domingo, 14 de novembro de 2021

Aconteceu em 14 de novembro de 1990: Voo 404 da Alitalia - Inclinação Mortal


No dia 14 de novembro de 1990, um jato de passageiros italiano ao se aproximar de Zurique, na Suíça, de repente se chocou contra uma montanha perto do aeroporto, rasgando uma faixa de destruição pela floresta e matando todos os 46 passageiros e tripulantes. A queda parecia ser um caso clássico de voo controlado no terreno, um tipo de acidente quase sempre causado por erro do piloto - e de fato, a princípio parecia que os pilotos haviam erroneamente iniciado a descida muito cedo. 

Mas, ao tentar explicar por que fizeram isso, os investigadores descobriram que, embora o erro humano tenha desempenhado um papel fundamental, a causa mais próxima foi uma falha mecânica nas profundezas do sistema de navegação do avião. Um curto-circuito induziu a tripulação a voar seu avião direto para o solo, e desativou os avisos que os teriam alertado sobre o perigo - uma falha tão insidiosa que os investigadores tiveram que se esforçar para corrigir o problema antes que pudesse matar novamente.


O voo 404 da Alitalia era um voo internacional regular de Milão, na Itália para Zurique, na Suíça. Em 1990, a Alitalia, a companhia aérea de bandeira estatal da Itália, operou o breve voo usando o McDonnell Douglas DC-9-32, prefixo I-ATJA (foto acima), do qual possuía vários exemplares antigos originalmente construídos na década de 1970. Esses DC-9s de geração mais velha continham alguns equipamentos que poderiam ter ficado melhores em um museu, mas até agora isso não causou nenhum problema. 

Na manhã do dia 14 de novembro de 1990, os pilotos de um desses DC-9s relataram um problema com o equipamento de navegação do avião durante a aproximação para Dusseldorf, na Alemanha. Especificamente, o problema surgiu com um dos dois receptores NAV da aeronave, o par de computadores que detecta os sinais do sistema de pouso por instrumentos (ILS) de um aeroporto e, em seguida, transmite esses dados aos instrumentos da cabine de comando para que os pilotos possam encontrar a pista em condições de baixa visibilidade. 

Várias horas depois, outra tripulação fez uma viagem de ida e volta de Milão a Frankfurt e observou problemas semelhantes no segundo receptor NAV. Depois que o avião retornou ao Aeroporto Linate de Milão, os mecânicos da Alitalia substituíram os dois receptores NAV, corrigindo o problema.


Depois de instalar os novos receptores NAV, os mecânicos os testaram para garantir que funcionassem corretamente. O receptor NAV detecta três tipos principais de sinais: waypoints de navegação chamados beacons VOR; localizer beacons, que transmitem um feixe estreito na linha central estendida da pista para ajudar os aviões a se alinharem a ela; e glide slopes, que produzem um sinal direcionado que pode ser seguido para manter o ângulo correto de descida na aproximação da pista. 

Enquanto o DC-9 estava estacionado no solo em Linate, os mecânicos foram capazes de sintonizar os faróis VOR próximos e um localizador, confirmando que os receptores NAV os rastrearam corretamente. Mas o avião estava estacionado em uma posição onde não podia captar o sinal do glide slope de Linate, então eles não puderam verificar este último componente. 

Os mecânicos liberaram a aeronave para o voo sem realizar esta verificação, mas deixaram uma nota no registro técnico informando que uma aproximação usando o ILS deve ser conduzida em condições claras para confirmar que os receptores NAV estavam captando corretamente os sinais de planeio. Somente após a conclusão desta verificação eles poderiam ser usados ​​para conduzir uma abordagem ILS real sob condições em que os pilotos dependeriam de seus instrumentos para navegar.


No final das contas, havia um problema com a capacidade do receptor NAV nº 1 (lado do capitão) de rastrear um declive. Pensa-se que um defeito de soldagem no componente eletrônico que transmite os dados de glide slope já processados ​​para os instrumentos da cabine criou um curto-circuito que impediu a informação de sair do receptor NAV. 

Um receptor NAV moderno poderia detectar esse tipo de falha e exibir um sinalizador de alerta de “falha de glide slope” nos instrumentos afetados, mas este não era um receptor moderno. O receptor NAV nº 1 neste avião era um King KNR-6030, um modelo mais antigo que só podia exibir um sinalizador de falha se uma falha ocorresse durante o processamento dos dados. Se os dados foram processados ​​corretamente, mas não conseguiram alcançar os instrumentos da cabine, nenhuma bandeira de falha seria produzida. 

Este DC-9 usava instrumentos analógicos de glide slope, onde uma agulha se desviaria fisicamente com base na distância do avião acima ou abaixo do glide slope. Portanto, na ausência de qualquer deflexão, a agulha necessariamente deveria permanecer na posição “em curso”. Portanto, quando o receptor NAV nº 1 entrava em curto-circuito, evitando que o sinal do glide slope alcançasse os instrumentos, a indicação do glide slope nos instrumentos do capitão voltaria para "no curso" e nenhuma bandeira de advertência seria produzida.


A próxima viagem programada do DC-9 foi o voo 404 para Zurique. No comando deste voo estavam o Capitão Raffaele Liberti, um piloto experiente com mais de 10.000 horas de voo; e o primeiro oficial Massimo De Fraia, um jovem recém-contratado com muito menos tempo no DC-9. 

Quatro comissários de bordo e 40 passageiros se juntaram a eles no voo, a maioria empresários suíços voltando para Zurique. O voo 404 decolou às 18h36 e subiu à altitude de cruzeiro de 20.000 pés, passando rapidamente sobre o vazio escuro dos Alpes. 

A fase do cruzeiro foi extremamente curta e, por volta das 6h52, eles já haviam começado a descida para o aeroporto Kloten de Zurique. O plano era contornar o aeroporto e se aproximar da pista 14 pelo noroeste usando o sistema de pouso por instrumentos. Embora o tempo estivesse nublado, as nuvens chegaram ao fundo a cerca de 4.000 pés, bem acima de qualquer terreno; portanto, eles foram autorizados a usar os receptores NAV ainda não testados, uma vez que deveriam ser capazes de determinar visualmente se estavam alinhados com a pista ou não. 

Mas inicialmente houve alguma discordância sobre qual pista usar, dado o vento; três pistas diferentes foram sugeridas antes que a tripulação se fixasse em 14, aquela que lhes foi oferecida pelos controladores. Quando o capitão Liberti começou a dar instruções sobre a abordagem, o primeiro oficial De Fraia tinha um mapa de uma pista diferente à sua frente, e mais confusão se seguiu até que Liberti disse a ele para guardá-lo. 

Localização do voo 404 em uma visão geral dos últimos minutos do voo. Comunicados relevantes estão circulados
Embora o briefing de aproximação estivesse incompleto, tudo estava normal, já que o voo 404 começou uma série de curvas descendentes antes de se alinhar com a pista. Às 7h02, o Capitão Liberti observou que eles estavam indo rápido demais, então disse ao Primeiro Oficial De Fraia (que era o piloto voando): “Eu desaceleraria ainda mais, porque depois de passar pela travessia [da soleira] não adianta correr; quanto mais você se apressa, mais você foge, entende?” 

Ele sentiu que, quando eles tivessem passado pela pista e estivessem se preparando para fazer a volta, não seria econômico voar rápido, pois isso os faria ultrapassar ainda mais os limites. 

Momentos depois, o controlador de Zurique contatou o voo e pediu que desacelerasse para 210 nós, porque estava chegando muito perto do avião à sua frente no padrão de tráfego. "Você vê?" Liberti disse a De Fraia. O primeiro oficial colocou os manetes de volta em marcha lenta, diminuindo a velocidade e aumentando a razão de descida. 

Às 7h06, o controlador instruiu o voo 404 a descer para 4.000 pés e liberou-os para uma aproximação ILS para a pista 14. Um minuto depois, o voo 404 chegou ao topo da aproximação a uma altitude de 4.000 pés. A expectativa era que eles permanecessem nessa altitude até interceptarem a rampa de planeio por baixo, o que ocorreria a 15 quilômetros da pista. Mas, naquele momento, os instrumentos do capitão Liberti mostraram que já haviam se alinhado com o glide slope, por causa do curto-circuito no receptor NAV nº 1, que fez com que seus instrumentos passassem para a indicação “em curso”. Ele, portanto, acreditava que, como já estavam no caminho de planagem, poderiam começar a descer imediatamente. 

Contudo, Os instrumentos do primeiro oficial De Fraia os mostraram corretamente bem abaixo do glide slope, causando uma incompatibilidade. "Você tem o deslize aqui?" Liberti perguntou. “Em um eu não tenho”, respondeu De Fraia. “Tudo bem, então vamos fazer no outro”, disse Liberti. Aqui ele cometeu um erro crítico: por não ter percebido o fato de que eles estavam abaixo do glide slope, ele presumiu que os instrumentos de De Fraia estavam errados e os seus, corretos, embora o contrário fosse verdadeiro. 


Em resposta à determinação de Liberti, De Fraia girou o seletor do rádio para a posição “rádio 1”, fazendo com que os dois conjuntos de instrumentos fornecessem seus dados do receptor nº 1 NAV. O indicador de glide slope de De Fraia então mudou para mostrá-los em curso, como o de Liberti, e ambos os pilotos acreditaram que o problema havia sido resolvido. 

De Fraia então começou a descida de 4.000 pés, acreditando que eles estavam no planeio correto. Na realidade, eles haviam começado a descida a uma distância de 21 quilômetros da pista em vez de 15, colocando-os cerca de 1.200 pés abaixo do planeio real. Conforme o voo 404 desceu, os pilotos fizeram contato visual com a pista. Mas um perigo oculto espreitava entre eles e o aeroporto: o Stadlerberg, de 2.110 pés, uma pequena montanha localizada a cerca de 11 quilômetros do limiar da pista 14. 

Naquela noite, o Stadlerberg foi envolto em uma nuvem e escondido contra um fundo escuro, tornando-o totalmente invisível - como voar em um buraco negro. Para piorar a situação, o Aeroporto de Kloten não tinha um Indicador de Caminho de Aproximação de Precisão, ou PAPI, um conjunto de luzes próximo à pista que mudam de cor se uma aeronave se aproximando muito alta ou muito baixa. Portanto, nenhuma indicação visual de que eles estavam muito baixos existiria até que a massa negra de Stadlerberg se erguesse na frente deles.


A uma distância de 7 quilômetros do aeroporto estava um farol de navegação chamado marcador externo, que os pilotos sabiam que deveriam passar a uma altura de 1.250 pés acima do solo. Mas às 7h10, já tendo descido a uma altitude de 1.100 pés acima do solo, o capitão Liberti relatou que eles estavam a cerca de 7 quilômetros de distância do marcador externo. 

De repente, o primeiro oficial De Fraia percebeu que algo devia estar errado - como eles poderiam estar a 1.100 pés acima do nível do solo e na encosta plana se ainda estivessem bem aquém do marcador externo? "Já não passamos?" ele perguntou. "Não passamos pelo marcador externo?" “Não, não, ainda não mudou...” disse Liberti. "Oh, aqui está me dando...". Seu pensamento foi interrompido por uma transmissão do controle de tráfego aéreo, já que o controlador de aproximação deu a eles a frequência para contatar a torre para liberação de pouso. 

Depois de reconhecer a transmissão, Liberti disse: “Isso não faz sentido para mim”. Ele também percebeu o problema que estava fazendo seu primeiro oficial hesitar. “Nem para mim”, disse De Fraia. A aeronave ainda estava indo direto para o cume do Stadlerberg, mas parecia que a tripulação estava começando a entender o problema.

O altímetro de ponteiro de bateria no voo 404 da Alitalia, como deveria
ter aparecido às 7h08m57s. Consegue ler?
Nesse ponto, o capitão Liberti cometeu outro erro crítico. Ele olhou para o altímetro para tentar avaliar a altura, mas interpretou mal. Os altímetros instalados no avião eram de um tipo antiquado chamado “ponteiro de tambor”, no qual a altitude da aeronave em milhares de pés é exibida em um tambor giratório e incrementos em centenas eram exibidos usando uma agulha em um medidor. 

O problema com os altímetros de ponteiro de bateria era que eram necessários dois passos para lê-los; e o tambor era pequeno e difícil de ver, especialmente quando girava na metade de um número para o próximo, ou quando a agulha do medidor se movia na frente dele. Como resultado, os pilotos freqüentemente interpretam mal esse tipo de altímetro, derivando uma altitude 1.000 pés acima ou abaixo de sua altitude real. Pensa-se que enquanto ele tentava descobrir o que estava acontecendo, O capitão Liberti interpretou mal a altitude em 300 metros. 

Naquela época, o voo 404 estava cerca de 1.250 pés abaixo do glide slope, mas como ele interpretou mal o altímetro, quando Liberti cruzou sua observação com a altura que eles deveriam estar, ele passou a acreditar que eles estavam apenas 250 pés abaixo do glide slope, e que foi essa discrepância relativamente pequena que perturbou o primeiro oficial. 


“Puxe, puxe, puxe, puxe”, disse Liberti a De Fraia, com a intenção de fazer o primeiro oficial parar de descer e nivelar o avião até que interceptassem a rampa plana novamente. O primeiro oficial De Fraia tinha uma imagem muito mais terrível da situação. 

“Dê a volta,” ele disse, alcançando os manetes e puxando sua coluna de controle para subir. Mas o capitão Liberti acreditava que a abordagem ainda poderia ser salva. "Não, não, não, pegue o planador!" disse ele, e De Fraia abortou sua tentativa nascente de dar a volta. "Você pode segurá-lo?" Liberti perguntou. 

À frente deles, as luzes da pista começaram a desaparecer atrás do Stadlerberg envolto em névoa. “Sim”, disse De Fraia, timidamente. “Espere, vamos tentar...” Antes que Liberti pudesse terminar sua frase, a montanha se ergueu em seu caminho sem aviso. 

Não houve tempo para reagir; uma fração de segundo depois, a fuselagem dianteira e a asa direita do DC-9 atingiram árvores, arrancando pedaços dos flaps externos direitos, ripas e ponta da asa. A asa direita perdeu sustentação e o avião rolou com força para a direita ao mergulhar na floresta. 

O voo 404 rolou invertido e caiu no chão de cabeça para baixo, provocando uma enorme explosão que enviou destroços em chamas por entre as árvores por várias centenas de metros. Embora o impacto não tenha sido necessariamente fatal para todos os passageiros, a explosão e o fogo consumiram os destroços em meros segundos, matando rapidamente qualquer um que permanecesse. Quando alguém percebeu que o avião estava desaparecido, todos os 46 passageiros e tripulantes estavam mortos. 


No aeroporto de Kloten, os controladores logo perceberam que o voo 404 da Alitalia havia desaparecido do radar. Depois de não receber nenhuma resposta do avião, o controlador de abordagem perguntou a outro voo próximo: "Você tem uma aeronave à vista cerca de duas milhas à sua frente?" “Espera”, disse o voo. 

Depois de alguns momentos, eles responderam: “Há um incêndio no chão, mas não temos tráfego à vista”. Os controladores imediatamente soaram o alarme de colisão, então cancelaram as autorizações de aproximação de todas as aeronaves que chegavam e desligaram o aeroporto enquanto os serviços de emergência corriam para o local. 

Não demorou muito para que os bombeiros localizassem o local do acidente ao lado do Stadlerberg, onde começaram a controlar o fogo antes que ele se espalhasse pela floresta próxima. Conforme as chamas diminuíram, as equipes de resgate se moveram para procurar as vítimas, mas logo ficou claro que ninguém havia sobrevivido. Uma tenda de primeiros socorros, montada para cuidar dos feridos, estava abandonada em meio à chuva que caía.


Investigadores suíços, italianos e americanos logo convergiram para o local para determinar a causa. Em virtude do fato de que o local do acidente estava alinhado com a pista e o avião parecia ter impactado as primeiras árvores em uma atitude quase nivelada, era aparente que o voo 404 havia voado para a montanha de maneira controlada enquanto devidamente alinhado com a passarela. 

O problema era que estava 1.250 pés baixo demais. Mas por que? Em quase todos os acidentes categorizados como “voo controlado para o terreno”, não há nada de errado com o avião antes do impacto, e toda a sequência de eventos está enraizada em fatores humanos. Portanto, quando os investigadores examinaram os dados da caixa preta, eles inicialmente esperavam encontrar evidências de algum erro instigante importante. 

Em vez de, eles descobriram que os instrumentos dos pilotos haviam indicado que eles estavam em curso durante a descida, apesar do fato de estarem bem abaixo da rampa de planeio o tempo todo. Algo os havia enganado, mas o quê? O histórico recente de manutenção envolvendo os receptores NAV forneceu uma pista tentadora, mas uma desmontagem dos dispositivos foi inconclusiva, porque eles foram seriamente danificados no acidente e não puderam ser testados adequadamente.


Então, em junho de 1991, outro avião da Alitalia equipado com o mesmo tipo de receptor NAV estava realizando uma abordagem ILS quando a tripulação observou que seus instrumentos os mostravam alinhados com o localizador, quando isso era manifestamente falso. Um exame dos receptores NAV mostrou que um deles tinha uma junta mal soldada que causou um curto-circuito que cortou os instrumentos da cabine dos dados de origem. 

Assim como no voo 404, nenhuma bandeira de falha apareceu porque o receptor NAV desatualizado não foi capaz de detectar uma falha que ocorreu após a fase de processamento de dados. Os investigadores determinaram que um trabalho de solda ruim semelhante na unidade de glide slope explicaria tudo o que deu errado a bordo do voo 404 da Alitalia. Na ausência de um sinal do receptor NAV nº 1, quaisquer instrumentos que dependessem dele seriam padronizados para a posição “em declive de planeio”, e nenhum sinalizador de falha apareceria porque os dados estavam sendo processados ​​corretamente. 

De maneira crítica, os investigadores descobriram que essa falha também afetaria o sistema de alerta de proximidade do solo (GPWS) do avião. Embora a taxa de fechamento do voo 404 com o solo não fosse rápida o suficiente para que este modelo inicial GPWS produzisse um alarme de terreno, ele também foi capaz de produzir um aviso “ABAIXO DE GLIDE”, que deveria ter soado nos últimos minutos do voo condenado. Mas o curto-circuito no receptor NAV nº 1 também impediu que as informações do glide slope chegassem ao GPWS, tornando-o incapaz de determinar a relação do avião com o glide slope. O resultado foi assustador:


No entanto, a investigação identificou dois momentos críticos em que as ações dos pilotos contribuíram para o acidente. Primeiro, quando Liberti e De Fraia perceberam inicialmente que suas indicações de glide slope não correspondiam, eles tiveram a oportunidade de descobrir o problema e mudar para o receptor NAV que estava funcionando corretamente. 

Em vez disso, o Capitão Liberti imediatamente mudou todos os instrumentos para o receptor NAV que produziu a leitura que mais se assemelha a seu preconceito da situação. Quando a inclinação de planeio e as indicações do localizador mudaram para "no curso" logo que alcançaram 4.000 pés, Liberti acreditou que isso significava que o controlador os havia vetorado deliberadamente diretamente para o início da abordagem, quando na realidade eles precisavam permanecer nivelados por mais 9 quilômetros antes de descer. 

Quando os instrumentos do primeiro oficial De Fraia os mostraram abaixo do glide slope, Liberti presumiu que essa era a leitura incorreta e mudou para o outro receptor sem pensar duas vezes. Se ele comparasse a altitude com a distância do aeroporto, ele teria percebido que a indicação de declive de De Fraia era a correta, mas ele nunca fez isso.


Outra oportunidade de evitar o acidente veio quando o primeiro oficial De Fraia pediu uma reviravolta pouco antes do impacto. Os investigadores determinaram que, se não tivessem abortado a volta, o avião provavelmente teria perdido a montanha. Infelizmente, o capitão Liberti interveio para impedir a volta, provavelmente porque ele interpretou mal o altímetro e acreditou que eles estavam apenas 250 pés abaixo da rampa de planagem - um desvio potencialmente recuperável que ele não achava que justificasse uma volta. 

Mas o fato de um piloto anular a tentativa de outro piloto de dar a volta por si já era preocupante. De Fraia, como o piloto voando, era quem deveria fazer a ligação. O fato de Liberti tentar impedi-lo revelou que ele não confiava na habilidade do primeiro oficial inexperiente de tomar decisões críticas - uma teoria que foi apoiada pelas interações entre eles durante o voo. 

Liberti falou com De Fraia como se fosse seu instrutor, e não seu colega de trabalho, dando ao primeiro oficial vários conselhos pesados ​​que muitas vezes pareciam paternalistas. Quando o controlador repetia seu conselho sobre como reduzir a velocidade, ele fazia questão de esfregar e freqüentemente notava os pequenos erros de De Fraia, como quando ele agarrou o gráfico de abordagem errado. Essa atitude acabou voltando para mordê-lo: quando De Fraia tentou apontar um perigo claro e presente, Liberti não acreditou nele. 


A sequência de eventos que levou ao acidente foi assim estabelecida. Mas os investigadores ficaram surpresos que um receptor NAV com um modo de falha tão perigoso pudesse ter sido instalado em um avião de passageiros sem que aparentemente ninguém soubesse disso. No entanto, eles acabaram descobrindo que várias partes sabiam do problema há pelo menos 15 anos. 

Em 1975, o fabricante de um dos dois tipos de receptores NAV usados ​​na frota DC-9 da Alitalia pediu aos operadores para atualizar os modelos mais antigos para uma versão mais recente que fosse capaz de detectar uma falha em qualquer ponto no processo de geração e transmissão de dados . Embora este não fosse o tipo de receptor NAV que falhou no voo 404, o problema com os dois receptores era exatamente o mesmo. 

Então, em 1984, o fabricante de aeronaves McDonnell Douglas emitiu um boletim alertando os operadores, incluindo a Alitalia, deste mesmo mau funcionamento potencial. E em 1985, McDonnell Douglas convocou um seminário no qual pilotos de várias companhias aéreas foram informados sobre o mau funcionamento e receberam estratégias para reconhecê-lo. Sabe-se que pelo menos dois pilotos da Alitalia participaram do seminário. 

Mas, apesar de todas essas tentativas de tornar o problema conhecido, não existia nenhum método eficaz para divulgar as informações aos indivíduos na Alitalia que precisavam conhecê-las, e a companhia aérea não substituiu os receptores de NAV afetados ou os pilotos de trem para reconhecer o mau funcionamento.


O receptor King KNR-6030 NAV não era o único equipamento desatualizado no DC-9. Os investigadores também ficaram chocados com o fato de um jato de passageiros em 1990 poder ser equipado com um altímetro de bateria. O risco de leitura incorreta desse tipo de altímetro era conhecido há décadas e, em 1959, um relatório da Força Aérea dos Estados Unidos concluiu que "não era um instrumento aceitável". 

Um estudo subsequente revelou que 81% dos pilotos de Boeing 727 em algum momento interpretaram mal um altímetro de bateria e, desses, 85% disseram que já o haviam feito mais de uma vez. Na maior parte do mundo, altímetros de ponteiro de bateria foram descontinuados no final da década de 1970, mas este Alitalia DC-9 ainda tinha um em 1990!


A falta de equipamento adequado no aeroporto de Zurique também contribuiu para o acidente. Em 1990, os Estados Unidos haviam instalado sistemas de Alerta de Altitude Segura Mínima (MSAW) em todos os principais aeroportos, mas a Suíça não. 

Um sistema MSAW detecta quando um avião que se aproxima desce muito abaixo da rampa de planagem e fornece alertas visuais e sonoros na torre de controle, permitindo que os controladores intervenham se um voo estiver em rota de colisão com o terreno. Se um sistema MSAW estivesse disponível no aeroporto de Kloten, o acidente poderia não ter acontecido. O mesmo teria acontecido com um sistema Precision Approach Path Indicator (PAPI), que poderia ter informado aos pilotos que eles estavam muito baixos durante o período em que a pista estava à vista. 

Novamente, esses sistemas eram comuns nos Estados Unidos, mas não na Suíça. Em terceiro lugar, nenhuma luz foi instalada no topo do Stadlerberg para ajudar a torná-lo visível aos pilotos, porque tais luzes não eram necessárias em obstruções localizadas a mais de 5,5 quilômetros do aeroporto. E, finalmente, a carta de aproximação fornecida aos pilotos não apresentava nenhum relevo topográfico.


No meio da investigação, o Conselho Federal de Investigação de Acidentes da Suíça divulgou um relatório provisório contendo várias recomendações urgentes. Como resultado dessas descobertas preliminares, a Alitalia começou a treinar seus pilotos para sempre verificar a distância e a altitude antes de mudar para um único receptor NAV, e instruiu os pilotos que se qualquer membro da tripulação pedir uma volta, essa decisão deve ser respeitada com sem exceções. 

Ao mesmo tempo, as autoridades suíças começaram a trabalhar para instalar uma luz no topo do Stadlerberg. Em seu relatório final, o Conselho foi muito além, recomendando que os receptores NAV não monitorados e altímetros de bateria fossem retirados de serviço imediatamente; que os sistemas de alerta de proximidade do solo devem ser reprojetados de modo a não depender do funcionamento correto dos receptores NAV; que todas as companhias aéreas instituam uma política exigindo a conclusão de uma volta depois de iniciada; que os gráficos de aproximação mostram um perfil do terreno abaixo do plano de planagem; que aeroportos sem MSAW considerem instalá-lo; e que as pistas equipadas com sistemas de pouso por instrumentos também devem ter luzes PAPI.


O tema geral por trás da queda do voo 404 da Alitalia foi o fracasso de várias partes em utilizar as inovações mais recentes em segurança de voo. A tecnologia que poderia ter evitado o acidente já existia - receptores NAV com monitoramento de saída, altímetros de exibição padrão, luzes PAPI e sistemas MSAW poderiam ter sido instalados, mas não foram. 

Esse travamento mostrou que demorar para atualizar não era apenas arriscado, mas também perigoso. Os especialistas sabiam dos perigos de receptores de NAV não monitorados e altímetros de bateria por anos, mas ainda assim a Alitalia - seja por disfunção interna, falta de fundos, ignorância ou alguma combinação dos três - nunca deu ouvidos a esses avisos. O voo 404 foi o último acidente fatal da Alitalia e, hoje, os sistemas antiquados que levaram à queda já se foram.

Edição de texto e imagens por Jorge Tadeu (Site Desastres Aéreos)

Com Admiral Cloudberg, Wikipedia, ASN - Imagens: Bureau of Aircraft Accidents Archives, Werner Fischdick, Encyclopedia Britannica, Google, Swiss Federal Accident Inquiry Board e do Watson.ch. - Clipes de vídeo cortesia de Mayday (Cineflix).

Vídeo Documentário: Marshall University - Das cinzas à Glória - A tragédia e o triunfo do time de futebol

Ative a legenda em português nas configurações do vídeo.

Aconteceu em 14 de novembro de 1970: Acidente de avião que vitimou o time de futebol da Universidade Marshall (EUA)

Em 14 de novembro de 1970, um jato fretado transportando a maior parte do time de futebol americano da Marshall University corta um arvoredo e cai em uma encosta a apenas 3 km do Aeroporto Tri-State em Kenova, West Virginia, matando todos a bordo. O time estava voltando do jogo daquele dia, uma derrota por 17-14 para a East Carolina University. 

A equipe da Universidade Marshal em 1970 (marshall.edu)

Trinta e sete jogadores de futebol americano Marshall estavam a bordo do avião, junto com o treinador do time, seus médicos, o diretor atlético da universidade e 25 promotores de equipe - alguns de Huntington, os cidadãos mais proeminentes da Virgínia Ocidental - que viajaram para a Carolina do Norte para torcer pelo Thundering. “Toda a unidade”, escreveu um cidadão de Huntington mais tarde, “todo o coração da cidade estava a bordo”.


O bimotor McDonnell Douglas DC-9-31, prefixo N97S, da Southern Airways (foto acima) transportava 37 membros do time de futebol americano Marshall University Thundering Herd, oito membros da comissão técnica, 25 torcedoras e dois pilotos, dois comissários de bordo e um coordenador de fretamento. No total, estavam a bordo 70 passageiros e cinco tripulantes.

A equipe estava voltando para casa após uma derrota por 17-14 para o East Carolina Pirates no Ficklen Stadium em Greenville, Carolina do Norte. 

Na época, as equipes atléticas de Marshall raramente viajavam de avião, uma vez que a maioria dos jogos fora de casa ficava a uma curta distância de carro do campus. A equipe planejou originalmente cancelar o voo, mas mudou os planos e fretou o Southern Airways DC-9. 

A aeronave de 95 assentos tinha em sua tripulação o capitão Frank Abbot (47), o primeiro oficial Jerry Smith (28) e os comissários de bordo Pat Vaught e Charlene Poat. 

Todos estavam qualificados para o voo. Outro funcionário da Southern Airways, Danny Deese, estava a bordo do voo para coordenar as atividades de fretamento. Este foi o único voo naquele ano para o time de futebol americano da Marshall University.

A princípio, a proposta original de fretar o voo foi recusada porque excederia "as limitações de decolagem de suas aeronaves". As negociações subsequentes resultaram em uma redução do peso dos passageiros e da bagagem e o voo charter foi agendado. 

O voo e o acidente

Às 18h38, o avião deixou Stallings Field, em Kinston, Carolina do Norte, e o voo 932 prosseguiu para Huntington sem incidentes. A tripulação estabeleceu contato de rádio com controladores de tráfego aéreo às 19h23 com instruções para descer a 5.000 pés (1.500 m).

Os controladores informaram à tripulação que "chuva, nevoeiro, fumaça e um teto irregular" estavam presentes no aeroporto, tornando pouso mais difícil, mas possível. 

Às 19h34, a tripulação do avião relatou ter passado pelo aeroporto Tri-State. O controlador deu permissão para pousar. A aeronave começou sua descida normal após passar pelo marcador externo, mas não interrompeu sua descida e manteve a altitude em 1.240 pés (380 m), conforme exigido pelo procedimento de aproximação por instrumentos designado. 

Em vez disso, a descida continuou por mais 300 pés (91 m) por razões desconhecidas, aparentemente sem que nenhum dos tripulantes visse as luzes do aeroporto ou a pista. Na transcrição de suas comunicações na cabine nos minutos finais, os pilotos debateram brevemente se seu piloto automático havia "capturado" para uma descida de glide slope, embora o aeroporto estivesse equipado apenas com um localizador. 

O relatório também observou que a aeronave se aproximou da Refinaria Catlettsburgnos 30 segundos finais antes do impacto, que "poderia ter afetado uma ilusão visual produzida pela diferença na elevação da refinaria e do aeroporto", que era quase 300 pés (91 m) mais alto que a refinaria , com colinas entre eles. O copiloto, monitorando o altímetro, gritou: "Está começando a ficar um pouco mais leve aqui a duzentos metros. Estamos duzentos acima [do vetor de descida]", e o coordenador da fretamento respondeu: "Aposto que será uma aproximação perdida". 

O gravador de voo correspondente mostra que a aeronave desceu outros 220 pés (67 m) em elevação dentro desses 12 segundos, e o copiloto relatou "quatrocentos" e concordou com o piloto que eles estavam na "aproximação" correta. 

No segundo seguinte, porém, o copiloto rapidamente relatou novas leituras, "cem e vinte e seis"... "CEM!".

O avião continuou a aproximação final para o Aeroporto Tri-State quando colidiu com o topo das árvores em uma encosta de 5.543 pés (1.690 m) a oeste da pista 11 (agora pista 12). Os os sons do impacto se seguiram imediatamente.

O avião explodiu em chamas e criou uma faixa de solo carbonizado de 95 pés (29 m) de largura e 279 pés (85 m) de comprimento.

Todos os 75 ocupantes do avião morreram na hora. Os restos mortais de seis passageiros nunca foram identificados.


Jack Hardin do 'The Herald-Advertiser,' o primeiro repórter na cena a cerca de 250 metros a leste de W. Va. 75 ao sul de Kenova, disse: "Não há nada aqui além de corpos carbonizados. É terrível."

Uma moradora próxima, a Sra. Larry Bailey, da Coal Branch Road de 1926, disse que viu o jato caindo. Ela disse que ouviu uma explosão e "o avião parecia ter caído na horizontal".


David A. Peyton, do 'The Herald-Advertiser', relatou por rádio-telefone que havia contornado a cena completamente e "tudo está carbonizado além da conta".

Peyton disse que parecia que uma área de cerca de 60 metros de diâmetro havia sido nivelada e que pequenos incêndios ainda estavam queimando. Ele disse que apenas os dois motores a jato do avião e uma seção da asa eram reconhecíveis. 

"Os destroços estão espalhados por todo o lugar. As pessoas que estavam aqui quando tudo aconteceu disseram que ouviram um grande 'baque' e foi só."


O calor dos destroços estava atrapalhando os esforços de recuperação. A cena foi descrita como caótica. Um grande número de pessoas corria através da vegetação rasteira para chegar ao local durante as primeiras duas horas.

Um funcionário do Tri-State Airport retornando da cena disse: "Os corpos estão empilhados em uma grande pilha, todos eles carbonizados. Não pode haver ninguém vivo."

A polícia disse que todas as ambulâncias em um raio de 16 quilômetros foram alertadas. O Hospital Cabell-Huntington pediu aos visitantes que saíssem e fechou as entradas para se preparar para a emergência, mas logo ficou claro que não haveria sobreviventes.

Hardin e Peyton descreveram a cena como horrível. “Há pedaços de corpos carbonizados por todo lado”, disse Hardin. Peyton disse que contou 12 formas que eram reconhecíveis como corpos, mas que viu pedaços de corpos, ossos e membros espalhados pela área.

Muitos dos corpos foram cobertos com plástico branco pelos bombeiros e outras autoridades de emergência no local.

Às 12h10, os primeiros corpos foram colocados em caminhões da Guarda Nacional. Eles estavam sendo levados para o Arsenal da Guarda Nacional no aeroporto, onde um necrotério temporário foi instalado. Hardin disse que as equipes de resgate estão ficando sem bolsas para conter os corpos.


John Young, que morava a cerca de meia milha do local do acidente, disse que "ouviu um barulho alto. Corri para ver o que era e tudo que vi foi uma grande bola de fogo. Ninguém poderia ter sobrevivido a isso."

Albert Rich, cuja casa também ficava a cerca de 800 metros do local, disse que primeiro pensou que o barulho era um raio. Ele saiu para ver. "Eu ouvi um estrondo e um minuto depois houve um estrondo terrível que sacudiu toda a casa. Corri para fora para ver se havia uma tempestade e vi um clarão sobre a colina", disse Rich. Ele disse que o avião roçou o topo de uma casa abandonada pouco antes de cair.

Uma chuva fraca atrapalhou os esforços de resgate, onde o local era acessível apenas por uma estrada estreita e de terra que havia se transformado em lama.


De acordo com o relatório oficial do National Transportation Safety Board (NTSB), o acidente era "insustentável". A aeronave "mergulhou para a direita, quase inverteu, e colidiu com uma cavidade de nariz primeiro'". 

Quando o avião parou, estava a 4.219 pés (1.286 m) da pista e a 275 pés (84 m) ao sul do marcador do meio. Embora a pista do aeroporto tenha sido alongada além de seu limite original, tornando as medições históricas mais difíceis, o relatório oficial do NTSB fornece, "o acidente ocorreu durante as horas de escuridão a 38 ° 22 '27" latitude Norte e 82 ° 34' 42 " W. longitude". 

O relatório adicionalmente observa, "a maior parte da fuselagem foi derretida ou reduzida a uma substância semelhante a pó; no entanto, vários pedaços grandes foram espalhados por toda a área queimada." 

Investigação


O NTSB investigou o acidente e seu relatório final foi emitido em 14 de abril de 1972. No relatório, o NTSB concluiu, "[...] o acidente foi o resultado de uma descida abaixo da Altitude Mínima de Descida durante uma abordagem de não-precisão sob operação adversa condições, sem contato visual com o ambiente da pista [...]”. 

Investigadores no local do acidente ao lado de um dos motores carbonizados preparando a  remoção para um hangar do aeroporto local (Jack Burnett/AP)

Eles ainda declararam: "O Conselho não foi capaz de determinar o motivo da (maior) descida, embora as duas explicações mais prováveis ​​sejam um uso impróprio de dados de instrumentação da cabine de comando, ou (b) um erro do sistema de altimetria." 

Gráfico da NTSB mostra a informações da queda (ASN)

Pelo menos uma fonte diz que a água que vazou para o altímetro do avião pode ter prejudicado suas leituras de altura, levando os pilotos a acreditarem que o avião estava mais alto do que realmente era.

O outro motor do DC-9 (baaa-acro.com)

O conselho fez três recomendações como resultado deste acidente, incluindo recomendações para heads-up displays, dispositivos de alerta de proximidade do solo e vigilância e inspeção de operações de voo.

O corredor de aproximação ao aeroporto e o local da queda do avião

Eventos subsequentes ao acidente


Em 15 de novembro de 1970, um serviço fúnebre foi realizado no Veterans Memorial Fieldhouse, com 8.500 lugares, e momentos de silêncio, lembranças e orações. 

No sábado seguinte, outro serviço memorial foi realizado no Fairfield Stadium, ao ar livre, com 18.000 lugares. Em todo o país, muitos expressaram suas condolências. As aulas no Marshall, junto com vários eventos e shows da Marshall Artists Series (e o jogo do time de futebol americano contra o Ohio Bobcats), foram cancelados e os escritórios do governo foram fechados. 

Um funeral em massa foi realizado no Field House e muitos dos mortos foram enterrados no cemitério de Spring Hill, alguns juntos porque os corpos não eram identificáveis.

Os efeitos do acidente em Huntington foram muito além do campus Marshall. Por ser o único voo fretado do time na temporada, 'boosters' e cidadãos importantes estavam no avião, incluindo um vereador, um legislador estadual e quatro médicos. Setenta crianças perderam pelo menos um dos pais no acidente, 18 deles ficaram órfãos.

A queda do voo 932 devastou tanto a comunidade local que quase levou à interrupção do programa de futebol americano de Marshall. O novo técnico Jack Lengyel , os estudantes da Marshall University e os fãs de futebol do Thundering Herd convenceram o presidente em exercício do Marshall, Donald N. Dedmon, a reconsiderar o cancelamento do programa no final de 1970. 

Nas semanas seguintes, Lengyel foi auxiliado em suas tentativas pelo treinador Red Dawson . Dawson era um técnico da equipe anterior que voltou do jogo da Carolina do Leste junto com Gail Parker, uma treinadora caloura. 

Parker voou para o jogo, mas não voltou, trocando de lugar com Deke Brackett, outro treinador. Dawson e Parker estavam comprando amendoim cozido em uma loja de campo na zona rural da Virgínia quando ouviram a notícia pelo rádio. 

Antes da viagem, eles deveriam ir em uma missão de recrutamento para o Ferrum College após o jogo ECU - Marshall (em um esforço para recrutar o linebacker júnior da faculdade Billy Joe Mantooth , que se transferiu para a West Virginia University). 

Após a queda, Red Dawson ajudou a reunir um grupo de jogadores que estavam no time de futebol juvenil do time principal durante a temporada de 1970, bem como estudantes e atletas de outros esportes, para formar um time de futebol de 1971.

Huntington, West Virginia: Os quatro participantes restantes da equipe de 1970 da Marshall University reservam um tempo para fazer uma pausa no treino  para colocar um arranjo de flores em Marshall Field, após a devastadora queda de avião que matou todos os 75 a bordo (Arquivo Bettmann/Bettmann)

O técnico Rick Tolley estava entre as vítimas do acidente. Jack Lengyel foi nomeado para ocupar o lugar de Tolley em 12 de março de 1971, depois que Dick Bestwick, a primeira escolha para o trabalho, desistiu após apenas uma semana e voltou para Georgia Tech. Lengyel, que veio de um trabalho de treinador no College of Wooster, foi contratado pelo diretor atlético recém-contratado Joe McMullen, com quem ele havia trabalhado na Universidade de Akron nos anos 1950.

O time de futebol da Marshall University venceu apenas dois jogos durante a temporada de 1971, contra Xavier e Bowling Green. Lengyel liderou o Thundering Herd para um recorde de 9-33 durante sua gestão, que terminou após a temporada de 1974.

Memoriais 


O presidente da Marshall University, John G. Barker, e o vice-presidente Donald Dedmon nomearam um Comitê Memorial logo após o acidente. O comitê decidiu sobre um grande memorial dentro do campus, uma placa e jardim memorial no Fairfield Stadium, e um cenotáfio de granito no cemitério de Spring Hill; o Memorial Student Center também foi designado como memorial.

Memorial no cemitério de Spring Hill em Huntington, West Virginia, em homenagem às vítimas da queda de avião em 1970 (Wikimedia Commons)

Em 12 de novembro de 1972, o Memorial Fountain foi dedicado na entrada do Memorial Student Center. O designer da escultura, Harry Bertoia, criou o memorial de US$ 25.000 que incorporava bronze, tubos de cobre e hastes de soldagem. A escultura de 6.500 lb e 13 pés de altura (2.900 kg, 4 m de altura) foi concluída em um ano e meio. Uma placa foi colocada na base em 10 de agosto de 1973, onde se lê: "Eles viverão no coração de suas famílias e amigos para sempre e este memorial registra sua perda para a universidade e a comunidade". 

Memorial Fountain

Todos os anos, no aniversário da queda, a fonte é fechada durante uma cerimônia comemorativa e não ativada novamente até a primavera seguinte.

Todos os anos, no aniversário do acidente, aqueles que morreram são pranteados em uma cerimônia no campus da Marshall University em Huntington, West Virginia. Várias das vítimas estão enterradas em um túmulo no cemitério de Spring Hill em Huntington; A 20th Street entre o Joan C. Edwards Stadium, o atual estádio de futebol no campus de Marshall, e o Spring Hill Cemetery foi renomeado para Marshall Memorial Boulevard em homenagem às vítimas do acidente.


Em 11 de novembro de 2000, foi inaugurado o Memorial Bronze do We Are Marshall. A estátua de bronze de 5 × 7 m (17 × 23 pés) foi criada pelo artista Burl Jones de Sissonville, West Virginia , e custou US$ 150.000. 

É baseado nas ideias de John e Ann Krieger, de Huntington. Foi doado à universidade pelos fãs do Marshall e está anexo ao Estádio Joan C. Edwards na fachada oeste. Foi revelado a milhares de pessoas 90 minutos antes do jogo com o RedHawks da Universidade de Miami.

Em 11 de dezembro de 2006, uma placa memorial foi dedicada no local da queda do avião. A cerimônia contou com os palestrantes convidados William "Red" Dawson e Jack Hardin. Os bombeiros Ceredo e Kenova foram homenageados no evento.


A placa memorial diz: "Em 14 de novembro de 1970, 75 pessoas morreram na pior tragédia aérea relacionada ao esporte na história dos Estados Unidos, quando um DC-9 da Southern Airways se chocou contra uma encosta próxima. As vítimas incluíam 36 jogadores de futebol da Marshall University, 9 treinadores e administradores, 25 fãs e tripulantes de 5 pessoas.
Ninguém sobreviveu a este desastre terrível".

Outra placa em homenagem ao time de futebol americano Marshall de 1970 foi inaugurada na East Carolina University no mesmo dia e pode ser vista na entrada do time visitante do Dowdy – Ficklen Stadium. Os oradores em destaque foram o chanceler Steve Ballard, o diretor atlético Terry Holland, o locutor do Pirates, Jeff Charles, e o presidente do Marshall, Stephen Kopp.

14 de novembro de 2013 marcou a primeira vez que Marshall jogou um jogo de estrada em um aniversário do desastre. Como um memorial às 75 vítimas, os jogadores do Marshall usaram o número 75 em seus capacetes. O tributo foi repetido pelo resto da temporada, incluindo quando Marshall conheceu Rice no jogo do Conference USA Football Championship de 2013. 

Marshall estava programado para comemorar o 50º aniversário do desastre aéreo na abertura da temporada de futebol em 29 de agosto de 2020. O adversário estava programado para ser a Carolina do Leste - o mesmo time que derrotou Marshall antes do desastre acontecer. Esse jogo não ocorreu devido à pandemia COVID-19.

Filmes



"Marshall University: Ashes to Glory", um documentário de Deborah Novak e John Witek, foi lançado em 18 de novembro de 2000, sobre a queda e a subsequente recuperação do programa de futebol Marshall nas décadas seguintes.


"We Are Marshall" ("Somos Marshall"), filme que dramatiza a queda do voo 932 e suas repercussões, estreou em 12 de dezembro de 2006, em Huntington. Estrelou Matthew McConaughey como Jack Lengyel e Matthew Fox como Red Dawson. O DVD do filme foi lançado em 18 de setembro de 2007.

Conclusão


O acidente foi a tragédia mais mortal que afetou qualquer time esportivo na história dos Estados Unidos. Foi o segundo acidente de avião de um time de futebol universitário em pouco mais de um mês, após o acidente de 2 de outubro que matou 14 jogadores do Wichita State e 17 outros.

Por Jorge Tadeu (com ASN, Wikipedia, baaa-acro e wvculture.org)

Aconteceu em 14 de novembro de 1946: Queda de DC-3 da KLM na aterrissagem no aeroporto de Amsterdã


Em 14 de novembro de 1946, o 
Douglas C-47A-90-DL (DC-3), prefixo PH-TBW, da KLM Royal Dutch Airlines (foto acima), realizava o voo entre o Aeroporto Croydon, em Londres, na Inglaterra, e o Aeroporto Schiphol, em Amsterdã, na HolandaA bordo da aeronave estavam 21 passageiros e cinco tripulantes.

O voo transcorreu dentro da normalidade até a aproximação para Amsterdã. A tripulação foi autorizada a pousar a aeronave no aeroporto de Schiphol com mau tempo. A primeira tentativa de pousar falhou e a tripulação teve que dar uma volta. A segunda abordagem à terra também falhou. 

Na terceira aproximação para pousar, a aeronave fez uma curva repentina para a esquerda, aparentemente tentando se alinhar com a pista. Durante esta curva, o Douglas DC-3 atingiu o solo e se espatifou. A aeronave pegou fogo com o impacto, matando todos os 21 passageiros e cinco tripulantes a bordo. As vítimas incluíam romancista holandês Herman de Man.


Na época em que aconteceu, o acidente foi o pior acidente de aviação da história da Holanda. Oito dias antes, outro KLM DC-3 operando na mesma rota na direção oposta, caiu ao se aproximar do aeroporto de Croydon em Londres em mau tempo. Não houve fatalidades no acidente de Londres, mas a aeronave foi cancelada.

Por Jorge Tadeu (com Wikipedia, ASN e baaa-acro)

Primeiro passo do Earth Return Orbiter para Marte

Entrega em 2025 confirmada para lançamento em 2026, viagem de retorno em 2030.


Airbus ultrapassou um marco importante para a missão Earth Return Orbiter (ERO), que trará as primeiras amostras de Marte de volta à Terra: passou na Revisão de Projeto Preliminar com a Agência Espacial Europeia (ESA) e com a participação da NASA.

Com especificações técnicas e projetos validados, fornecedores de oito países europeus estão a bordo para quase todos os componentes e subconjuntos. O desenvolvimento e o teste de equipamentos e subsistemas podem agora começar para garantir que a missão avance dentro do cronograma.

“Este PDR foi gerenciado e fechado em um tempo recorde de menos de um ano, uma conquista incrível considerando a complexidade da missão. Toda a equipe ERO, incluindo fornecedores e agências, realmente se uniu e temos a meta de atingir a entrega em 2025 - apenas cinco anos e meio após termos sido selecionados como contratante principal ”, disse Andreas Hammer, chefe de Exploração Espacial da Airbus.

O próximo marco será a Revisão Crítica do Projeto em dois anos, após a qual a produção e a montagem começarão, para garantir a entrega da espaçonave completa em 2025.

Após o lançamento em 2026, em um lançador Ariane 64, o satélite iniciará uma missão de cinco anos a Marte, atuando como um relé de comunicação com as missões de superfície (incluindo Perseverance e Sample Fetch Rovers), realizando um encontro com as amostras em órbita e trazendo-as com segurança de volta à Terra.

Dave Parker, Diretor de exploração humana e robótica da ESA, disse: “Em nome de todos os cidadãos europeus, estou orgulhoso de ver a ESA liderar a primeira missão de retorno de Marte. Como parte de nossa forte cooperação com a NASA, estamos trabalhando para devolver material puro de Marte - um tesouro científico que os cientistas do mundo estudarão para as gerações futuras e ajudarão a revelar a história do Planeta Vermelho ”.

A Airbus tem responsabilidade geral pela missão ERO, desenvolvendo a espaçonave em Toulouse e conduzindo a análise da missão em Stevenage. A Thales Alenia Space também terá um papel importante, montando a espaçonave, desenvolvendo o sistema de comunicação e fornecendo o Módulo de Inserção Orbit de sua planta em Torino. Outros fornecedores vêm da Alemanha, França, Reino Unido, Itália, Espanha, Noruega, Dinamarca e Holanda.

O desenvolvimento recorde e design para ERO só foi possível graças ao Airbus com base em tecnologias já maduras e comprovadas, em vez de desenvolver novas tecnologias com atrasos associados a riscos.

As tecnologias comprovadas da Airbus incluem décadas de experiência em propulsão de plasma (elétrica), adquirida por meio de manutenção de estações e em operações em órbita de satélites totalmente elétricos de telecomunicações, bem como sua experiência em grandes painéis solares (telecomunicações e missões de exploração, incluindo JUICE, o maior sistema solar painéis para uma missão interplanetária até ERO) e missões planetárias complexas como o BepiColombo, lançado em 2018.

A Airbus também alavancará sua liderança tecnológica de navegação baseada em visão (RemoveDEBRIS, Automatic Air to Air reabastecimento), e experiência de navegação autônoma (Rosalind Franklin e Sample Fetch Rovers) e experiência de encontro e acoplamento construída ao longo de décadas, usando tecnologias do ATV (Automated Veículo de transferência) e desenvolvimentos recentes do JUICE, a primeira missão da Europa a Júpiter.


A espaçonave de sete toneladas e sete metros de altura, equipada com painéis solares de 144m² com uma extensão de mais de 40m - a maior já construída - levará cerca de um ano para chegar a Marte. Ele usará um sistema de propulsão híbrido de massa eficiente combinando propulsão elétrica para as fases de cruzeiro e espiral descendente e propulsão química para inserção na órbita de Marte. Na chegada, ele fornecerá cobertura de comunicações para as missões Perseverance Rover e Sample Retrieval Lander (SRL) da NASA, duas partes essenciais da campanha Mars Sample Return.

Para a segunda parte de sua missão, ERO terá que detectar, encontrar e capturar um objeto do tamanho de uma bola de basquete chamado Orbiting Sample (OS), que abriga os tubos de amostra coletados pelo Sample Fetch Rover (SFR, também a ser projetado e construído pela Airbus); tudo isso a mais de 50 milhões de km do controle de solo.

Uma vez capturado, o SO será bio-selado em um sistema de contenção secundário e colocado dentro do Veículo de Entrada na Terra (EEV), efetivamente um terceiro sistema de contenção, para garantir que as preciosas amostras cheguem à superfície da Terra intactas para o máximo retorno científico.

Em seguida, levará mais um ano para que o ERO retorne à Terra, de onde enviará o EEV em uma trajetória precisa em direção a um local de pouso predefinido, antes de entrar em uma órbita estável ao redor do sol.

Via Airbus

Morador de Maringá (PR) tem avião raro projetado no período entreguerras


Avião Waco sobrevoa o céu de Maringá e região (Foto: Arquivo pessoal)
Uma aeronave Waco, modelo projetado no período entreguerras, nos Estados Unidos, tem sobrevoado o céu de Maringá e região. O proprietário e piloto do avião é o administrador de empresas Jeferson Platzeck Estrella, de 51 anos, morador de Maringá. A aeronave, que é um biplano azul, é uma verdadeira raridade e parece ter saído de um filme.

A fábrica Waco surgiu no início da década de 1920 e, até a Segunda Guerra Mundial, foi a aeronave mais popular dos Estados Unidos. Na época, o avião era usado como “treinador” pela força aérea norte-americana. Mas no fim da década de 1940, com o surgimento de aeronaves de performance superior, os biplanos se tornaram obsoletos e a empresa fechou as portas. Até que, em 1983, um grupo de empresários de Michigan comprou a Waco e voltou a fabricar as aeronaves. Desde então, o avião tem sido produzido de forma artesanal com base nas técnicas originais das décadas de 1920 e 1930.

Desta nova versão, fabricada a partir de 1983, a aeronave de Jeferson Platzeck Estrella é a única no Brasil, segundo ele. “Hoje, a fila de espera para comprar um Waco é de até dois anos e meio. Ele é feito de maneira artesanal em Michigan, nos Estados Unidos. Lá, ele é muito vendido. No Brasil, do modelo novo, dessa atualização de 1983 para cá, o meu é o único. Que tenho conhecimento, existem outros dois que são da década de 1940, e que foram restaurados”, detalhou em entrevista ao GMC Online.

Mantendo as características originais do projeto, os novos donos da fábrica Waco implantaram cerca de 300 itens no nova versão da aeronave para melhorar as características de voo e segurança. O motor é o mesmo, mas passou de 245 cavalos para 275. Onde era madeira, por exemplo, agora é fibra de carbono. E onde era luz comum, agora é LED.

Waco que pertence a Jeferson Platzeck Estrella, morador de Maringá (Foto: Arquivo pessoal)
Estrella pilota aviões há mais de 20 anos e já teve algumas aeronaves, entre elas um Cherokee 140 da Piper; um Beech Bonanza V35; um Baron E55; e um Baron 58, que tem até hoje e é usado para trabalho e viagens. Mas ter um Waco era um sonho de infância. “Quando eu tinha cinco anos de idade, nós tínhamos carrinhos, barcos e aviões de ferro. E então eu ganhei um avião biplano azul de brinquedo. Quando era hora de parar de brincar, eu guardava todos os outros brinquedos em caixas de sapato, menos esse avião. Ele eu levava para a cama para dormir comigo. […] Ter um biplano azul era um sonho de criança”, conta.

Em 2019, Estrella foi para os Estados Unidos conhecer o Waco pessoalmente, em uma feira de aviação. E, no ano passado, conseguiu realizar o sonho antigo. Ele comprou o biplano de um morador de Rio Claro (SP). “Eu sabia que uma pessoa, de Rio Claro, já tinha importado um Waco, e soube que ele estava querendo vender porque se mudaria para a Itália. Eu queria um azul e, por coincidência, o que ele tinha era azul. […] Comprei em setembro e, por ser um avião diferente e ter algumas particularidades, precisei aprender a voar com ele”, disse.

Em 2019, Jeferson Platzeck Estrella foi para uma feira de aviação nos Estados Unidos
 para ver o Waco pessoalmente (Foto: Arquivo pessoal)
O avião dele fica na Pousada das Águias, aeroporto privado localizado no município de Presidente Castelo Branco, e é usado apenas para lazer. “Podemos comparar o Waco com um carro esporte, ele é para hobby, para diversão. Basicamente, voo com ele em Maringá e lugares próximos, para ir a encontros de aviação. […] Se um dia eu tiver que vender um dos dois aviões, vendo o outro. Esse, se eu puder, vou deixar de herança para os meus filhos”, finaliza Estrella.

Waco pertence a morador de Maringá (Foto: Arquivo pessoal)

Aviões no Paraná


Existem 679 aviões particulares em atividade no Paraná, segundo informações da Agência Nacional de Aviação Civil (Anac). Houve um aumento de 3,9% em relação ao ano passado, quando o Estado somava 653 aeronaves privadas aptas a operar. O número inclui aviões de pessoas físicas e jurídicas, como empresas de fertilizantes, loteadoras, construtoras, transportadoras, bancos e outras.

Por Lethícia Conegero (GMC Online)

Empresa lança cabine de avião com varanda com vista panorâmica

Conceito de avião de passageiros prevê varanda panorâmica (Imagem: Reprodução/Lufthansa)
A Lufthansa Technik AG vai apresentar um conceito de cabine vip de aeronave com uma varanda panorâmica espaçosa no próximo Dubai Airshow, que acontece entre 14 e 18 de novembro, segundo o AeroTime. Nesta edição, expositores de mais de 20 países exibem aeronaves.

Wieland Timm, chefe de vendas VIP e Serviços de Aeronaves de Missão Especial da Lufthansa Technik, disse que o conceito é baseado nos superiates que permitem que seus proprietários ricos viajem para onde quiserem com estilo luxuoso. "Não é apenas um hotel boutique, mas uma base para uma maior exploração."

A Lufthansa Technik, que faz parte do Grupo Lufthansa, é conhecida principalmente por seus trabalhos de manutenção, reparo e revisão. A divisão VIP e Missão Especial, com sede em Hamburgo, instala cabines de luxo a bordo de aviões "Pegamos todos os truques que estão disponíveis para nós e os colocamos em um único conceito", explica Timm.

A proposta da empresa é baseada em um Airbus A330, garantindo bastante espaço para 12 passageiros vips a bordo. Eles utilizam uma porta de carga que, ao ser aberta para baixo, vira uma varanda espaçosa. "É uma grande varanda para uma aeronave. Você pode sentar lá fora com uma bebida e apreciar a vista", diz Timm.


Timm explica que o segundo grande atrativo deste conceito de cabine vip é a área de lazer, que pode ser utilizada como sala de jantar, estúdio de ioga ou pista de dança. "Se você ficar em um avião por duas semanas, voando ao redor do mundo, provavelmente também vai querer uma festa em algum momento."

Um sistema de projetores embutidos também permite projetar imagens no teto e nas laterais da fuselagem e criar cenários impressionantes. Segundo Timm, podem ser projetadas nuvens dando a impressão de estar em uma aeronave com teto de vidro ou peixes e criaturas marinhas podem ser mostrados nadando no alto, criando a sensação de estar debaixo d'água. "Existem milhares de padrões diferentes para escolher", afirma Timm.

Pode parecer um momento estranho para lançar esse conceito, mas Timm diz que o mercado de instalação de cabines VIP em jatos particulares é, na verdade, muito estável. A divisão Vip prepara jatos para milionários e governos.

"Estamos esgotados, não há falta de dinheiro no mercado", declara Timm. "Estamos negociando contratos com datas de entrega até 2025."

Via F5

Latam reconstrói sua rede brasileira


A LATAM Airlines está recuperando sua malha brasileira e atualmente opera 90% da oferta doméstica (medida pelo número de assentos) disponível há alguns anos. Além disso, a empresa está tentando se recuperar e recuperar parte da participação de mercado que perdeu devido à pandemia de COVID-19.

Segundo comunicado da LATAM, opera atualmente 541 voos domésticos em todo o Brasil. A rota mais importante da LATAM Brasil continua a ser São Paulo-Rio de Janeiro, embora seja exatamente a metade do que era há alguns anos, de acordo com o banco de dados do Cirium.

Além disso, a LATAM já opera em mais de 44 aeroportos que atendia antes da pandemia. De acordo com a companhia aérea, voa regularmente para 47 destinos, incluindo os voos recém-lançados para destinos como Juazeiro do Norte e Petrolina.

Em novembro de 2021, a LATAM está reabrindo 15 rotas domésticas. São eles: Belém-Macapá, Porto Seguro-Brasília, Brasília-Foz do Iguaçu, Brasília-Navegantes, Brasília-Palmas, Brasília-Uberlândia, Belo Horizonte / Confins-Fortaleza, Curitiba-Rio de Janeiro / Santos Dumont, Fortaleza-Maceió, Fortaleza-Natal, Fortaleza-Recife, Fortaleza-São Luís, Fortaleza-Salvador, Manaus-Porto Velho e São Luís-Teresina.

A Latam e a Copa Airlines são as principais operadoras internacionais do Brasil no momento
(Foto: Daniel Martínez Garbuno)
A Latam Brasil também está retomando sua conectividade internacional. Devido às muitas restrições de viagens impostas por outros países aos viajantes vindos do Brasil, o país teve uma redução de 86% no número de passageiros internacionais em 2021, de acordo com dados fornecidos pelas autoridades da aviação civil brasileira.

Mesmo assim, o país está voltando ao normal. A LATAM está operando 32% da capacidade internacional que tinha em novembro de 2019. A operadora voltou a abrir voos para 16 destinos.

Em novembro, a LATAM Brasil retomou os voos de São Paulo Guarulhos para Barcelona e do Rio de Janeiro Galeão para Santiago. Anteriormente, a LATAM havia lançado de volta seus voos de São Paulo para Buenos Aires (ambos os aeroportos), Assunção, Bogotá, Paris, Frankfurt, Nova York, Lima, Lisboa, Madrid, Mendoza, Cidade do México, Miami, Montevidéu e Santiago.

A Azul é a principal operadora doméstica do Brasil (Foto: Getty Images)

Como está a recuperação do Brasil até agora?


Internacionalmente, o Brasil teve 2,5 milhões de passageiros internacionais, até setembro de 2021, segundo os últimos dados do país.

A Copa Airlines é, até o momento, a principal operadora internacional do Brasil, com 13,09 de market share. Depois da Copa, a Latam ocupa o segundo lugar com 12,42% de participação e a TAP Portugal com 10,23%. A Azul acaba de transportar 109.991 passageiros internacionais no ano, com uma participação de 4,38%. A GOL Linhas Aéreas acaba de retomar alguns de seus voos internacionais em novembro.

Internamente, a Azul continua sendo o principal player do mercado brasileiro de aviação. A transportadora teve 15,8 milhões de passageiros, detendo 38,32% do mercado. Há alguns anos, a companhia aérea tinha 18,7 milhões de passageiros em setembro, mas detinha apenas 26,8% do mercado, atrás da GOL e da LATAM.

A Latam aparece em segundo lugar, com 12,6 milhões de passageiros transportados até setembro, com uma participação de 30,51%. A GOL fica atrás, com 12,4 milhões de viajantes e 30,11% de participação.

Avião da Azul apresenta mesmo defeito pela segunda vez em quatro dias e voo de Vilhena para Cuiabá é cancelado


Na noite de sexta-feira (12), quatro dias após um avião da companhia aérea Azul apresentar defeito e atrasar a decolagem, o problema se repetiu: um voo da empresa, que iria de Vilhena para Cuiabá (MT) com 80 passageiros a bordo precisou ser cancelado.

Conforme apurou o Folha do Sul On Line, quando estava fazendo o “check” para subir a comandante da aeronave notou o problema no sistema de freios e voltou para o pátio do aeroporto. Os passageiros desembarcaram e ficaram aguardando o mecânico consertar o defeito.
 
Só que, ao contrário da ocorrência anterior, quando o profissional levou três horas mas fez o avião voar, ontem o problema era mais complicado e, por segurança, o voo foi cancelado.
 
Uma parte dos passageiros, que havia vindo de outras cidades, como Cacoal e Cerejeiras, para embarcar, aceitaram seguir de ônibus até Cuiabá. O restante era morador de Vilhena mesmo, e decidiu ir para casa.
 
No voo de hoje, que chegará normalmente, o avião da Azul já deve vir da capital mato-grossense trazendo a peça de reposição. Assim, haverá duas decolagens de Vilhena para Cuiabá neste sábado, 13: a que já estava programada e a de ontem, que sairá após o reparo na aeronave.

Via Folha do Sul On Line

Por que os modelos da Boeing iniciam com o número 7?

Foto: Boeing/Divulgação

Parece que o nome Boeing é inseparável do número 7 e raramente alguém pergunta o por quê. É uma daquelas questões em que você pode deixar de lado e dizer a si mesmo “é assim que as coisas são”.

Mas a realidade é muito mais complexa do que isso. Ao longo dos tempos, a questão permaneceu atrás de várias paredes secretas que protegiam o segredo por trás da fórmula de nomenclatura da Boeing.

No entanto, com o passar do tempo, o mundo se tornou mais aberto. Várias organizações revelaram cada vez mais informações sobre sua história.

O mundo inteiro finalmente soube por que cada aeronave comercial da Boeing começa com 7 e termina com 7.

Do Modelo 40 ao 307

Exceto pela introdução épica do artigo, a realidade é muito mais simples e menos, muito menos emocionante. Isso remonta à história da Boeing, já que a empresa sempre nomeava suas aeronaves sequencialmente.

Antes da Segunda Guerra Mundial, aeronaves como o Model 40, a primeira aeronave da Boeing a transportar passageiros, o Model 80, primeiro avião americano construído para transportar passageiros, representava a Boeing no céu comercial. Na época, o fabricante com sede em Seattle construía principalmente aeronaves militares - esse era o sustento da empresa.

Boeing modelo 40 - Foto: Reprodução

Naquela época, a Douglas tinha um controle firme do mercado de aviação comercial com seus DC-2 e DC-3. No entanto, lenta mas seguramente, a Boeing começou a ganhar força no mercado comercial.

Primeiro com o 307 Stratoliner e, depois, após o fim da guerra, a Boeing lançou o 377 Stratocruiser. O ano era 1947 quando o Stratocruiser fez seu voo de estreia com a agora falida Pan American.

O Boeing 377 Stratocruiser teve seus primeiros pedidos feitos em 1945 - Foto: Boeing

No entanto, as aeronaves comerciais da Boeing tiveram um sucesso bastante limitado. Naquela época, a Boeing focava principalmente em aeronaves militares.

O Boeing B-47B em decolagem com assistência de foguetes, em 1954 - Foto: Domínio público

No entanto, as mudanças estavam por vir.

Do 367-80 ao Boeing 707

Quando a guerra terminou, o presidente da Boeing, William Allen, decidiu que a empresa precisava diversificar seu portfólio. Para evitar confusão dentro da empresa e ao se comunicar com os clientes da Boeing, o departamento de engenharia classificou seus produtos da seguinte forma:

  • 300 e 400 foram designados para aeronaves comerciais;
  • 500 significariam motores turbo;
  • 600 foram alocados para os departamentos de foguetes e mísseis;
  • E a Boeing atribuiu o número 700 aos motores a jato.

É por isso que a Boeing chamou o Stratoliner e o Stratocruiser de Boeing 307 e Boeing 377, respectivamente.

Boeing 377 Stratocruiser da BOAC - Foto: Reprodução

A primeira aeronave a carregar o número 7 na largada foi o 367-80. Embora pareça confuso a princípio, o protótipo do primeiro da Boeing foi chamado de 367-80. Após um período bem-sucedido de voos de teste, a Boeing atribuiu o número 700 ao modelo, por possuir um motor a jato.

O Boeing 367-80, ou Dash 80 como ficou conhecido na Boeing - Foto via canalpiloto.com.br

No entanto, é aqui que a mágica da fórmula de nomenclatura se torna realidade. Como o primeiro jato comercial estava prestes a mudar e revolucionar, a equipe de marketing da Boeing achou que o nome 700 soava muito chato. 

Em vez disso, eles sugeriram alterar o nome para 707, pois soava muito melhor. Embora possa não ser tão mágico ou emocionante, o motivo foi puro marketing. 

Boeing 707-138B da Qantas, que pertencia a John Travolta e foi doado à Historical Aircraft Restoration Society (HARS) em 2017 - Foto via travelupdate.com

Então, para resumir, por que os modelos da Boeing começam com 7? A divisão de engenharia dedicou o número 700 a aeronaves com motor a jato. A divisão de marketing da Boeing percebeu que o nome 700 para seu primeiro avião a jato soaria chato, então eles sugeriram que o nome fosse 707, que soava bem.

E às vezes uma história precisa exatamente de uma coisa - que soasse bem.

Por Jorge Tadeu com aerotime.aero

Por que todas as aeronaves Airbus começam com 3?

Imagem: RickDeacon / Shutterstock.com

Há 51 anos começou a história de uma multinacional europeia, quando França e Alemanha Ocidental assinaram um documento afirmando seu compromisso com o programa Airbus A300. A empresa assumiu oficialmente no dia 29 de maio de 1969.

Junto com a empresa, também decolou a tradição de nomear aeronaves Airbus de certa forma. Isso levanta a questão - por que todas as aeronaves Airbus começam com o número 3?

A partir do Airbus A300

Todos nós sabemos como a Boeing começou a nomear suas aeronaves com o número 7, uma combinação que permanece relevante até hoje. Toda vez que você ouvir uma aeronave começando com 7 e terminando com 7, saberá que é um Boeing. No entanto, quando a Airbus anunciou seu primeiro avião de passageiros, foi recebido com bastante ceticismo. 

Airbus A300 da Lufthansa

O A300 era único na época - nenhuma outra aeronave de corpo largo tinha dois motores. Durante os anos 70, existiam três aeronaves de corpo largo, nomeadamente o Boeing 747, o DC-10 e o Lockheed L-1011 TriStar. O 747 tinha quatro motores, enquanto o DC-10 e o L-1011 tinham três motores.

A Airbus tinha uma razão simples para chamar seu primeiro jato de A300 - transportava 300 passageiros. O A significa Airbus!

De qualquer forma, o fabricante apresentou o Airbus A300B1 com as seguintes especificações:

  • 300 passageiros;
  • 2 motores turbofan General Electric (GE) CF6-50A de alto bypass;
  • Peso máximo de decolagem de 132.000 quilogramas (291.010 lbs).

No entanto, a Airbus construiu apenas 2 fuselagens A300B1. Isso porque a empresa estudou ainda mais o mercado de aviação da época e percebeu que nenhuma companhia aérea encomendaria um jato de passageiros com 300 aeronaves, portanto, reduziu o número máximo de passageiros para 250. 

Mas o nome A300 pegou, para não confundir os clientes em potencial. Conforme o tempo passava e o recém-inaugurado fabricante de aeronaves introduzia novos modelos, ou seja, o menor A310, ele queria manter a coesão de nomenclatura e apelidou-o de A310.

Ignorando o A360 e o A370

A mesma coesão seguiu na família de aeronaves da Airbus.

Foto: Pedro Aragão

Depois que a empresa revelou o A310 e a agora falida Swissair o apresentou ao mundo em 1983, a Airbus posteriormente nomeou a próxima aeronave A320, A330, A340 e A350. Mas ele pulou o Airbus A360 e o A370 e foi direto para o  nome Airbus A380. 

Por que a Airbus não tem um modelo A360 e A370?

Pode ser por causa do tamanho do A380. Por ser muito maior que o A350, a Airbus ainda tem a opção de construir aeronaves entre o A350 e o A380 no que diz respeito ao tamanho e capacidade de passageiros. Não é segredo que, eventualmente, a empresa terá que apresentar novas aeronaves para substituir seus A320 ou A330s, mesmo que sejam relativamente novos por causa da atualização neo (nova opção de motor).

Enquanto a Boeing está ficando sem nomes de formato 7x7, eles têm apenas o 797 restante. Mas jornalistas de aviação já relataram que o nome do 797 irá para a mais nova aeronave da Boeing, atualmente oficialmente chamada de NMA. Como resultado, a Boeing não terá mais nomes 7x7 restantes. A Airbus ainda tem essa flexibilidade, porque o A360, A370 e o A390 ainda são gratuitos.

Além disso, o fabricante com sede em Toulouse aventurou-se no formato do nome A2XX com a antiga aeronave Bombardier CSeries. Embora não haja nenhuma razão oficial para que o A220 comece com 2, as pessoas especularam isso porque o jato é menor do que qualquer aeronave Airbus. Mais uma teoria é porque o fabricante de aviões não projetou e fabricou originalmente o CSeries, então ele não foi nomeado usando o formato 3XX.

Em 2018, o Bombardier CS300 foi rebatizado como A220-300 - Foto: Airbus

Portanto, da próxima vez que alguém perguntar por que as aeronaves Airbus começam com 3, a resposta é simples - é porque sua primeira aeronave, o A300, poderia acomodar 300 passageiros. Para manter a força da marca, todas as aeronaves após o A300 também usaram o formato A3XX.

Por Jorge Tadeu com aerotime.aero