de abril de 2011, menos de dois anos depois, um incidente muito semelhante ocorreu no voo 812 da Southwest Airlines, envolvendo outro Boeing 737-3H4 da Southwest Airlines. Em resposta ao segundo incidente, a FAA emitiu uma Diretriz de Aeronavegabilidade exigindo inspeções mais frequentes por todas as companhias aéreas de todas as aeronaves Boeing 737 Classic.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia e ASN

Aconteceu em 13 de julho de 1988: Incêndio no motor obriga helicóptero a pouso de emergência no mar da Escócia

O Sikorsky S-61N G-BFRI, da British International Helicopters, 'irmão' do helicóptero acidentado
Em 13 de julho de 1988, o helicóptero Sikorsky S-61N-II, prefixo G-BEID, da British International Helicopters, deixou a plataforma petrolífera semi-submersível Safe Felicia no campo petrolífero Forties, no Mar do Norte, às 13h45, com dois pilotos e uma carga completa de 19 passageiros para o voo de uma hora para o Aeroporto de Sumburgh, no Continente de Shetland, um arquipélago a nordeste das Órcades, na Escócia.

Às 14h28 o copiloto (que estava voando) relatou ter ouvido um estrondo abafado, também ouvido por alguns dos passageiros, na área da transmissão do motor nº 2. Pouco depois, as luzes de alerta de incêndio do motor nº 2 acenderam. O piloto imediatamente iniciou uma descida e transmitiu um pedido de socorro.

Cerca de 48 segundos após o ruído, o motor nº 2 foi desligado e o extintor de incêndio acionado. O aviso de incêndio do motor nº 1 também acendeu, enquanto os passageiros viram óleo vazando do teto da cabine.

O piloto aconselhou os passageiros a se prepararem para um pouso de emergência e assumiu o controle da aeronave. Os flutuadores foram acionados e um pouso suave foi feito cerca de 3 minutos após o ruído inicial ter sido ouvido, momento em que a cabine do helicóptero se encheu de fumaça. 

Todos os 21 ocupantes foram evacuados para botes salva-vidas e então içados para um helicóptero de Busca e Resgate. Depois que um forte incêndio consumiu a maior parte do helicóptero flutuante, os restos se separaram e afundaram.

DSV Stena Marianos(navio de apoio ao mergulho) usado no resgate
Uma operação de recuperação foi montada usando o DSV (navio de apoio ao mergulho) Stena Marianos, que chegou ao local em 16 de julho de 1988. A seção traseira da fuselagem foi levantada no dia seguinte e a seção dianteira logo depois. A operação de recuperação teve de ser encerrada no dia 19 de julho antes de encontrar os motores ou componentes da transmissão devido ao Stena Marianos ter outros compromissos.

A recuperação continuou em 2 de agosto usando o DSV Norskald, e os motores, rotor principal e transmissão foram localizados e levantados em 5 de agosto.

O DSV Norskald que apoiou a recuperação de partes da aeronave
Concluiu-se que o incêndio ocorreu na caixa de câmbio principal do helicóptero, provavelmente decorrente dos efeitos de falha de rolamento do motor nº 2. Outro fator foi a falta de detecção de incêndio ou capacidade de supressão dentro do compartimento da caixa de câmbio. A causa da falha do rolamento não pôde ser definitivamente estabelecida.

A AAIB fez uma lista de 27 recomendações de segurança para a CAA. Estes abordaram melhorias na manutenção, detecção precoce de problemas, equipamentos de fuga de emergência, provisões de documentação e treinamento e integridade do firewall. A maioria deles foi aceita pela CAA.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia e ASN

Aconteceu em 13 de julho de 1963: A queda do voo Aeroflot 012 por erro no informe dos dados meterológicos


Em 13 de julho de 1963, o avião 
Tupolev Tu-104B, prefixo CCCP-42492, da Aeroflot (Diretório da Sibéria) (foto acima), realizava o voo 012, um voo internacional programado de passageiros de Pequim, na China, para Moscou, na então União Soviética.

O avião decolou de Pequim, por volta das 2h49, horário de Moscou, levando 27 passageiros e oito tripulantes, a caminho do Aeroporto Irkutsk. Com baixa cobertura de nuvens sobre o aeroporto de Irkutsk, a tripulação recebeu dados meteorológicos contraditórios sobre a baixa altura dos topos das nuvens. 

O avião acabou descendo muito cedo. Ao sair da cobertura de nuvens a menos de 60 metros do solo, os pilotos tentaram realizar uma ação evasiva, mas não conseguiram, e o avião atingiu o terreno a três quilômetros da pista por volta das 10h, horário local.

Das 35 pessoas a bordo, 33 morreram no acidente, incluindo todos os oito tripulantes e 25 passageiros. Dois passageiros sobreviveram.

Entre os mortos estavam sete albaneses, incluindo o embaixador albanês na China e o poeta Drago Siliqi, bem como três chineses. 

Os restos mortais das vítimas albanesas e chinesas foram levados a Pequim para um grande enterro público com a presença do primeiro-ministro Zhou Enlai. 

Em contraste, um periódico de aviação dos Estados Unidos observou que a imprensa soviética "virtualmente ignorou" o acidente.

Mapa do local da queda perto de Irkutsk 
O Comitê de Investigação determinou que a causa do acidente foi a perda repentina de altitude na aproximação final foi consequência de um acúmulo excessivo de água nos tubos de Pitot, o que resultou na modificação de diversos ajustes dos instrumentos e fez com que a aeronave adotasse uma configuração de aproximação em desacordo com o publicado procedimentos. 

Foi relatado que as informações meteorológicas relacionadas ao aeroporto de Irkutsk e transmitidas à tripulação eram imprecisas e não refletiam a verdade. Além disso, o responsável pelo boletim de previsão do tempo no aeroporto de partida não verificou as informações e transmitiu dados imprecisos. No momento do acidente, as condições meteorológicas no aeroporto de Irkutsk eram más e a visibilidade estava abaixo dos mínimos. 

Apesar dessa situação, o ATC do aeroporto de Irkutsk-Magan liberou a tripulação para pousar e não o instruiu a desviar para outro aeroporto.

Por Jorge Tadeu (Site Desastres Aéreos) com ASN, Wikipedia e baaa-acro

Aconteceu em 13 de julho de 1928: Acidente fatal em voo teste do Vickers Vulcan da Imperial Airways na Inglaterra


E
m 13 de julho de 1928, o Vickers Vulcan Type 74, prefixo G-EBLB, da Imperial Airways (foto acima), um avião biplano monomotor para oito passageiros que foi entregue à companhia aérea em maio de 1925 era o último dos nove desse modelo construídos. A aeronave era conhecida como "The Flying Pig" pelos moradores do aeroporto Croydon, em Londres, na Inglaterra, devido à sua aparência. Originalmente usado para carga, a aeronave foi reformada para permitir o transporte de até oito passageiros.

A aeronave, que levava a bordo seis ocupantes, dois tripulantes e quatro passageiros, não estava em serviço regular, mas era usada para voos especiais e transportava excesso de bagagem e carga, teve o motor trocado no dia 12 de julho e partiu de Croydon ao meio-dia do dia 13 de julho para um voo de teste do novo motor.

Aeródromo de Croydon e arredores em 1928
A oportunidade foi aproveitada para levar alguns membros da equipe em um voo junto com um inspetor do departamento de inspeção aeronáutica (AID) do governo. Embora a aeronave precisasse ser aprovada por um inspetor da AID, a presença do inspetor no voo não estava relacionada a essa aprovação. 

Depois que a aeronave subiu para 800 pés, ela desapareceu de vista do aeroporto na direção sudoeste. 

A aeronave acabou colidindo com um jardim perto de Leigh Cottage, em Woodcote Road. Foi vista por residentes voando baixo sobre os telhados com o motor "evidentemente em dificuldades".

A aeronave caiu em um campo de batata, o piloto em uma cabine aberta escalou e ajudou um dos passageiros a sair da cabine fechada. 

A aeronave pegou fogo e não foi possível resgatar os demais passageiros. Os quatro passageiros (dois homens e duas mulheres) morreram. Evidências posteriores indicaram que pelo menos um havia morrido devido ao impacto e os outros estavam inconscientes quando o incêndio começou.

Um inquérito foi aberto em Brandon Hill perto de Croydon em 16 de julho de 1928 e após a identificação dos quatro passageiros foi adiado. O inquérito foi retomado em 30 de julho de 1928 e foi explicado ao inquérito por um funcionário da Imperial Airways que não era incomum que passageiros fossem levados em voos de teste e aqueles a bordo tivessem permissão.

O legista questionou a sabedoria de permitir passageiros no que poderia ser um voo de teste perigoso e foi informado de que todos os passageiros assinaram documentos de indenização.

A funcionária responsável pelas duas meninas no voo disse que eles pediram permissão a ela e foi permitido desde que não fosse por mais de 15 minutos. 

Um superintendente de engenharia disse que os funcionários estavam ansiosos para fazer "Joy Rides", mas concordaram que às vezes era "um incômodo".

O passageiro que sobreviveu ao acidente disse ao inquérito que a equipe considerou um privilégio fazer um passeio alegre e ele o faria novamente.

O piloto Capitão John Spafford prestou depoimento ao inquérito, havia sido informado às 11h50 que a aeronave precisava de um teste de motor e também levaria cinco passageiros e algum lastro. Spafford calculou que seu peso estaria sob a carga total e que no solo o motor parecia normal.

"Quando estava a cerca de 700 pés, empurrei o nariz para baixo para manter a altura e notei que a aeronave começou a afundar rapidamente. Aumentei o acelerador para pouco efeito e comecei a procurar um local de pouso seguro, mas a área estava cheio de árvores altas e casas. Aumentei o acelerador e consegui manter a altura por alguns minutos e então notei que a temperatura da água do motor estava acima de 100 graus Celsius e pude ver vapor saindo da capota do motor esquerdo. O motor perdeu força novamente e vi uma chance de pousar em alguns trechos, empurrei o controle para 45 graus e bati no chão no mesmo ângulo. Fiquei preso pelo pé e me soltei após cerca de dois minutos, ao me libertar o motor pegou fogo. Consegui chegar à porta da cabine e apenas um dos passageiros estava consciente."

Spafford concordou com o legista que a presença de passageiros não era necessária para um teste de motor. Depois de interrogar o piloto, o júri deu o veredicto de morte acidental em todos os quatro casos. O legista acrescentou que a prática de permitir que funcionários da companhia aérea vão como passageiros em voos de teste deve parar. O superintendente de engenharia da Imperial Airways disse que a companhia aérea interromperia a prática.


Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia, ASN e baaa-acro

Piloto do vintage Antonov An-2 bate em árvores tentando evitar o tráfego: vídeo


O piloto de um Antonov An-2 de 40 anos de idade, de fabricação russa, afirma que bateu em árvores logo após a decolagem para evitar o tráfego rodoviário.

A aeronave Antonov de propriedade privada decolou de um campo em Vårgårda, Suécia, em 8 de julho de 2023, com quatro passageiros a bordo, mas rapidamente teve problemas quando o avião desviou para a esquerda uma vez durante o vôo.

Imagens do incidente mostraram o avião vintage caindo no topo de um matagal, enquanto o piloto tentava subir alto o suficiente para evitar as árvores.

O piloto disse à STV News na Suécia que não sabia o que provocou a queda e que antes da descolagem tudo parecia normal.

“Testamos o motor e tudo e depois não pegava”, disse o piloto.

Segundo o piloto, que pilota esse tipo de aeronave há 30 anos, não foi possível conduzir o avião em direção a uma estrada próxima, pois havia tráfego no local.


Nenhuma das cinco pessoas que viajaram no avião precisou de tratamento hospitalar e o incidente está sendo investigado pelas autoridades aeronáuticas da Suécia.

“Agora vamos arrancar as asas e levar para casa esta semana”, acrescentou o piloto

A aeronave, registrada como SE-KCE, voou pela primeira vez em 1981.

Via Aerotime Hub

Passageiros vivem caos em voo que decolou atrasado, desviou por erro operacional e acabou cancelado

(Imagem: Alan Wilson via Wikimedia)
Uma viagem de Manchester para Heraklion, na Grécia, se tornou em um pesadelo para os passageiros do voo TOM-2456, da TUI Airways, na quinta-feira (6). A companhia tinha previsto que o avião partisse às 15h15, mas um grupo de quatro passageiros indisciplinados foi removido antes da decolagem, o que atrasou o voo. No entanto, o problema estava apenas começando.

Outro contratempo ocorreu durante o voo quando se constatou que a bagagem despachada dos passageiros havia sido deixada a bordo e não fora removida junto com eles, como deveria acontecer por motivos de segurança. Isso fez com o avião precisasse retornar a Manchester.

Diante do imprevisto, não foi mais possível seguir o curso já que a tripulação de cabine extrapolara o horário de trabalho permitido pela lei britânica. Como resultado, o voo acabou por ser cancelado.

(Rastreamento do voo via Radarbox)
De acordo com a British Civil Aviation Authority (BCAA), em um avião de corredor único como o Boeing 737, os pilotos e tripulantes podem trabalhar até 13 horas e com extensão de duas horas, em caso de imprevistos. Nesta conjuntura, a tripulação não teria tempo suficiente para completar o voo, razão pela qual foi necessário cancelar o serviço.

Para ajudar os passageiros, a TUI Airways forneceu acomodação e alimentação. Além disso, a companhia aérea disse que os clientes terão direito a compensação financeira conforme previsão da Diretiva Europeia EU261.

Neblina dentro do avião é motivo de preocupação? Entenda o que é!


Ninguém gostaria de presenciar fumaça dentro de um avião durante um voo. Por esse motivo, é totalmente proibido fumar dentro da cabine ou adulterar o sensor de incêndio. No entanto, a presença de neblina no avião pode ser mais comum do que você pensa.

Por que isso ocorre?


Diversos vídeos na internet mostram passageiros nervosos e desesperados ao identificar uma fumaça densa dentro da aeronave. No entanto, existe uma explicação para essa fumaça, pois não passa de uma neblina.

Ela ocorre devido a um fenômeno físico, no qual o ar quente e úmido do lado de fora do avião se condensa ao entrar em contato com o ar frio do interior da aeronave. O resultado dessa condensação é o vapor em forma de neblina.

Um dos grandes responsáveis é o ar-condicionado do avião, que realiza essa troca de temperatura. Portanto, se estiver muito quente do lado de fora da aeronave, a cabine pode se encher de neblina rapidamente.

O que fazer caso isso ocorra?


A boa notícia é que a neblina é rápida e tende a se dissipar em poucos minutos após a aeronave regular a temperatura, durando cerca de 2 minutos.

Por não ser tóxica nem ser um vapor gerado por substâncias químicas (é apenas água condensada), a neblina não interfere na respiração. Portanto, a recomendação é apenas manter a calma e esperar a neblina passar.

O quão frequente isso é?


Se você tem medo de que isso ocorra em sua viagem, sinto informar que a neblina no avião é mais comum do que parece, principalmente em aeronaves mais antigas. O fato é que a neblina tende a aparecer durante o início do voo, quando o avião ainda não está climatizado e a possibilidade de neblina é maior.

Além disso, para que ela não ocorra, é preciso que o avião possua um mecanismo específico conhecido como “separador de água”, feito especialmente para evitar a formação de vapor e, portanto, a neblina dentro da cabine.

Via Rotas de Viagem - Foto: Xu Zheng

Encontrado destroços de porta-aviões americano da Segunda Guerra Mundial destruído por ataque kamikaze japonês


Um porta-aviões dos Estados Unidos (EUA) que foi destruído durante a Segunda Guerra Mundial foi encontrado por mergulhadores em águas profundas nas Filipinas.

O USS Ommaney Bay estava operando no Mar de Sulu, um corpo de água na área sudoeste das Filipinas, em 4 de janeiro de 1945, quando foi atingido por um avião kamikaze japonês pouco depois das 17h.

A aeronave bimotor estava repleta de explosivos e, ao colidir com o lado estibordo da baía de Ommaney, duas bombas foram lançadas, causando graves danos.

Quando uma série de explosões soou, uma das bombas entrou no convés de vôo e detonou abaixo, entre a aeronave totalmente gaseada no terço dianteiro do convés suspenso.

Enquanto o outro explodiu perto do lado de estibordo após romper o cano principal no segundo convés e depois passar pelo convés suspenso. 

(Foto: Naval History and Heritage Command)
Os que estavam a bordo receberam ordens de abandonar o porta-aviões por medo de que seu arsenal de ogivas de torpedos armazenadas pudesse explodir a qualquer momento.

Um total de 95 militares da Marinha foram perdidos, incluindo dois funcionários de um contratorpedeiro auxiliar que foram mortos quando as ogivas de torpedo na baía de Ommaney finalmente explodiram. Outros 65 homens ficaram feridos.

Às 19h58, o porta-aviões foi afundado por um torpedo do contratorpedeiro Burns, sob as ordens do almirante Jesse B. Oldendorf.

Em 10 de julho de 2023, o Naval History and Heritage Command (NHHC) confirmou a identidade de um local do naufrágio como USS Ommaney Bay.

O NHHC conseguiu usar uma combinação de informações de pesquisa fornecidas pela equipe Sea Scan Survey e imagens de vídeo fornecidas pela equipe de mergulho DPT Scuba para confirmar a identidade.


“Ommaney Bay é o local de descanso final dos marinheiros americanos que fizeram o maior sacrifício em defesa de seu país”, disse o diretor do NHHC, Samuel J. Cox, contra-almirante da Marinha dos EUA (aposentado). “É com sincera gratidão que agradeço à equipe Sea Scan Survey por confirmar a localização deste local do naufrágio.

Ele acrescentou: “Também gostaríamos de agradecer à equipe de mergulhadores australianos da DPT Scuba por sua experiência em mergulho profundo e assistência na identificação da Baía de Ommaney. Esta descoberta permite que as famílias daqueles que perderam algum tempo de fechamento e nos dê outra chance de lembrar e honrar seu serviço à nossa nação”.

Via Aerotime Hub

quarta-feira, 12 de julho de 2023

História: O sequestro de um avião no Rio que se tornou a maior história de amor da ditadura

Guerrilheiros foram presos e torturados, mas se casaram e tiveram uma filha na cadeia; conheça o romance de Jessie e Colombo.

Colombo Vieira e Jessie Jane com a filha, Leta, em 1979 (Foto: Wilson Alves/Agência O Globo)
O Brasil vivia a ressaca do título na Copa do México , mas esse assunto não podia estar mais distante da cabeça dos quatro jovens de 19 a 24 anos que se reuniram na Praça Quinze, no Centro do Rio, para dar o passo que mudaria suas vidas pra sempre. Dez dias após o "capitão do Tri", Carlos Alberto Torres, levantar a taça Jules Rimet no Estádio Azteca, em 1970, os namorados Colombo Vieira e Jessie Jane e os irmãos Eiraldo e Fernando de Palha Freire só pensaram em um voo da companhia Cruzeiro do Sul com destino a Buenos Aires. Não porque queria curtir um tango na Argentina. Armados com dois revólveres e uma pistola, eles pretendiam concluir a viagem ouvindo mambo em Cuba.

A missão havia sido iniciada uma semana antes, no apartamento onde Colombo morava, na Rua Doutor Sardinha, no bairro de Santa Rosa, em Niterói. De passagens em mãos, eles se encontraram na Praça Quinze e partiram para o Aeroporto do Galeão. Os dois revólveres, de calibres 38 e 45, estavam sob o vestido de Jessie, enquanto uma pistola Bereta fora escondida num sapato de Eiraldo.

Como a segurança nos aeroportos era quase inexistente, era fácil embarcar no Caravelle PP-PDX com as armas. Colombo e Jessie se sentaram na parte da frente, enquanto os irmãos Palha Freire se acomodaram nos fundos. O grupo esperou quinze minutos após a decolagem. Com 35 passageiros, o voo já se aproximava de São Paulo, onde faria uma escala, quando Jessie foi ao banheiro, tirou os revólveres do vestido e entregou o calibre 38 para o namorado. O rapaz se está, foi até a cabine do piloto e, indicou a arma, ordenou que o comandante retornasse para o Galeão, enquanto a parceira, de pé diante da cabine, dava ordens aos passageiros para ninguém reagir.

O avião cercado por forças de segurança, que tentam entrar na aeronave durante o sequestro,
em 1970 (Foto: Arquivo/Agência O Globo)
Começava o sequestro frustrado do Caravelle PP-PDX. Ocorrido no dia 1º de julho de 1970, no período mais repressivo da ditadura militar, o episódio e seus aperfeiçoamentos são tema da série documental do Globoplay "Jessie e Colombo" . Dirigida por Susanna Lira, a produção se debruça sobre o fracasso do plano e as cartas trocadas entre os namorados durante os nove anos em que ficaram presos. Durante o período, eles se casaram, trocaram visitas íntimas e tiveram uma filha, em 1976.

Os quatro envolvidos no sequestro eram integrantes da Ação Libertadora Nacional (ALN), principal grupo de combate armado criado para enfrentar a ditadura militar. O plano deles era trocar todos os passageiros do voo por 40 presos políticos do regime, entre eles, o pai de Jessie, Washington Alves, e a irmã de Colombo, Iná Medeiros. Depois, fugiriam todos para Cuba. Na época, não era algo raro que guerrilheiros tomassem o controle de voos comerciais para buscar abrigo na ilha de Fidel Castro. Mas os jovens ambiciosos (e ingênuos) que protagonizaram a ação no Caravelle queriam levar com eles dezenas de combatentes tirados de circulação pelos organismos de repressão militar.

Ao dar meia volta, o comandante informou à torre de controle que o avião estava sendo sequestrado e começou a transmitir conforme as exigências dos quatro guerrilheiros. Eles desejavam, além de trocar passageiros por presos políticos, a leitura de um manifesto em cadeia nacional de rádio. Segundo um depoimento de Jessie na série do Globoplay, o piloto chegou a alertar o grupo de que eles conseguiram mais chance de vencer em seu plano se fosse para um aeroporto como o de Manaus, onde o aparato de segurança era menor. No Galeão, ele disse, os militantes certamente seriam presos pelos órgãos de coerção. Ainda de acordo com a própria sequestradora, isso mostra o quão despreparados eles estavam.

Tropas lançam fumaça química antes de tentar pegar aeronave (Foto: Arquivo/Agência O Globo)
A chefia do Galeão, então, acionou as tropas da Força Aérea Brasileira (FAB) que vinham recebendo treinamento específico para aquele tipo de situação. Às 10h45, quando o Caravelle parou sobre a pista no Rio, a primeira coisa que os militares fizeram foi metralhar o trem de pouso. Não havia forma mais clara de dizer que as autoridades não permitiriam que a aeronave decolasse de novo.

O avião foi completamente cercado por carros do Corpo de Bombeiros, além de viaturas ansiosas, duas vítimas e dezenas de agentes da repressão. A partir de então, todas as exigências feitas pelos guerrilheiros paravam na decisão das autoridades, que se negavam a negociar. Enquanto isso, dentro do avião, a tensão aumentou junto com o calor, já que o ar condicionado estava desligado. Alguns passageiros se ofereciam para ajudar na negociação, outros passavam mal. Para aliviar os ânimos, o comediante Renato Corte Real, parceiro de Jô Soares , assumiu o interfone de bordo e realizou um show de cerca de dez minutos, com piadas que arrancaram risos até dos militantes.

Às 15h15, as tropas lançaram jatos de fumaça química que engoliram o avião, depois de um caminhão jogaram lama para bloquear a visão pelas janelas. Os agentes tentaram invadir o Caravelle, mas não conseguiram tirar as portas de emergência. O mesmo plano foi repetido uma segunda vez, mas, de novo, sem sucesso. Só na terceira tentativa, os militares entraram na aeronave. Houve tiroteio intenso, no qual Eiraldo de Palha Freire foi baleado. Ele morreu três dias depois. Segundo a Aeronáutica, o guerrilheiro faleceu devido ao tiro, mas, durante a Comissão Nacional da Verdade, em 2014, ficou preso que o integrante da ALN foi um óbito em decorrência da tortura após ser capturado.

Jessie, Fernando e Colombo à esquerda, no banco dos réus, durante o julgamento, em 1970
(Foto: Arquivo/Agência O Globo)
Os quatro sequestradores foram levados ao Centro de Investigações da Aeronáutica (CISA), na Base Aérea do Galeão, onde tiveram início como sessões de interrogatório mediante tortura. Na madrugada de 2 de julho de 1970, foram transferidos ao Destacamento de Operações de Informação - Centro de Operações de Defesa Interna (DOI-CODI), na Tijuca, onde as sevícias continuaram. De acordo com Jessie Jane, os agentes pensavam que Eiraldo era seu namorado, e, portanto, colocavam-a de frente para ele, na tentativa de confirmar informações. Mas a guerrilheira, que depois da ditadura se tornou professora de História, conto que ambas ficaram o tempo todo em silêncio.

O Ministério Público pediu pena de morte para os três militantes que sobreviveram, alegando que os disparos foram para eles no momento da reação militar que causou a morte de Eiraldo. O Conselho Especial de Justiça da Aeronáutica, porém, não suspeitou com a tese e, em novembro de 1970, os condenou à prisão: 24 anos de prisão para Colombo, 18 anos para Jessie e 12 anos para Fernando.

O documentário do Globoplay explora bastante o período em que Jessie e Colombo permaneceram sob custódia. Nos primeiros anos, os dois foram pedidos em locais distintos: ela no Presídio Talavera Bruce, em Bangu, na Zona Oeste do Rio, e ele no Instituto Penal Cândido Mendes, na Ilha Grande, em Angra dos Reis. O contato entre os namorados se dava apenas por cartas, até que, em 1972, a dupla conseguiu autorização judicial para se casar e, em 1975, obteveram permissão para visitas íntimas. Em 1976, nasceu Leta Vieira de Sousa, filha do casal, que viveu os primeiros meses de vida no presídio, até ser enviada para a casa da avó. Hoje, ela é arquiteta e urbanista.

Jessie e Colombo foram libertadores em 1979, quando o regime militar deu início à flexibilização política e foi aprovado a Lei da Anistia. Nos anos seguintes, o ex-guerrilheiro foi assessor da Aquidiocese de Volta Redonda e do Sindicato dos Metalúrgicos de Volta Redonda. Ele morreu em 25 de abril de 2021, aos 71 anos. Já sua companheira se formou em História pela Universidade Federal Fluminense (UFF), tem mestrado pela Universidade de Campinas (Unicamp) e doutorado pela Universidade Federal do Rio de Janeiro (UFRJ), da qual é, hoje, professora. Os dois estavam juntos, na Cinelândia, no Rio, durante a manifestação do dia seguinte ao assassinato de Marielle Franco e Anderson Gomes, em 2018.

Colombo e Jessie dando entrevista após deixarem prisão, em 1979 (Foto: Wilson Alves/Agência O Globo)

É seguro voar em avião com fuselagem colada com fita adesiva?

Speed tape, que parece a silver tape, é uma fita adesiva especial para
pequenos reparos em aviões (Imagem: Montagem/Reprodução/Instagram)
A cena é rara, mas, vez ou outra, aparece nas redes sociais: um mecânico usa uma fita prateada, parecida com a silver tape, para fazer um remendo quando acontece algum problema no avião. Tudo pronto, o avião decola, e a fita ainda está lá, fixa no lugar.

O passageiro pode até achar que é um reparo qualquer, algo malfeito. Mas, o que pode parecer uma gambiarra é, na verdade, uma técnica certificada e autorizada pelos fabricantes dos aviões para fazer pequenos consertos nas fuselagens.

Essa tira prateada é a speed tape, uma fita adesiva metálica para altas velocidades, feita com alumínio e que tem um poder de colagem maior que o de outra fita comum. Ela é resistente a água, solventes, e aos raios ultravioleta, além de dilatar e contrair junto com o corpo do avião. Ainda consegue aguentar velocidades superiores a 1.000 km/h sem se soltar. 

Não à toa, seu preço é elevado. Um rolo desta fita para uso aeronáutico com largura de 10 cm pode custar até US$ 700, cerca de R$ 3.500.

Onde é usada?


Sua aplicação pode ocorrer na manutenção de partes não críticas de um avião, como quando ocorre um dano estético, mas que não compromete o voo. Um exemplo é uma pequena rachadura em alguma capa de proteção dos mecanismos de voo, algo que não coloque a segurança da viagem em risco. 

Essas partes não são críticas para a operação da aeronave, e podem ser consertadas com essa fita antes da troca por outra peça nova. Caso isso não ocorresse, o voo não poderia decolar até que uma outra proteção igual chegasse ao aeroporto onde o avião está parado.

Fita metálica conhecida como speed tape sendo utilizada para proteger a
carenagem de flape de um avião (Imagem: Divulgação/Chris Bainbridge)
 
Quando ela é utilizada, a aeronave pode voar, mas enfrenta algumas restrições. Uma delas, por exemplo, é o número de pousos e decolagens que poderão ser realizados ou horas voadas até que o problema anteriormente encontrado seja sanado definitivamente. 

Outro uso é para a proteção dos selantes aplicados nos para-brisas das aeronaves, que impedem que umidade entre na fuselagem. Esse produto é como se fosse o silicone usado nos boxes de banheiro, e têm um tempo de cura que pode chegar a até 24 horas. 

Nesse tempo, para o avião não ficar parado, o selante fica protegido com a fita metálica, que evita a incidência de luz e umidade no local. Ainda é possível usar essa fita metálica para proteger um furo onde está faltando um parafuso (desde que essa falta não seja motivo para impedir a decolagem). 

Na guerra, essa fita também tinha um papel importante. Ela era usada para consertar os furos causados por tiros na fuselagem dos aviões.

Outras funções 


Devido ao seu custo elevado, é difícil encontrar a mesma fita sendo utilizada em outros locais além da aviação. Mas mesmo assim é usada nas corridas de Fórmula 1. 

Frente de um Boeing 787-8 Dreamliner com diversos pedaços de speed tape
(Imagem: Divulgação/Aceebee)
Como essa fita metálica resiste muito bem à pressão do ar e ao calor, é utilizada em reparos estratégicos, como quando uma asa dianteira é danificada em uma corrida. 

Modelos mais simples dessa mesma fita, mas que não necessariamente sejam homologadas para o uso em aviões, estão à venda por valores inferiores a R$ 100. Esse tipo de adesivo é usado para reparos estruturais leves, como em carros que tiveram a lataria rasgada.

Por Alexandre Saconi (UOL)

Avião da Latam derrapa em pouso, sai da pista e fecha aeroporto em Florianópolis; veja vídeo

Todo o apoio necessário para o desembarque em segurança dos passageiros e tripulantes foi realizado, de acordo com a companhia aérea.


Um avião da Latam derrapou e saiu da pista durante o pouso no Aeroporto Internacional de Florianópolis, em Santa Catarina, na manhã desta quarta-feira (12). A aeronave havia decolado do Aeroporto Internacional de São Paulo, em Guarulhos, para o voo LA3300.


Câmeras de segurança do Aeroporto Internacional de Florianópolis flagraram o momento em que o Airbus A321-231, prefixo PT-MXM, da Latam, derrapou. Veja no vídeo abaixo:


Após o incidente, o aeroporto catarinense precisou ser fechado. Em nota divulgada nas redes sociais, a Latam informou que “todo o apoio necessário para o desembarque em segurança dos passageiros e tripulantes foi realizado”.


Ainda de acordo com a Latam, “todos os passageiros foram avaliados e liberados pela equipe médica“.


Via CNN, R7, g1 e ASN - Fotos: Reprodução

Aconteceu em 12 de julho de 2000: Acidente com o voo 3378 da Hapag-Lloyd - Decisões erradas


No dia 12 de julho de 2000, um avião alemão que transportava turistas de Creta para casa fez um pouso forçado próximo à pista em Viena, Áustria, fazendo o Airbus A310 deslizar por um campo antes de parar próximo a uma pista de taxiamento do aeroporto, inclinando-se loucamente para um lado com o nariz empinado. 

Apesar do aterrorizante pouso forçado, todas as 151 pessoas a bordo escaparam com vida. Mas como o avião acabou em um campo na Áustria em primeiro lugar? Afinal, Viena não era o destino pretendido - o voo na verdade ia para Hanover. Ele foi forçado a desviar para Viena após ficar sem combustível, e ambos os motores falharam devido à falta de combustível momentos antes de pousar. 


A sequência de eventos que levou à falta de combustível do voo 3378 da Hapag-Lloyd em um voo relativamente curto da Grécia para a Alemanha começou com uma falha do trem de pouso. Este pequeno problema escalou para uma emergência devido a suposições erradas da tripulação durante suas interações com um sistema automatizado que eles não entendiam totalmente. 

As ações dos pilotos durante as horas que passaram no ar seriam estudadas tanto pelos investigadores quanto pelos tribunais e, no final das contas, seriam uma lição importante sobre o que não fazer quando confrontados com um problema em voo - e uma lição para designers de sistemas sobre como os humanos entendem a documentação.

O conglomerado naval alemão Hapag-Lloyd é mais famoso por operar uma das maiores linhas de navios de contêineres do mundo, mas entre 1972 e 2007, a enorme empresa de logística também operou uma empresa um tanto diferente: uma companhia aérea de passageiros. 


Conhecida como Hapag-Lloyd Flug, a companhia aérea inicialmente ofereceu voos de conexão entre as cidades alemãs e os pontos de lançamento dos cruzeiros da Hapag-Lloyd, mas nas décadas subsequentes ela se expandiu para se tornar uma das maiores companhias aéreas charter da Alemanha, oferecendo serviços regulares e sob demanda para destinos de férias em toda a Europa. Muitos alemães podem ter voado com a Hapag-Lloyd Flug sem nem perceber: após uma fusão de 2007, a companhia aérea foi rebatizada como TUIfly Deutschland.

Um dos destinos servidos pela Hapag-Lloyd foi a cidade de Chania, na pitoresca ilha grega de Creta. O serviço regular regular da companhia aérea entre Chania e Hanover, voo designado 3378, era popular entre os turistas alemães e, no dia 12 de julho de 2000, 143 deles embarcaram em um Hapag-Lloyd Airbus A310 no Aeroporto Internacional de Chania para o voo de volta. 

O Airbus A-310, D-AHLB, a aeronave envolvida no acidente
No comando do jato de grande porte Airbus A310-304, prefixo D-AHLB, da Hapag-Lloyd, estavam dois pilotos: o capitão Wolfgang Arminger, de 56 anos, e um jovem primeiro oficial identificado apenas como Thorsten R. Embora o primeiro oficial fosse novo na empresa e tivesse apenas algumas centenas de horas no Airbus A310. O Capitão Arminger, era uma verdadeira lenda do voo: ele era piloto desde os 17 anos e, durante seus 30 anos como capitão de linha aérea, registrou mais de 23.000 horas de voo, o máximo de qualquer piloto da Hapag-Lloyd.

Com 143 passageiros e oito tripulantes a bordo, o voo 3378 partiu de Chania por volta das 9h UTC, com o Capitão Arminger nos controles. No entanto, segundos após a decolagem, a tripulação encontrou um problema: ao tentar retrair o trem de pouso, o trem principal permaneceu estendido e várias luzes de advertência de “marcha insegura” acenderam na cabine. 


A tripulação tentou girar o equipamento várias vezes, mas seus esforços foram malsucedidos; era evidente que o trem de pouso não podia ser guardado. Essa não era, de forma alguma, uma situação de emergência. 

Como todos os aviões comerciais, o Airbus A310 é capaz de voar normalmente com o trem de pouso estendido e, desde que se mantivessem abaixo do limite de velocidade estendido, eles poderiam continuar até seu destino. 

Havia apenas uma advertência: combustível. Quando o trem de pouso principal é estendido, causa um arrasto significativo, que impacta negativamente a economia de combustível. Os pilotos precisariam determinar quanto combustível a mais do que o normal estava sendo consumido, calcular se conseguiriam chegar a Hanover e decidir onde pousariam se não pudessem.

O capitão Arminger instruiu o primeiro oficial a entrar em contato com o despachante da empresa, informá-lo da situação e pedir conselhos sobre o melhor curso de ação. No entanto, o primeiro oficial logo descobriu que o rádio de longa distância no escritório de despacho da Hapag-Lloyd não estava funcionando e a comunicação por rádio não pôde ser estabelecida. 

Em vez disso, ele começou uma meticulosa conversa de ida e volta usando o Aircraft Communications Addressing and Reporting System, ou ACARS, que lhe permitiu trocar mensagens de texto com o despachante por meio da interface do sistema de gerenciamento de voo (FMS) do avião. Esse esforço incômodo consumiu a maior parte da atenção do primeiro oficial por quase uma hora. 

Enquanto isso, o capitão Arminger começou a determinar a situação do combustível. Normalmente, os pilotos controlam seu combustível usando o FMS, que combina várias fontes de dados para dizer à tripulação quanto combustível está a bordo e quanto combustível eles terão restante quando chegarem ao seu destino. 

Ao comparar a quantidade real de combustível a bordo com a quantidade esperada de combustível, conforme indicado no plano de voo, um piloto pode determinar se está queimando combustível na taxa esperada. Ele ou ela pode então usar o FMS para determinar se sua taxa de queima de combustível os deixará com uma quantidade suficiente de sobra após a chegada. 

O capitão Arminger observou imediatamente que, de acordo com o FMS, eles não teriam combustível suficiente para chegar a Hanover. Portanto, o primeiro oficial e o despachante começaram a determinar um aeroporto alternativo adequado para usar como ponto de reabastecimento.


O despachante sugeriu Stuttgart, que foi rejeitado. Em vez disso, a tripulação concordou em parar em Munique, que estava mais perto do que Stuttgart. Via mensagem ACARS, o despachante acrescentou mais tarde que se a situação do combustível piorasse e eles não pudessem chegar a Munique, deveriam ir para Viena.

Para determinar o quão longe eles poderiam chegar, o primeiro oficial abriu o manual e o abriu na seção de voo estendido com o trem de pouso abaixado. Esta seção continha um gráfico que fornecia números de consumo de combustível para subida e cruzeiro com a marcha estendida em várias altitudes. 

No entanto, a tabela incluía apenas figuras de até 27.000 pés de altura. Nesse ponto, eles já haviam alcançado sua altitude de cruzeiro de 31.000 pés, para a qual não foram fornecidos números de queima de combustível. 

Arminger acreditava que isso acontecia porque a carta deveria ser usada apenas para planejamento de voo e não para cálculos durante o voo, e ele fez o primeiro oficial guardá-la. A inutilidade do gráfico não era grande coisa, ele pensou; afinal, o FMS poderia calcular tudo isso para eles de qualquer maneira. 

Aqui ele fez uma suposição crítica: que o sistema de gerenciamento de voo era capaz de levar em consideração o trem de pouso estendido ao calcular o combustível esperado na chegada (referido a seguir como "combustível esperado a bordo" ou EFOB).


Não era absurdo acreditar que o FMS calculou o EFOB extrapolando a taxa atual de queima de combustível para o futuro, mas não era assim que o sistema realmente funcionava. Em vez de basear o EFOB na taxa instantânea de consumo de combustível, que pode variar significativamente de um momento para o outro, ele calculou esse valor usando um algoritmo que incorporou vários fatores que podem afetar a taxa de queima de longo prazo, incluindo altitude, velocidade do vento, e vários outros parâmetros. 

Isso produziu uma figura bastante precisa que era imune a variações efêmeras no consumo de combustível devido a mudanças no nível de voo, rajadas de vento, ou outros fenômenos. No entanto, uma coisa que não levou em consideração foi a posição do trem de pouso, que está quase sempre retraído, exceto no último minuto ou dois de cada voo.

Portanto, o EFOB indicado pelo FMS na chegada em Munique foi baseado em sua quantidade de combustível atual alimentada por um algoritmo que não incluía o arrasto extra induzido pelo trem de pouso. Nenhum dos pilotos sabia que, com a taxa atual de consumo, não chegariam a Munique.


Durante a conversa com o despachante, os dois pilotos usaram seus próprios sistemas de gerenciamento de voo para confirmar de forma independente que teriam 3,3 toneladas métricas de combustível sobrando depois de chegar a Munique - bem acima do mínimo legal. 

No entanto, quando o primeiro oficial realizou sua primeira verificação de rotina de queima de combustível às 9h57, ele observou que eles haviam consumido 60% a mais de combustível do que o esperado nesse ponto do voo. 

Esta taxa de queima bastante extraordinária não parecia conflitar com a noção de que eles poderiam chegar a Munique, embora esta cidade estivesse a mais de 60% do caminho entre Chania e Hanover, porque os pilotos esperavam que a eficiência sofresse mais durante a escalada do que durante o cruzeiro e descida, resultando em maior ineficiência no início do voo e um aumento na eficiência posteriormente. Essa expectativa obscureceu a discrepância entre a ineficiência observada e o EFOB otimista. 

Com o tempo, o EFOB para Munique diminuiu lentamente de 3,3 toneladas para cerca de 2,0. Isso foi um artefato do elevado consumo de combustível, fazendo com que quantidades reais de combustível progressivamente mais baixas do que o esperado fossem alimentadas no algoritmo EFOB. 

Como o EFOB mínimo permitido pelos regulamentos era de 1,9 toneladas - o suficiente para 30 minutos de espera antes do pouso - o Capitão Arminger decidiu que um EFOB de 2,0 estava cortando muito perto e que eles deveriam ir então para Viena. Depois de entrar no novo destino no FMS, o sistema afirmou que eles poderiam esperar 2,6 toneladas de combustível restantes após a chegada a Viena. 


A fim de aumentar sua margem de segurança, Arminger começou a solicitar autorização do controle de tráfego aéreo para voar em rotas mais diretas entre cada um dos waypoints no caminho para Viena. 

Cada vez que eles eram limpos diretamente, a distância total restante diminuía, causando um aumento correspondente no EFOB, que reverteu seu fluxo constante para baixo. O resultado foi um EFOB que pareceu permanecer estável em 2,6 toneladas. Na realidade, porém, seu consumo de combustível era tão alto que chegar a Viena com segurança já era quase impossível. 

Neste ponto, o voo 3378 passou pelo lado de Zagreb, a apenas 10 minutos do aeroporto de Zagreb. Um desvio para Zagreb teria levado a situação a um fim rápido e sem intercorrências. Mas o capitão Arminger acreditava que eles ainda poderiam chegar a Viena, onde a Hapag-Lloyd estava presente; por contraste, Zagreb não era um destino normalmente servido pela companhia aérea. 

O EFOB indicado logo começou a cair novamente e, às 10h34, caiu para menos de 1,9 toneladas, o mínimo permitido no pouso. A urgência da situação era agora um pouco mais aparente. 

O capitão Arminger informou o controlador de tráfego aéreo de Viena de sua situação e solicitou uma aproximação direta na pista 34 do sul, que foi concedida. Ele seguiu com um pedido de pouso prioritário, e o voo 3378 começou sua descida de 31.000 pés a uma distância de 267 quilômetros do aeroporto. 

O primeiro oficial observou que, de acordo com os procedimentos adequados, eles deveriam declarar uma emergência de combustível, porque esperavam pousar com menos combustível do que o mínimo legal. Mas o capitão Arminger recusou-se a fazê-lo, aparentemente sem vontade de balançar o barco proverbial. Ele parecia estar em negação sobre a seriedade de sua situação. 

Às 11h01, a luz de combustível baixo acendeu, avisando os pilotos que eles precisavam pousar imediatamente. Foi só às 11h07 que Arminger finalmente declarou uma emergência de combustível. Em sua chamada pelo rádio, ele enfatizou ao controle de tráfego aéreo que eles chegariam a Viena com segurança e não solicitou o envio de veículos de emergência. Apesar de estarem em uma situação de emergência real, ele tratou a declaração como uma formalidade.


Naquele momento, Viena não era a pista mais próxima: na verdade, o aeroporto de Graz estava 55 quilômetros mais perto. O primeiro oficial trouxe o assunto às 11h09, sugerindo que mudassem de plano e voassem para Graz. O capitão Arminger rapidamente derrubou isso, observando que eles já estavam alinhados com a pista 34 em Viena, e mudar o curso para se alinhar com a pista de Graz poderia acabar adicionando distância à sua jornada. 

Ao avaliar a possibilidade de desvio para lá, a tripulação descobriu que as cartas de aproximação para Graz estavam faltando. Hesitante em correr às cegas para um aeroporto que não conhecia, o capitão Arminger tomou a decisão fatídica de continuar em direção a Viena e, dadas as circunstâncias, o primeiro oficial concordou com relutância. 

Como o voo 3378 agora estava alinhado com a pista, a tripulação não era mais capaz de solicitar atalhos em sua rota; como resultado, o EFOB indicado não era mais ajustado periodicamente para cima e sua verdadeira taxa de declínio tornou-se aparente. 

Quando o EFOB caiu rapidamente para zero, o capitão Arminger ficou alarmado e confuso, perguntando-se em voz alta como e se o FMS estava realmente considerando a resistência do ar em seus cálculos. 

O primeiro oficial afirmou corretamente que, de fato, não se deve levar em conta a resistência aérea causada pelo trem de pouso - uma explicação que o capitão Arminger rejeitou de imediato. O EFOB parecia estável até a descida, então ele sentiu que algo deve ter mudado nos últimos minutos. O primeiro oficial não estava convencido, mas o assunto logo caiu no esquecimento: eles estavam prestes a ter um problema muito maior em suas mãos. 


Às 11h26, o motor direito ficou sem combustível, disparando uma cascata de luzes de advertência piscando e alarmes estridentes. Segundos depois, o motor esquerdo também engasgou e morreu, deixando o avião completamente sem potência - e eles ainda tinham 22 quilômetros pela frente até a pista. 

Enquanto o primeiro oficial emitia um pedido de socorro frenético, o capitão implantou a turbina de ar ram (turbina eólica de emergência ou turbina de ar de impacto), uma pequena hélice que se estende da parte inferior da fuselagem e gera energia suficiente para operar as bombas hidráulicas. 

A RAT (Ram Air Turbine)
O primeiro oficial imediatamente começou a executar o processo de reacendimento do motor, na esperança de extrair apenas mais alguns momentos de voo motorizado dos resíduos de combustível deixados nos tanques. Suas tentativas iniciais foram bem-sucedidas, mas às 11h29 os motores apagaram novamente, desta vez para sempre. 

Deslizando em direção ao aeroporto sem qualquer motor, pareceu por um momento que o A310 ainda poderia chegar à pista inteiro. Mas sua taxa de afundamento era um pouco alta demais, a distância um pouco longa. 

O voo 3378 pousou com força em um campo a 660 metros da pista, atingindo a grama com a ponta da asa esquerda e o trem de pouso. O trem de pouso principal esquerdo cravou na terra e se soltou, fazendo o avião deslizar pela grama com o motor esquerdo se arrastando pelo solo. 

O avião virou à esquerda, passou por uma fileira de luzes de aproximação e uma antena ILS, derrapou em uma pista de taxiamento e parou em um campo do outro lado, inclinando-se loucamente torto com o nariz no ar. O voo 3378 da Hapag-Lloyd havia chegado a Viena - mas por pouco. 


Assim que o avião parou, o capitão Arminger ordenou que os passageiros evacuassem e os comissários de bordo se apressaram em abrir as saídas de emergência. No entanto, o ângulo do avião impedia os comissários de bordo de puxar a porta de saída frontal esquerda para fora de sua moldura, e o escorregador de escape frontal direito era inútil porque era muito íngreme. 

O slide central esquerdo atingiu um pedaço destroçado da asa e desinflou, enquanto o vento soprou o slide central direito de escape contra a fuselagem, tornando-o inutilizável também. 

Todas as 151 pessoas a bordo foram evacuadas pelas duas saídas mais recuadas, embora a urgência tenha se mostrado injustificada, pois a falta de combustível impediu a ignição de um incêndio. No final, todos sobreviveram praticamente ilesos, com apenas 26 ferimentos leves ocorridos durante a evacuação.


No início, o capitão Arminger foi saudado pela mídia como um herói por levar seu avião impotente ao aeroporto e aterrissar sem nenhuma perda. 

Ninguém naquele momento entendeu o que havia acontecido com o combustível. Mas enquanto os investigadores austríacos examinavam o conteúdo das caixas pretas do avião, eles descobriram que a sequência de eventos era bem diferente do que todos esperavam. 

Não houve perda repentina de combustível na aproximação final, conforme relatado pelo capitão - em vez disso, o combustível caiu continuamente durante o voo até acabar. Com sua taxa de consumo, eles simplesmente não tinham combustível suficiente a bordo para chegar a Viena. 

Os pilotos pensaram que poderiam fazer isso porque o FMS mostrou a eles com bastante combustível restante após a chegada, e eles não entenderam que o FMS não inclui o arrasto extra induzido pelo trem de pouso em suas projeções de combustível. 


Quanto ao que começou tudo - os investigadores descobriram que uma porca no atuador direito do trem de pouso principal havia sido instalada incorretamente. A porca se prendia periodicamente em um pedaço próximo da estrutura, fazendo com que se desenroscasse lentamente ao longo de milhares de horas de voo. Isso estendeu o comprimento do braço atuador até que se tornou geometricamente impossível para o trem de pouso retrair.

A investigação agora se voltou para os processos de pensamento dos pilotos durante o voo. Eles notaram que o capitão era incrivelmente experiente e sempre fora avaliado como satisfatório ou bom em seus testes de proficiência. O primeiro oficial, embora relativamente novo no A310, sempre fora classificado como bom ou excelente e era considerado um piloto exemplar. Como essa tripulação pode simplesmente ficar sem combustível? 

A primeira coisa a considerar era por que a tripulação acreditava que poderia usar o FMS para calcular o combustível esperado na chegada. Os investigadores descobriram que, embora a lista de verificação oficial da Airbus para voo com o trem de pouso estendido incluísse uma etapa para determinar o consumo de combustível manualmente, essa etapa estava faltando na versão da lista de verificação fornecida pela companhia aérea.

Acima: a diferença entre a lista de verificação do fabricante e a lista de verificação da companhia aérea
Também não havia documentação disponível para os pilotos que explicasse o algoritmo usado pelo FMS para determinar uma figura EFOB, e os pilotos não poderiam ter determinado com certeza quais fatores que afetam o consumo de combustível foram incluídos e quais não foram. 

Na verdade, os pilotos nem sabiam que ele usava um algoritmo em vez de uma projeção direta com base no consumo atual de combustível. Eles foram apenas ensinados a usar o FMS como uma caixa preta, realizando o “procedimento X para obter o resultado Y”, como os investigadores colocaram, sem nenhum conhecimento de como o sistema realmente funcionava. 

Ao explicar isso à imprensa, o Capitão Arminger disse: “Presumi que o FMS funcionasse como um computador de bordo em um carro, o que também mostra o alcance corretamente, mesmo se você tiver um rack de teto com você.”

Sem qualquer indicação de que essa suposição era falsa, ela se cimentou na mente do capitão Arminger no início do voo. Os resultados das verificações de queima de combustível não abalaram essa crença porque era possível reconciliar mentalmente a alta taxa de queima com o EFOB errôneo fornecido pelo FMS. 

Os pilotos também não foram treinados em nenhum procedimento especial para usar o FMS com o trem de pouso estendido. Eles receberam cenários de treinamento onde tiveram que reprogramar o FMS para calcular corretamente o consumo de combustível após uma falha do motor, mas não para uma falha do trem de pouso. 


O fato de que o FMS imediatamente lhes disse que eles não poderiam chegar a Hanover também reforçou a crença equivocada dos pilotos de que estava projetando sua taxa de queima de combustível no futuro; na realidade, entretanto, isso aconteceu porque eles já haviam queimado combustível suficiente para que Hanover ficasse inalcançável, mesmo com a taxa de queima errônea usada pelo FMS. 

E, finalmente, a tabela de taxas de queima de combustível no manual não se destinava obviamente ao uso durante o voo, e não antes do voo, e não indicava que os valores fornecidos deveriam ser usados ​​no lugar do FMS. 

Agora estava claro como os pilotos conseguiram manter sua interpretação equivocada por tanto tempo. Conforme o voo prosseguia em direção a Viena, o valor EFOB produzido pelo FMS não diminuiu a uma taxa perceptível para os pilotos porque eles continuaram tomando atalhos que adicionaram combustível de volta ao cálculo. Isso os convenceu de que poderiam continuar para Viena durante a maior parte da parte intermediária do voo. 

No entanto, quando estavam mais ou menos no travessão de Zagreb, o EFOB havia começado a diminuir visivelmente. Na verdade, o EFOB para Viena caiu abaixo do mínimo legal de 1,9 toneladas momentos antes de o avião passar pela cidade. Por que eles não decidiram desviar para lá? Por que continuar para Viena, sabendo que seriam obrigados a declarar uma emergência de combustível?


Para racionalizar a decisão do capitão de não desviar, os investigadores notaram que Arminger era conhecido por ser muito leal à companhia aérea e certamente temia criar uma dor de cabeça para a administração ao pousar em Zagreb, um aeroporto no qual a Hapag-Lloyd não tinha presença da empresa. 

Os investigadores descreveram esta decisão em termos de "utilidade esperada subjetivamente." Este é o produto da probabilidade de sucesso percebida e dos benefícios percebidos de atingir a meta, vis-à-vis um curso de ação alternativo e menos desejável. Ficou evidente que a essa altura o comandante considerava a probabilidade de sucesso (chegar a Viena) em quase 100%, o que pesava a equação inconsciente a favor da continuação do voo. 

Se ele tinha certeza de que poderia chegar a qualquer um dos aeroportos, fazia sentido escolher aquele em que a Hapag-Lloyd pudesse preparar mais facilmente outro avião para pegar os passageiros e continuar para Hanover. Uma análise objetiva da situação teria mostrado que o perigo de continuar para Viena era considerável, mas nada foi feito.

Seis meses após o acidente, o capitão pediu demissão da Hapag-Lloyd Flug, para nunca mais voar. Mas sua provação não acabou. Quando os detalhes do voo foram tornados públicos, os promotores na Alemanha acusaram Wolfgang Arminger de operar uma aeronave por negligência, uma acusação que pode resultar em consequências que variam de multa a prisão. 

O Capitão Wolfgang Arminger e seu advogado no tribunal
Arminger manteve sua inocência à força, contratando um advogado que defendeu com sucesso os pilotos envolvidos no acidente da Lufthansa em 1974 contra acusações semelhantes. O julgamento foi controverso desde o início. Os especialistas em direito e segurança da aviação são extremamente cautelosos em perseguir processos criminais contra pilotos que cometem erros que resultam em acidentes, tanto porque a ameaça de prisão impede os pilotos de admitir erros aos investigadores, quanto porque a prática é eticamente questionável. 

Uma revisão matizada dos eventos do voo revela como a documentação inadequada, gráficos ausentes e conhecimento insuficiente de sistemas complexos levaram o Capitão Arminger a voar para um destino que estava além do alcance de seu avião. Onde estava o crime? A maioria dos especialistas concorda que não houve nenhum. 

No entanto, em 2004, um juiz condenou Arminger a uma pena de prisão suspensa de seis meses, no processo acusando-o publicamente de ser “arrogante” e não querer admitir seus erros. A sentença foi proferida apesar do relatório final do acidente ainda não ter sido divulgado. 

Em um artigo para o Der Spiegel, Gisela Friedrichsen criticou duramente a decisão do juiz, escrevendo: “Um piloto voa para um destino embora tenha muito pouco combustível no tanque. Um juiz sentencia, embora as provas ainda estejam pendentes. Alguém age de forma negligente e grosseira em violação do dever. E o outro?"


Depois de vários atrasos, o relatório final sobre a queda do voo 3378 da Hapag Lloyd foi finalmente divulgado em março de 2006. Ele retratou o capitão de uma forma muito mais simpática do que o juiz que o sentenciou à prisão, gastando várias páginas descrevendo os fenômenos psicológicos conhecidos que poderia ter levado a cada um de seus erros. 

Ele também observou que o primeiro oficial não cometeu nenhum erro; na verdade, ele foi além do seu dever, realizando tarefas críticas sem qualquer orientação do capitão. Além disso, ele descobriu a causa real do problema por conta própria, e o capitão não acreditou nele. Apesar de seus erros evidentes, ninguém que lê o relatório poderia ir embora acreditando que Arminger merecia ir para a prisão.

Paralelamente ao relatório, os investigadores austríacos emitiram 14 recomendações de segurança, incluindo que a Airbus e a companhia aérea revisassem a documentação do FMS e os procedimentos de voo com o equipamento estendido, a fim de garantir que não houvesse ambiguidade sobre as capacidades do FMS em circunstâncias envolvendo aumento do consumo de combustível. 

Eles também recomendaram que a capacidade dos slides de fuga de resistir ao vento fosse examinada; que os pilotos sejam treinados nos limites do FMS em cenários de combustível incomuns; e que a Hapag-Lloyd fixe sua lista de verificação do trem de pouso e garanta que sua documentação esteja completa. 

A queda do voo 3378 da Hapag-Lloyd contém lições cruciais para pilotos e fabricantes. Durante a maior parte do voo, o Capitão Arminger sentiu uma sensação de invulnerabilidade - que tudo ia ficar bem, que resultados negativos só acontecem com outras pessoas. 

Essa suposição é falsa; o pior pode acontecer a qualquer pessoa, a qualquer momento. Um piloto deve sempre permanecer ciente da presença do perigo e reter autoconsciência suficiente para levá-lo a sério, mesmo que as chances de um resultado negativo pareçam pequenas. Você nunca sabe quando fez a matemática errada.


Os projetistas de sistemas tanto na aviação quanto em outros lugares também podem aprender algo com este acidente. Havia uma desconexão crítica entre os objetivos para os quais o FMS foi projetado e os objetivos para os quais os pilotos o usaram, devido à falta generalizada de informações sobre como o sistema funcionava.

É muito fácil presumir que o usuário final compreenderá intuitivamente as limitações do sistema. Nesse caso, a documentação oficial da Airbus incluía uma série de pistas que levariam o leitor à conclusão de que o FMS não poderia ser usado para esse objetivo específico. 

Mas a existência de tal série de instruções não é suficiente por si só. Um projeto de sistema holístico deve considerar pistas que competem com o caso de uso pretendido, conduzindo o usuário a um curso de ação diferente. 

No entanto, às vezes surgem cenários que os projetistas de sistemas são incapazes de prever com antecedência - mas a resposta deve ser melhorar o sistema, não condenar um piloto no tribunal por ter sido enganado por um computador.

Edição de texto e imagens por Jorge Tadeu (site Desastres Aéreos)

Com Admiral Cloudberg, ASN, Wikipedia - Imagens: baaa-acro, Marcus Weigand, Hapag-Lloyd, Pedro Aragão, Luc Verkuringen, Google, o Conselho Austríaco de Investigação de Acidentes Aéreos, FlightGlobal, Austrian Wings, Departamento de Imprensa do Aeroporto de Viena, Thomas Ramgraber, e Der Spiegel.