quarta-feira, 28 de fevereiro de 2024

Comparativo: Airbus A350-900 x Boeing 787-10

Como essas aeronaves de tamanho semelhante se comparam uma à outra?

(Foto: Simple Flying)
Enquanto o Boeing 787 Dreamliner foi lançado antes do programa A350 da Airbus, o A350-900 entraria em serviço antes do 787-10. Embora as dimensões desses dois widebodies sejam bastante semelhantes, suas especificações de desempenho resultam em perfis de missão ligeiramente diferentes. Hoje, vamos comparar as duas aeronaves de fabricantes rivais.

Linha do tempo de desenvolvimento


Alerta de spoiler: o Airbus A350-900 está muito à frente do Boeing 787-10 , apesar de suas capacidades semelhantes. Embora suas características de desempenho possam ter algum papel nisso, também é importante entender os diferentes cronogramas das duas aeronaves, já que o A350-900 foi lançado anos antes do 787-10. Embora a linha do tempo a seguir não seja exaustiva e abranja todos os marcos importantes de ambos os programas, vamos ver as datas importantes de como as aeronaves se relacionam entre si.
  • Janeiro de 2003: A Boeing anuncia oficialmente um novo projeto de aeronave, batizando o programa de aeronaves de Boeing 7E7 nesse ínterim.
  • Abril de 2004: o programa 787 é lançado com a All Nippon Airways (ANA) do Japão como cliente inicial.
  • Julho de 2005: O programa A350 é lançado, mas esta oferta inicial seria derivada do A330 existente.
  • Julho de 2006: Tendo voltado à prancheta depois de obter informações de clientes importantes, a Airbus anuncia um projeto revisado do A350, desta vez oferecendo uma folha limpa com uma fuselagem mais larga composta de materiais compósitos (daí a designação XWB para corpo extralargo).
  • Setembro de 2011: O primeiro 787, um 787-8, é entregue à ANA, três anos depois da meta de entrada em serviço.
  • Junho de 2013: a Boeing anuncia o lançamento do 787-10. O jato é um trecho do 787-9, mas tem capacidade de combustível e MTOW idênticos.
  • Janeiro de 2015: O A350-900 entra em serviço com a Qatar Airways.
  • Março de 2018: O primeiro 787-10 é entregue à Singapore Airlines.
A partir dessa linha do tempo simplificada, você pode ver que o A350 composto de carbono foi uma resposta ao 787, lançado vários anos depois que o primeiro Dreamliner entrou em serviço. No entanto, o 787-10 foi lançado cerca de sete anos após o lançamento do programa A350. De fato, o Dreamliner esticado entrou em serviço três anos depois que o A350-900 iniciou suas operações comerciais. Quando olhamos para as vendas, esse provavelmente é um fator que explica a diferença nos números dos pedidos.

Airbus A350-900 (Foto: Airbus)

Comparando especificações técnicas


Vamos agora examinar lado a lado nossas duas aeronaves em destaque para obter uma compreensão básica de seu tamanho e capacidades.


A partir das informações acima, podemos ver que as duas aeronaves têm tamanhos semelhantes entre si. O Dreamliner é um pouco mais longo, enquanto o A350 é um pouco mais largo, embora ambos os jatos tenham capacidades máximas de passageiros idênticas. Em termos de desempenho, o A350 é, em última análise, uma aeronave mais pesada, com maior capacidade de combustível e motores mais potentes. A maior capacidade de combustível da aeronave também permite que a aeronave voe 2.000 milhas náuticas a mais do que seu rival Boeing.

Comparando a capacidade de carga/barriga (Imagem: ANA/JAL)
Por outro lado, o menor peso e menor capacidade de combustível do 787-10 provavelmente permitirão que ele tenha uma queima de combustível mais eficiente, embora números específicos publicados pelo fabricante sobre essa métrica não estejam disponíveis. Em última análise, no entanto, a aeronave e seu MTOW reduzido devem incorrer em taxas aeroportuárias e custos operacionais mais baixos, mesmo que o resultado seja uma redução no alcance. Além disso, como resultado de sua fuselagem um pouco mais longa com compartimento de carga menor, a aeronave é capaz de acomodar quatro contêineres LD3 adicionais - um recurso que deve ser útil para operações de carga.

Comparando vendas e desempenho de pedidos


Usando dados oficiais de vendas de ambos os fabricantes, podemos ver que a Boeing coletou pedidos de 215 787-10 em janeiro de 2023. Os maiores clientes até o momento incluem a Etihad, que fez um único pedido de 30 em 2013, e a Singapore Airlines, que fez dois pedidos separados em 2013 e 2017 para 27 e 15, respectivamente. Enquanto a United Airlines está listada nos dados oficiais da Boeing como tendo encomendado 26 em quatro pedidos - a companhia aérea recentemente se comprometeu com 100 Dreamliners (com opções para outros 100) . O pedido da companhia aérea deixa variantes não especificadas. Assim, a transportadora pode aumentar sua frota de 787-10 no futuro.

Do lado da Airbus, os dados de pedidos precisos em 31 de dezembro de 2022 indicam que a fabricante de aviões europeia acumulou pedidos para impressionantes 750 fuselagens. A Singapore Airlines parece ser o maior cliente da variante, tendo encomendado 65. A Emirates comprometeu-se com um número significativo destes (50), tendo como outros grandes clientes a Lufthansa (45) e a Qatar Airways (34). A United Airlines ainda está listada para 45 A350s, mas esse pedido está pendente há cerca de uma década, com muitos céticos quanto à disposição da companhia aérea de seguir adiante.

O desenvolvimento mais recente que mudará ligeiramente esses números é o pedido massivo da Air India. Mas quando se trata de comparar nossas duas variantes, a transportadora operará apenas seis A350-900 e 20 787-9. Incluir esta última notícia obviamente mudaria os números a favor da Airbus, mas não muito considerando a extensa liderança que já possui.

Boeing 787-10 Singapore Airlines (Foto: Airbus777 via Wikimedia Commons)

A experiência do passageiro


Como observamos em artigos anteriores, as comparações de conforto do passageiro podem ser desafiadoras à sua maneira - especialmente quando grande parte dessa experiência é determinada pela companhia aérea. Espaçamento do assento, conforto do assento e entretenimento a bordo - tudo isso é selecionado pelo operador, e não pelo fabricante da fuselagem. No entanto, existem algumas coisas gerais que podemos observar para essas duas aeronaves. Também deve ser notado que muitos desses pontos também se aplicarão ao debate geral entre o A350 e o 787.

Diferenças de janela


As janelas do Boeing 787 são uma diferença notável quando se trata da experiência do passageiro definida pela fabricante de aviões. Medindo aproximadamente 27 x 47 cm (10,63 polegadas x 18,5 polegadas), essas 'janelas reguláveis' estão entre as maiores do céu e podem ser ajustadas para vários níveis de brilho. A vantagem para os passageiros é que eles ainda podem olhar confortavelmente para o mundo lá fora, apesar do brilho extremo do sol. A desvantagem para os passageiros (pelo menos aqueles sentados na janela) é que a tripulação de cabine pode controlá-los remotamente e até bloqueá-los dos ajustes do passageiro. Portanto, esse recurso não é uma vantagem clara sobre o A350, pois alguns passageiros preferem persianas convencionais.


Falando em competição, as janelas do A350 (e suas persianas de plástico) são menores que as do Dreamliner: 24,1 x 34,3 cm (9,5 polegadas x 13,5 polegadas).

Largura da cabine e seu impacto no layout dos assentos


Embora a Boeing realmente não tenha uma palavra a dizer sobre como as companhias aéreas configuram as cabines de passageiros de suas aeronaves, a largura da cabine limita as companhias aéreas no número de assentos por fileira. Embora isso seja menos discutido quando se trata de cabines premium, certamente pode ser um problema nas cabines da classe econômica.

Quando se trata de configurações de classe econômica a bordo do 787-10, praticamente todas as companhias aéreas instalam seus assentos em um layout 3-3-3. De acordo com os dados do SeatGuru, isso geralmente resulta em uma largura de assento entre 17 e 17,5 polegadas. A bordo do A350-900, a configuração de assentos da classe econômica também tende a ser 3-3-3. No entanto, devido à cabine um pouco mais larga, a maioria das transportadoras está listada como tendo assentos de 18 polegadas de largura. Essa cabine um pouco mais larga também (infelizmente) permitiu que algumas companhias aéreas ocupassem um décimo assento em cada fila. Nesse caso, a largura do assento será ultraconfortável de 16 a 16,5 polegadas. French Bee e Air Caraibes são duas companhias aéreas que utilizam esse layout (veja a foto abaixo).

Cabine do A350 da French Bee (Foto: French Bee)

Indo longe


O alcance parece ser o principal ponto de discussão quando se trata do 787-10. Tendo uma capacidade de combustível idêntica à do 787-9, o -10 é incapaz de voar tão longe quanto seus irmãos mais curtos Dreamliner. Isso levou alguns a rotular o jato como "uma aeronave mais regional do que seus antecessores", como disse Brian Sumers, da Skift, em 2018. 

Compartilhando suas ideias sobre as capacidades do 787-10 (ou a falta delas), Sumers começou seu artigo dizendo: "Os Boeing 787 Dreamliners anteriores revolucionaram a aviação, permitindo que as companhias aéreas abrissem novas e atraentes rotas de longa distância. O 787-10 provavelmente não fará isso, mas ainda é uma aeronave impressionante."

Sumers está totalmente correto ao apontar que o 787-10 não mudará o jogo quando se trata de viagens de longa distância - particularmente quando comparado às variantes -8 e -9 Dreamliner. No entanto, como também é observado, o -10 será uma aeronave econômica que tem o potencial de transformar rotas marginais em rotas mais lucrativas.

KLM 787-10 (Foto: Adam Moreira via Wikimedia Commons)
Ao mesmo tempo, a aeronave pode voar longe o suficiente para não limitar o que a maioria das companhias aéreas pode oferecer. De fato, basta dar uma olhada em algumas das rotas do 787-10 atualmente agendadas pelas companhias aéreas:
  • A British Airways, de seu hub em Londres Heathrow, atende destinos como Denver, Doha, Seattle e Washington Dulles.
  • A All Nippon Airways, de Tóquio, leva o 787-10 para cidades da região da Ásia-Pacífico como Bangkok, Ho Chi Minh e Xangai.
  • A Etihad de Abu Dhabi atende cidades tão distantes quanto Jacarta, Manila, Kuala Lumpur e Seul.
  • Entre suas rotas mais longas do 787-10, a United Airlines conecta Los Angeles a Tóquio e Nova York a Tel Aviv.
  • De sua casa em Amsterdã Schiphol, a transportadora holandesa KLM voa com o 787-10 para cidades como Atlanta, Cancún, Los Angeles, Mumbai e Cidade do Panamá.
  • E, finalmente, no extremo oposto desse debate de alcance, é interessante notar que a Vietnam Airlines implanta seus 787-10 principalmente em rotas domésticas que duram apenas algumas horas. A incrivelmente movimentada rota Hanoi-Ho Chi Minh, que dura menos de duas horas, parece ser o uso mais comum para os 787-10 da transportadora.
Mapa de alcance A350-900 x Boeing 787-10 (Foto: GCMap.com)
Portanto, como você pode ver, a variante mais longa do 787 é capaz de funcionar em algumas rotas bastante longas. A imagem acima mostra a diferença no alcance máximo de Londres Heathrow.

Portanto, embora o alcance máximo publicado do 787-10 seja 2.000 milhas náuticas abaixo do A350, pode-se argumentar que ele ainda será capaz de servir a maioria das mesmas rotas que seu rival Airbus, tudo com um custo operacional menor devido ao seu menor MTOW.

Problemas atuais e recentes


Ao tentar fornecer uma comparação o mais abrangente possível, vale a pena examinar os problemas que cada aeronave enfrentou ou está enfrentando atualmente.

Neste momento, ambas as aeronaves estão mais ou menos limpas - particularmente com a Airbus recentemente resolvendo sua disputa com a Qatar Airways. O metafórico 'macaco nas costas' do A350 nos últimos dois anos tem sido sua amarga disputa com a Qatar Airways sobre a degradação da superfície. A fabricante de aviões europeia teve que se defender no tribunal do Reino Unido, insistindo que seus A350 são seguros para voar, apesar da degradação das superfícies com subsequente exposição ao sistema de proteção contra raios da aeronave.


Quanto à Boeing, seu 787 também não é imune a problemas de pintura. No entanto, eles certamente foram menos divulgados - sem que uma companhia aérea levasse a empresa ao tribunal. Os problemas de entrega foram o maior problema para o 787 e em agosto de 2022 a fabricante de aviões dos EUA finalmente retomou as entregas após quase dois anos de paralisação. Essa interrupção na entrega ocorreu devido a problemas de controle de qualidade e falhas de fabricação sinalizadas pela FAA. Isso resultou em muitas companhias aéreas esperando por longos períodos de tempo por seus novos Dreamliners - incluindo vários operadores de 787-10. Claro, a Boeing agora parece estar de pé em termos de produção do Dreamliner e tem trabalhado duro para limpar sua carteira de pedidos.

Conclusão: Tamanhos semelhantes, vantagens diferentes


Para finalizar esta comparação, parece que o A350-900 é uma aeronave mais capaz, principalmente quando se trata de voar em rotas mais longas. Para atingir essa faixa, o A350 é equipado com tanques de combustível maiores, o que resulta em maior peso operacional. Por outro lado, o 787-10, mais leve, com seus tanques de combustível menores, não conseguirá voar tão longe quanto o A350-900, mas ainda consegue voar distâncias consideráveis ​​com um número de passageiros semelhante (e um pouco mais carga).

Há rumores de que a Boeing está abordando sua situação de alcance do 787-10 com um possível alcance estendido ou variante de "alto peso bruto". Mas, no momento da publicação deste artigo, ainda não vimos nada oficialmente em oferta.

Edição de texto e imagens por Jorge Tadeu - com informações de Simple Flying, HeraldNet, SeatGuru, Modern Airliners, Leeham News e Skift

Curiosidade: Por que a abordagem ao aeroporto Kai Tak de Hong Kong era tão desafiadora?

O primeiro aeroporto de Hong Kong, Kai Tak, estava localizado na área urbana da cidade, com um caminho de aproximação incomumente complexo e dramático.


O aeroporto Kai Tak de Hong Kong tem um lugar especial na história e nas memórias da aviação. Ele estava localizado na área central da cidade, com grandes aeronaves de fuselagem larga fazendo uma abordagem dramática e desafiadora para o pouso. Fechou em 1998, mas a memória dos 747 e outras aeronaves de grande porte voando baixo sobre a cidade permanece.

Aeroporto de Hong Kong Kai Tak - uma breve história

O primeiro aeroporto de Hong Kong foi inaugurado em 1924, então abrigando uma escola de aviação chamada The Abbot School of Aviation. Ele se expandiu nas duas décadas seguintes, com mais escolas de voo e presença da RAF. Uma torre de controle e hangar de aeronaves foram adicionados em 1935, e um serviço aéreo regular foi introduzido em 1936.

Durante a Segunda Guerra Mundial, o aeroporto ficou sob controle japonês e duas pistas de concreto foram adicionadas. Um plano de redesenvolvimento foi lançado em 1954, com as pistas estendidas para receber aeronaves maiores e um novo terminal de passageiros adicionado. O ILS foi adicionado em 1974, e o aeroporto entrou em seus anos de pico.

O aeroporto de Kai Tak foi cercado por um desenvolvimento denso e alto (Foto: Christian Hanuise)

Localização no centro da cidade e abordagem dramática

À medida que a cidade se desenvolveu, o aeroporto foi cercado por desenvolvimento de arranha-céus. Isso deu uma localização dramática, mas a abordagem sobre a cidade densamente desenvolvida e as colinas de Hong Kong foi ainda mais dramática.

A aproximação para pouso na pista 13 foi a mais desafiadora, conhecida pelos pilotos como Aproximação Tabuleiro de Damas. Começava a sudoeste do aeroporto, perto da ilha periférica de Cheung Chau e perto da localização atual do aeroporto.


A aeronave interceptaria o localizador para a pista neste ponto e viraria à direita em direção a Kai Tak. Os pilotos então voariam em direção a um grande tabuleiro de xadrez laranja e branco localizado em uma colina no Parque Kowloon Tsai (ainda conhecido como Chequerboard Hill). Este é o local onde a aeronave faria uma curva de 47 graus à direita para se alinhar com a pista, com menos de duas milhas náuticas para voar e começar a uma altura de apenas cerca de 650 pés. Escusado será dizer que esta foi uma manobra difícil, e algo para o qual os pilotos treinariam especificamente.

Um tabuleiro de xadrez na colina marcava o ponto de virada final (Foto: Tksteven)
A aproximação final após a curva à direita voou apenas dezenas de metros sobre o prédio de apartamentos ao redor do aeroporto. Tão perto que os passageiros muitas vezes comentavam que podiam ver os apartamentos.

A maior parte da aproximação (certamente de cerca de 2.500 pés) foi feita manualmente, sem piloto automático e usando um sistema ILS fortemente modificado. A curva final à direita complexa e apertada significava que a aproximação só poderia ser feita sob condições visuais.

A fase final da aproximação viu as aeronaves voarem muito perto dos edifícios
(Foto: Konstantin von Wedelstaedt via Wikimedia)

Fim de uma era

O aeroporto de Kai Tak fechou em julho de 1998. Já ultrapassou a capacidade planejada por muitos anos, e era necessário um novo aeroporto. O novo Aeroporto Internacional de Hong Kong , construído na ilha de Chek Lap Kok, foi inaugurado assim que Kai Tak fechou. O último voo programado para fora do aeroporto foi um voo da Cathay Pacific para Londres Heathrow. O local do aeroporto foi agora remodelado e abriga o desenvolvimento de apartamentos e um terminal de navios de cruzeiro.

O novo aeroporto de Hong Kong foi construído em uma ilha artificial (Foto: Getty Images)
Edição de texto e imagens por Jorge Tadeu com informações do Simple Flying

Helicóptero com turistas cai após decolar e fica preso a antena na Colômbia

Um helicóptero com quatro turistas, piloto e copiloto, perdeu o controle segundos após a decolagem na Colômbia e ficou preso a uma antena.


A aeronave Bell 206L-3 LongRanger III, prefixo HK-4810, da Volar Colombia, decolou de um heliporto, no alto de um prédio, e caiu segundos depois. Imagens gravadas por vizinhos mostram o início do voo já sem controle, com a aeronave girando no ar e caindo na sequência.


Entre bombeiros, policiais e outras forças de saúde, 70 pessoas participaram do resgate. Acidente aconteceu na tarde de segunda-feira (26), no bairro Manrique, em Medellín. Segundo o prefeito da cidade, Federico Gutiérrez, todos os passageiros foram resgatados vivos.


"O piloto, o copiloto e quatro passageiros viajavam no helicóptero. Estes últimos tiveram que ser resgatados pelo Corpo de Bombeiros oficial de Medellín", disse Carlos Andrés Quintero Monsalve, diretor do Departamento Administrativo de Gestão de Risco de Desastres, ao jornal colombiano El Espectador.


Não há detalhes sobre as causas do acidente. A Direção Técnica de Investigação de Acidentes informou que, junto à Aeronáutica Civil da Colômbia, apura o caso.


Via ASN e UOL - Fotos: @DAGRDMedellin

Aconteceu em 28 de fevereiro de 1984: Acidente durante o pouso do voo SAS 901, em Nova York


Em 28 de fevereiro de 1984, o voo 901 da Scandinavian Airlines System, também conhecido como voo SAS 901, foi um voo internacional programado originado no Aeroporto Arlanda, em Estocolmo, na Suécia, antes de uma escala no Aeroporto de Oslo, na Noruega, com destino ao Aeroporto Internacional John F. Kennedy, em Nova York.

O voo 901 era operado pelo McDonnell Douglas DC-10-30, prefixo LN-RKB, da SAS - Scandinavian Airlines System, batizado "Haakon Viking". Ele havia voado pela primeira vez em testes em 1975. Seu número de construção McDonnell Douglas era 46871/219. A aeronave estava equipada com três motores General Electric CF6-50C. Entrou em serviço de voo comercial com a Scandinavian Airlines em janeiro de 1976.

O voo transcorreu sem intercorrências até o pouso no Aeroporto em Nova York, onde o tempo estava chuvoso e com baixa visibilidade.

Ao aterrissar, o avião saiu da pista, devido ao fracasso da tripulação em monitorar sua velocidade no ar e ao excesso de confiança no autothrottle da aeronave. O DC-10 pousou 1440 m além do limite da pista 04R. A tripulação guiou o avião para o lado direito da pista para evitar luzes de aproximação e o DC-10 acabou parando em águas rasas.


Todos os 177 passageiros e membros da tripulação a bordo sobreviveram, embora 12 tenham ficado feridos.

O National Transportation Safety Board (NTSB) investigou o acidente. Os investigadores primeiro pensaram que a causa provável do acidente poderia ser aquaplanagem, já que havia mau tempo na chegada, mas isso foi posteriormente descartado quando os investigadores inspecionaram a pista e descobriram que os sulcos da pista estavam em boas condições e não havia relatórios recentes de aquaplanagem naquela pista. 


O NTSB descobriu por testemunhas oculares que a torre de controle do aeroporto não podia ver o voo chegando devido à baixa visibilidade. No entanto, eles e os passageiros do voo relataram que a aeronave percorreu uma distância incomumente longa antes de pousar.


De acordo com a voz da cabine do voo e gravadores de dados de voo, a aeronave estava em uma velocidade excepcionalmente alta de 205 nós antes de pousar. Também foi notado que o capitão apenas monitorava a velocidade no ar, não a velocidade de solo mostrada. 


Para evitar bater no sistema de iluminação de aproximação, eles desviaram o DC-10 da Pista 04R usando o leme da aeronave. A aeronave parou em águas rasas a 650 pés (200 m) da Pista 04R.

Os investigadores descobriram que o capitão estava contando com a rotação automática da aeronave, acreditando que ela diminuiria automaticamente a potência da turbina.


Os investigadores do NTSB também descobriram que o sistema de controle de autothrottle apresentou defeito durante os voos anteriores. Eles acreditam que durante a abordagem, o autothrottle do DC-10 teve um mau funcionamento do software, levando a um aumento da velocidade no arantes de tocar no chão. 

No relatório final do NTSB, a causa provável do voo SAS 901 afirma que "A tripulação de voo (a) desconsidera os procedimentos prescritos para monitorar e controlar a velocidade durante os estágios finais da aproximação e (b) decisão de continuar o pouso ao invés de executar uma aproximação perdida, e (c) confiança excessiva no sistema de controle de velocidade autothrottle que tinha um histórico de avarias recentes".


O NTSB emitiu duas recomendações de segurança para a Federal Aviation Administration em 16 de novembro de 1984, um dia após a divulgação do relatório final.

A-84-123: Aplicar as descobertas de programas de pesquisa comportamental e investigações de acidentes/incidentes em relação à degradação do desempenho do piloto como resultado da automação para modificar os programas de treinamento de pilotos e procedimentos de vôo de modo a aproveitar ao máximo os benefícios de segurança da tecnologia de automação.

A-84-124: Direcionar os principais inspetores de operações da transportadora aérea para revisar os procedimentos de chamada de velocidade do ar das transportadoras aéreas designadas e, quando necessário, exigir que esses procedimentos especifiquem os desvios de velocidade reais (em incrementos apropriados, ou seja, +10, +20, -10, -20, etc.) a partir de velocidades de referência calculadas.

O DC-10 acidentado - após reparo - em dezembro de 1984
Após o acidente, os mecânicos descobriram que o LN-RKB sofreu danos substanciais, mas foi posteriormente reparado e voltou ao serviço, até ser comprado pela Federal Express em 1985, registrado novamente como N311FE e convertido em um cargueiro. 

O DC-10 acidentado após ser vendido para a FedEx, em foto de 2010
Foi retirado de uso e armazenado em 2012; em 2013 foi devolvido ao serviço. Em setembro de 2020, a aeronave está atualmente em serviço de carga com a FedEx Express. 

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipedia e ASN

Aconteceu em 28 de fevereiro de 1967: A queda do voo Philippine Air Lines 345 nas Filipinas

Em 28 de fevereiro de 1967, o voo 345 era um voo doméstico nas Filipinas programado de Manila para Mactan, operado pelo Fokker F-27 Friendship 100, prefixo PI-C501, da Philippine Air Lines (foto abaixo), levando a bordo 15 passageiros e quatro tripulantes

Foto da aeronave envolvida no acidente em 1967
O avião partiu de Manila às 17h20 em uma autorização IFR direto para Mactan, via Amber 1 no nível de voo 130. Às 19h08, o voo relatou à Abordagem de Controle da Mactan que estava descendo pelo FL 70. Foi autorizado para FL 50, dado um altímetro configuração de 29,81 em Hg e solicitou relatório no FL 60. 

Às 19h09, o voo solicitou uma descida visual do FL 50 para 30 e às 19h13 relatou o início de uma aproximação VOR para a pista 04. Às 19h17 horas o voo relatou estar no final da abordagem. Mactan autorizou o voo para pousar, dando ao vento 330'15 kt. O vôo reconheceu a liberação e esta foi a última comunicação da aeronave. 

Embora em uma longa abordagem final iniciada a partir de uma altura de 1.500 pés, aproximadamente 4 milhas da cabeceira da pista, a aeronave subitamente assumiu uma atitude de nariz erguido e potência adicional foi aplicada. 

Um membro da tripulação então saiu da cabine e falou na direção de uma série de tripulantes excedente, viajando no compartimento de passageiros, instruindo-os a se moverem para a frente da aeronave. Momentos depois, um comissário de bordo repetiu a instrução.

Antes que todos os passageiros pudessem obedecer, a aeronave começou a inclinar alternadamente para a direita e para a esquerda, descendo em atitude de cauda baixa e caiu aproximadamente 19h18, 1,5 km (0,9 milhas) antes da cabeceira da pista 04 da Base Aérea Naval de Mactan Island. 
Às 19h19 horas, o controlador do aeródromo observou um incêndio próximo ao final de aproximação da pista 04 e alertou os serviços de emergência. 

Todos os quatro membros da tripulação e oito passageiros morreram, outros sete sobreviveram. 


Causa provável


O Conselho determinou que a causa provável do acidente foi a perda de controle em baixa altitude. O fator contribuinte era a distribuição da carga que colocava o centro de gravidade atrás do limite traseiro do centro de gravidade. Os seguintes desvios foram relatados:
  • Nenhuma evidência de mau funcionamento ou falha da aeronave ou de seus motores antes do impacto foi encontrada. Evidências revelaram que a aeronave atingiu o solo com a asa esquerda baixa, o trem de pouso estendido e os flaps retraídos. O compensador de profundor foi encontrado com o nariz totalmente voltado para baixo.
  • A aeronave foi carregada de forma que o centro de gravidade estava localizado além do limite de popa.

Clique aqui para ler o Relatório final do Acidente.

Por Jorge Tadeu (Site Desastres Aéreos) com ASN e baaa-acro.com

Cinco erros que podem tornar viagens de avião muito estressantes

Confira as dicas para que você tenha uma experiência melhor ao viajar de avião.


Quando uma viagem de avião não sai como planejada, pode custar nossa saúde mental e nosso bolso. Nesse sentido, existem certas condutas ruins que devem ser evitadas para podermos garantir uma viagem minimamente tranquila. Assim, a seguir, saiba quais são os erros mais comuns que cometemos em aeroportos e previna-se deles.

1 - Não fazer o check-in online

As companhias aéreas dão a opção de fazer o check-in online, sendo possível escolher o assento entre 24 e 48 horas antes do voo. Portanto, use o tempo a seu favor e faça o check-in em sua casa, evitando problemas futuros.

2 - Chegar ao aeroporto em cima da hora

É importante não chegar no aeroporto faltando pouco tempo para o voo. Afinal, você pode ser pego desprevenido ao ter que enfrentar filas grandes. O mais prudente é chegar entre 30 e 50 minutos antes da sua viagem e estar com tudo preparado e resolvido para o embarque.

3 - Não pesar a mala antes

Existem determinações de capacidade máxima da bagagem para voos nacionais e, sobretudo, internacionais. Então, tente não negligenciar o peso de despacho. Para isso, você pode pesar sua mala previamente, evitando transtornos como pagamentos extras pelo peso excedente.

4 - Utilizar roupas erradas para embarcar

Este erro tem implicações não só na revista com detector de metais, como também no seu próprio conforto durante a viagem. É importante prezar por peças leves e, ao mesmo tempo, com tecidos mais firmes, como malhas. Roupas pesadas ou curtas demais podem tornar sua viagem desconfortável.

5 - Não ter sempre em mãos o cartão de embarque e o passaporte

As filas para despacho de bagagens ou verificação de embarque costumam demorar porque as pessoas guardam os documentos fundamentais para essas atividades O cartão de embarque e o passaporte (ou identidade, no caso das viagens domésticas) devem ficar sempre em mãos antes de embarcar. Então, não os guarde em lugar algum, a não ser em lugares de fácil localização, como bolsos ou bolsas, enquanto não tiver embarcado.

Vídeo: Teste de impacto a bordo com um Fokker F-28

A NASA lançou um Fokker F-28 com vinte e quatro manequins de teste de impacto a bordo. O objetivo era reunir dados sobre lesões de passageiros e melhorias potenciais para a segurança em acidentes de aeronaves.

A demonstração de segurança: dois minutos que podem salvar sua vida

(Foto: ChameleonsEye/Shutterstock.com)
Quer o voo que embarcou dure 30 minutos ou 16 horas, há um elemento que todos nós, como passageiros, experimentamos – a demonstração de segurança.

A demonstração de segurança é um requisito legal que as companhias aéreas comerciais devem cumprir antes da decolagem.

É preenchido pela tripulação de cabine ou por meio de telas de vídeo e abrange o uso e a localização de equipamentos e saídas de emergência.

Embora o breve toque em assuntos que parecem ser do senso comum, a indústria reconhece que, em situações de emergência desconhecidas, os passageiros raramente agem racionalmente.

Saídas de emergência


(Foto: Ha-nu-man/Shutterstock.com)
As saídas mais próximas são indicadas pela tripulação de cabine porque os acidentes mostraram tendências comportamentais surpreendentes ao evacuar os passageiros, incluindo o retorno automático à porta de entrada em vez da mais próxima para evacuar.

Também é destacada a iluminação do piso de saída, que em condições de pouca visibilidade orienta os passageiros até a saída mais próxima em nível baixo, longe de fumaça e vapores na cabine.

Cinto de segurança


(Foto: DG FotoStock/Shutterstock.com)
No escuro, quando potencialmente cansado e com jet lag, até mesmo a ação mais simples de desapertar o cinto de segurança pode se tornar um desafio, especialmente se o pânico se instalar.

Os passageiros costumam estender a mão para o lado, como fariam em um carro, para desapertar o cinto de segurança, por isso é importante que sejam lembrados de como usar a fivela.

Máscara de oxigênio


(Foto: ThamKC/Shutterstock.com)
A maioria das aeronaves voa com a cabine pressurizada a não mais de 8.000 pés. Uma vez que o corpo humano ultrapassa os 10.000 pés, a hipóxia – falta de oxigênio – entra em vigor e, se prolongada, pode ser fatal.

Quando a altitude da cabine exceder 14.000 pés, as máscaras de oxigênio cairão automaticamente dos compartimentos superiores, acima dos assentos, nas cozinhas e nos banheiros.

Embora considerada uma ocorrência extremamente rara, os passageiros devem saber como usar e operar as máscaras por conta própria. A uma altitude de 35.000 pés, o corpo tem aproximadamente 30 segundos antes que a hipóxia limite até mesmo a conclusão mais básica das tarefas.

O sistema de oxigênio dura apenas cerca de 10 minutos, dando tempo suficiente para que a aeronave desça para uma altitude menor onde o corpo humano possa respirar normalmente.

Colete salva-vidas


Em 1996, um Boeing 767 da Ethiopian Airlines caiu no oceano Índico, na costa das ilhas Comores, após um sequestro e eventual falta de combustível.

Apesar de terem sobrevivido ao impacto inicial, a maioria dos passageiros insuflou os coletes salva-vidas no interior da aeronave, ficando presos e posteriormente afogados, não conseguindo alcançar a saída.

Os tripulantes de cabine são obrigados a demonstrar o uso do colete salva-vidas, destacando suas características que incluem uma alavanca para inflar após a saída, um tubo em caso de inflação manual, juntamente com uma lanterna e um apito.

Quando confrontado com uma emergência da vida real ou com a evacuação de até seiscentos passageiros através de um punhado de portas de aeronaves, algumas das quais podem não ser utilizáveis, cada segundo conta.

A demonstração de segurança foi projetada para que os passageiros se lembrem rapidamente do conhecimento que pode salvar vidas; portanto, pelos dois minutos que leva para ouvir, você pode salvar sua vida.

Com informações do AeroTime

terça-feira, 27 de fevereiro de 2024

Como funciona o sistema de combustível de uma aeronave

O sistema de combustível é um dos sistemas mais importantes de uma aeronave.

(Foto: santi lumbulob)
O sistema de combustível é um dos sistemas mais críticos de qualquer aeronave. Desde o armazenamento, canalização e distribuição, até à sua pressão e temperatura, o combustível passa por vários subsistemas e componentes antes de ser utilizado para combustão. O combustível armazenado na aeronave deve ser canalizado de forma precisa e eficiente para os motores e sistemas de apoio.

Uma variedade de medidores, transmissores e sensores são instalados no sistema de combustível para obter leituras de combustível em todo o sistema. Este artigo se aprofunda no sistema de combustível da aeronave, seus componentes e funcionalidades, conforme destacado pelo Blog da Associação de Proprietários e Pilotos de Aeronaves.


Os tanques de armazenamento de combustível e o sistema de ventilação


Na maioria das aeronaves de grande porte, o combustível é armazenado nas asas , embora algumas aeronaves também possuam tanques no corpo central, ou na fuselagem central, chamados de tanques centrais. Além disso, as aeronaves widebody possuem tanques extras na cauda ou no estabilizador horizontal, que são usados ​​para controlar o centro de gravidade da aeronave durante voos de longa distância.

O armazenamento de combustível nas asas ajuda a evitar tensões de flexão nas asas. Por esse motivo, o combustível do tanque lateral é utilizado por último durante o vôo. Por exemplo, se uma aeronave tiver um tanque central, o combustível do tanque central será usado primeiro, antes de o combustível ser drenado das asas.

Além disso, em aeronaves maiores, o tanque lateral é dividido em tanque externo e interno. Neste caso, o combustível do tanque interno é usado antes do combustível do tanque externo. Isto novamente ajuda a aliviar as tensões na asa.

Vista da asa de um Boeing 737 (Foto: Tom Boon)
Além dos tanques de armazenamento, existem tanques presentes no sistema de combustível conhecidos como tanques de compensação, que também fazem parte do sistema de ventilação de combustível. Todos os principais tanques de combustível da aeronave estão conectados ao tanque de compensação através de um tubo de ventilação.

Durante as manobras da aeronave, qualquer combustível que sai dos tanques cai no tanque de compensação através do tubo de ventilação. Posteriormente, quando a aeronave nivela, o combustível do tanque de compensação é retornado por gravidade aos tanques principais.

Diagrama do tanque de combustível da Airbus (Imagem: Airbus)
O tanque de compensação também é ventilado para a atmosfera para liberar combustível se houver transbordamento de combustível. É, ao mesmo tempo, dotado de ar comprimido que ajuda a pressurizar os tanques principais de combustível, o que os mantém com uma ligeira pressão positiva.

Isso evita a evaporação excessiva. À medida que a aeronave sobe cada vez mais, a pressão atmosférica reduzida diminui o ponto de ebulição do combustível, o que faz com que ele evapore. Quando os tanques são alimentados com pressão positiva, o combustível é impedido de sofrer pressão reduzida. A pressão positiva também ajuda a evitar o desenvolvimento de vácuo nos tanques à medida que os motores retiram combustível dos tanques.

Diagrama da asa do Airbus A380 (Imagem: Airbus A380 FCOM)

O funcionamento interno do sistema de combustível


Os tanques de combustível consistem em bombas de tanque ou bombas auxiliares de combustível que podem ser controladas pelo piloto. Na maioria dos casos, cada tanque possui duas bombas, que são alimentadas pelo sistema elétrico principal da aeronave. A função dessas bombas é bombear o combustível dos tanques de combustível para a bomba de combustível principal acionada pelo motor, que então bombeia o combustível para o próprio motor.

Em aeronaves capazes de voar em grandes altitudes, as bombas de tanque são uma necessidade porque a pressão reduzida em altitudes pode causar a fervura do combustível, causando bloqueios de vapor que podem impedir a entrada de combustível na bomba acionada pelo motor.

Diagrama do painel de controle de combustível do Airbus A380 (Imagem: Airbus A380 FCOM)
O tanque de combustível também consiste em válvulas de sucção que permitem que o combustível seja aspirado pelos motores em caso de falha da bomba do tanque. Isso exige que os pilotos desçam para uma altitude mais baixa, o que evita a fervura do combustível em baixa pressão.

Depois que o combustível é bombeado pelas bombas do tanque, ele é encaminhado para a válvula de combustível de baixa pressão (LP), às vezes chamada de válvula spar. A partir daí, o combustível passa pelas bombas acionadas pelo motor. Algumas aeronaves possuem uma bomba de baixa pressão e uma bomba de alta pressão, acionadas pelo compressor de alta pressão do motor.

Antes de o combustível ser encaminhado para os principais componentes do motor, ele passa pelo trocador de calor combustível/óleo e pelo filtro de combustível. O trocador de calor mantém o combustível a uma temperatura ideal, enquanto o filtro bloqueia quaisquer detritos no combustível. Depois de passar pelo trocador e pelo filtro, o combustível é bombeado pela bomba de alta pressão para os bicos de combustível na câmara de combustão.

O combustível também é usado para acionar os atuadores de sistemas como as palhetas variáveis ​​do estator dentro dos motores usando sinais hidráulicos de combustível. Em algumas aeronaves, o combustível também é utilizado para resfriar os geradores elétricos.

Airbus A380 VER Diagrama (Foto: Airbus A380 FCOM)
Em operações normais, o tanque esquerdo fornece combustível para o motor esquerdo e o tanque direito fornece combustível para o motor direito. Em caso de falha do motor, o motor restante pode ser abastecido com combustível do outro lado usando uma válvula de alimentação cruzada. Por exemplo, se o motor direito falhar, o combustível do tanque esquerdo poderá ser direcionado para o motor direito quando a válvula de alimentação cruzada for aberta.

A alimentação cruzada também pode ser usada para equilibrar o combustível no ar entre os tanques. Para realizar este procedimento, os pilotos podem desligar as bombas dos tanques laterais do lado mais leve e abrir a válvula de alimentação cruzada. Isso permite que o tanque mais cheio abasteça ambos os motores. Uma vez alcançado o equilíbrio entre os tanques, as bombas dos tanques laterais podem ser ligadas novamente e a válvula de alimentação cruzada pode ser fechada.

Painel aéreo do Airbus A319 (Foto: Linus Follert/Wikimedia Commons)
O combustível para a Unidade de Potência Auxiliar (APU) é normalmente alimentado por um dos tanques laterais. Possui uma bomba própria que liga automaticamente quando a sequência de inicialização da APU é iniciada. Se a bomba APU apresentar mau funcionamento, as bombas do tanque de abastecimento poderão ser ligadas.

Procedimentos de reabastecimento


Os pontos de reabastecimento na maioria das aeronaves de grande porte podem ser encontrados sob as asas, embora, em algumas aeronaves, estejam na barriga lateral. Este ponto é chamado de acoplamento de reabastecimento e é onde a mangueira do coletor de combustível é conectada. Este tipo de abastecimento é conhecido como abastecimento sob pressão, pois o combustível é entregue aos tanques em alta pressão.

Boeing 787 da Virgin Atlantic recebendo combustível (Foto: Virgin Atlantic)
Para controlar o reabastecimento, está disponível um painel de controle. Neste painel, o operador pode discar ou pré-definir a quantidade de combustível necessária. Uma vez conectada a mangueira, as válvulas de reabastecimento se abrem e o abastecimento é iniciado, sendo todo esse processo automático.

Durante o reabastecimento, os tanques externos são abastecidos primeiro e, uma vez cheios, o combustível transborda para o tanque interno e para o tanque central. Quando o nível de combustível atinge o valor selecionado, as válvulas de reabastecimento são fechadas e o abastecimento é interrompido.

Painel de reabastecimento do Airbus A320 (Foto: Anas Maaz)
A maioria dos fabricantes também fornece um meio de abastecer a aeronave manualmente usando a gravidade. Para isso, pontos de reabastecimento manual estão localizados nas asas. No reabastecimento manual, o abastecedor controla o reabastecimento, sendo recomendado abastecer os tanques laterais antes de abastecer os tanques centrais. A principal desvantagem deste tipo de reabastecimento é que pode demorar muito para concluir o processo de abastecimento.

Como é medida a quantidade de combustível?


Para medir a quantidade de combustível, são utilizados capacitores. O capacitor consiste em duas placas que são alimentadas com corrente elétrica CA.

Diagrama de indicação de combustível do Boeing 737 (Imagem: Boeing 737 FCOM)
O fluxo de corrente nesse circuito depende de quatro fatores. Eles são:
  • O nível de tensão aplicada.
  • A frequência do fornecimento.
  • O tamanho das placas do capacitor.
  • A constante dielétrica.
Os primeiros três fatores (tensão, frequência e tamanho da placa) permanecem fixos, e o único fator que muda é a constante dielétrica. Isto porque, num determinado momento, a constante dielétrica pode ser ar, combustível ou uma mistura de ar e combustível.

À medida que o capacitor fica encharcado de combustível, há um aumento na corrente, que é comparada a um capacitor de referência com ar como dielétrico. A diferença entre essas duas medições pode então ser usada para obter uma indicação muito precisa do combustível.

O principal problema deste sistema é que ele não consegue compensar a temperatura. A Gravidade Específica (SG) ou densidade do combustível é inversamente proporcional à temperatura, ou seja, quando há queda de temperatura, o volume do combustível diminui e causa erros na indicação do combustível. Da mesma forma, quando há aumento de temperatura, o volume de combustível aumenta.

Diagrama do tanque da asa (Imagem: aeronavesystemstech)
Para resolver este problema, são utilizados compensadores. São sondas colocadas no fundo dos tanques de combustível para garantir que estejam sempre cobertos de combustível. Se houver uma redução na temperatura que faça com que o SG suba, o compensador aumenta o fluxo de corrente para o circuito indicador de combustível para corrigir a medição errada pelos capacitores de medição de combustível.

Com informações de Simple Flying

Vídeo: Foi um Fracasso o Avião Mais Rápido - Convair 990

No vídeo de hoje Lito Sousa mostra o Convair 990 em visita no Museu Suíço dos Transportes.

Via Canal Aviões e Músicas

Aconteceu em 27 de fevereiro de 2001: A queda do voo Loganair 670A na costa de Edimburgo, na Escócia

O voo Loganair 670A era um voo de carga programado para o Royal Mail do aeroporto de Edimburgo-Turnhouse, na Escócia, para o aeroporto internacional de Belfast, na Irlanda do Norte. Em 27 de fevereiro de 2001, o Short 360 que operava o voo aterrissou no estuário de Firth of Forth, ao largo de Edimburgo, por volta das 17h30, hora local. Os corpos dos dois tripulantes foram encontrados nos destroços algumas horas após o acidente.

Aeronave e tripulação



A aeronave do acidente era o avião turboélice Short 360-100, prefixo G-BMNT, operado pela Loganair (foto acima) e fabricado pela Short Brothers Limited em 1987. Tinha o número de série do construtor SH 3723 e era equipado com dois motores Pratt & Whitney Canada PT6A-67R.

Seus assentos de passageiros foram removidos para uso como cargueiro e seu Certificado de Aeronavegabilidade era válido até 15 de outubro de 2001. A aeronave foi carregada com 1.360 kg (3.000 lb) de combustível e transportada 1.040 kg (2.293 lb) de carga com um peso total na decolagem de 10.149 kg (22.375 lb).O peso máximo certificado de decolagem do Short 360 é 12.292 kg (27.100 lb).

A tripulação era composta por Carl Mason, 58 anos, portador de licença válida de piloto de transporte aéreo e com 13.569 horas de experiência de voo, como capitão. O primeiro oficial era Russell Dixon, de 29 anos, também com uma licença válida e 438 horas de voo no total.

Acidente


Às 17h10, horário local, o primeiro oficial solicitou liberação e, após um pequeno atraso, a tripulação taxiou para decolar da pista 06. Com o piloto voando, uma decolagem normal foi seguida por uma redução normal da potência a 1.200 pés. 

A 2.200 pés, o copiloto selecionou os sistemas anti-gelo enquanto o piloto mudava para uma nova frequência de rádio. Quatro segundos depois, os indicadores de torque de ambos os motores caíram rapidamente para zero e a aeronave sofreu uma perda completa de impulso da hélice. 

O primeiro oficial fez via rádio uma chamada Mayday para o controle de tráfego aéreo enquanto o piloto iniciou uma descida com velocidade reduzida de 110 kt ao virar à direita em direção à costa. 

Percebendo que não poderiam alcançar a costa, a tripulação se preparou para a queda. A uma velocidade no ar de 86 kt com um nariz de 6,8 graus para cima e 3,6 graus de asa esquerda para baixo, a aeronave impactou o rumo da água 109 graus magnéticos.

A aeronave foi encontrada a 65 metros da costa em atitude de 45 graus com o nariz para baixo, com a metade dianteira da fuselagem submersa em uma profundidade de água de aproximadamente 6 metros. 


A cabine de comando foi quase totalmente destruída e a fuselagem firmemente enterrada na areia. A empenagem havia se separado e foi encontrada flutuando 100 metros a leste dos destroços principais. 

Os dois assentos da tripulação permaneceram presos ao piso da cabine de comando, sem falha dos cintos de segurança. O gravador de voz da cabine (CVR) e o gravador de dados de voo (FDR) foram recuperados intactos. 


O Short 360 acabou sendo recuperado com alguma dificuldade e foi desmontado antes de ser transportado para a Filial de Investigação de Acidentes Aéreos(AAIB) em Farnborough para um exame detalhado.

Causa


Após investigação, concluiu-se que o acidente foi causado principalmente pela falta de um procedimento prático estabelecido para as tripulações de voo instalarem tampas de entrada de ar do motor em condições climáticas adversas.

A aeronave pousou no Aeroporto de Edimburgo, Escócia, à meia-noite em condições de neve e foi então estacionada em direção direta a ventos de superfície moderados a fortes por aproximadamente 17 horas. 

Como nenhum plugue de proteção foi colocado nas entradas do motor, o vento empurrou uma quantidade significativa de neve para as entradas. Os plugues de entrada não eram transportados como parte do equipamento de bordo da aeronave e não estavam prontamente disponíveis no Aeroporto de Edimburgo.


As informações sobre as condições de congelamento no manual de manutenção do fabricante da aeronave não foram incluídas no Manual de Operações Short 360 da companhia aérea e, portanto, não foram cumpridas.

Na decolagem, essa neve alterou o fluxo de ar de admissão do motor, fazendo com que ambos os motores pegassem fogo depois que as aletas antigelo de ambos os motores fossem abertas simultaneamente de acordo com o procedimento operacional padrão. 

Foi notado pelos investigadores que a seleção do anti-gelo do motor 'ligado' sequencialmente com um intervalo de tempo entre teria evitado um apagamento simultâneo do motor duplo.


Ocorrência semelhante


Durante o curso da investigação, a AAIB foi informada de um incidente semelhante oito anos antes da perda do G-BNMT. Um Short 360 operado por uma companhia aérea diferente sofreu uma perda de potência do motor duplo durante sua corrida de decolagem. A origem do problema foi o acúmulo de gelo e neve durante a operação em temperaturas abaixo de zero.

Recomendações


Como resultado deste incidente, várias recomendações foram divulgadas pelo AAIB e o fabricante da aeronave sugeriu mudanças nas operações atuais da aeronave Short 360 em condições de temperatura quase zero ou abaixo de zero.

Por Jorge Tadeu (Site Desastres Aéreos) com Wikipédia, ASN e baaa-acro.com