domingo, 9 de janeiro de 2022

Hoje na História: 9 de janeiro de 1914 - A primeira mulher salta de paraquedas de um avião em voo

Georgia Ann (“Tiny”) Broadwick e Glenn L. Martin (Instituto Smithsonian)
Em 9 de janeiro de 1914, Georgia Ann (“Tiny”) Broadwick foi a primeira mulher a saltar de paraquedas de um avião em voo. Ela caiu de um avião pilotado por Glenn L. Martin a 2.000 pés (607 metros) sobre Griffith Park, Los Angeles, Califórnia.


Uma repórter do Los Angeles Times , Bonnie Glessner, também estava a bordo. Ela escreveu:

"Quando ela estava pronta para cair, Martin tocou meu ombro. Eu me virei e olhei para o rosto de uma criança. Ela estava escalando a lateral da máquina. Uma vez lá, ela se agarrou tenazmente, os olhos fixos em Martin, que estava olhando para a lateral do avião. O sinal veio enquanto ele observava abaixo. Apenas o leve movimento de sua mão, mas a garota entendeu, e seus lábios formaram um 'adeus'. Sorrindo para mim, Tiny saiu para o espaço, nem mesmo um tremor da máquina mostrando que ela havia sumido."

Tiny Broadwick usando um paraquedas tipo mochila (NASM)
Nos anos seguintes, ela demonstrou o uso de paraquedas para os militares e é considerada a primeira descida intencional em queda livre. Quando ela parou de pular em 1922, a Srta. Broadwick havia feito mais de 1.100 saltos de paraquedas.

A companhia aérea mais segura do mundo para 2022 é revelada

A companhia aérea mais segura do mundo: a Air New Zealand ocupa o primeiro lugar na
lista anual das companhias aéreas mais seguras do mundo da AirlineRatings.com
O ano passado provou ser mais um ano incrivelmente difícil para as companhias aéreas, pois a queda nas viagens aéreas continuou ao longo de 2021 devido ao impacto da pandemia em andamento.

Mesmo agora, dois anos depois que Covid-19 foi trazido pela primeira vez à atenção do mundo, ainda há muito menos voos e passageiros voando para o céu

O vírus também continuou a dominar as conversas sobre segurança aérea, levando a algumas mudanças significativas na lista anual das companhias aéreas mais seguras do mundo de AirlineRatings.com , um site de avaliação de produtos e segurança de companhias aéreas.

Este ano, a Air New Zealand saiu no topo da tabela anual de segurança, que monitora 385 companhias aéreas de todo o mundo, medindo fatores como acidentes de companhias aéreas e registros de incidentes graves, a idade de suas aeronaves, bem como a Covid-19 protocolos e inovação operacional.

Melhor classificação

A companhia aérea de bandeira da Nova Zelândia foi premiada com o primeiro lugar "devido ao seu excelente histórico de incidentes, número de inovações na cabine, treinamento de pilotos e idade de frota muito baixa", de acordo com Geoffrey Thomas, editor-chefe do site australiano.

A Etihad Airways ficou em segundo lugar, enquanto a Qatar Airways ficou em terceiro, com a Singapore Airlines e a TAP Portugal alcançando o quarto e quinto lugar, respectivamente.

A Qantas perdeu o primeiro lugar na lista das companhias aéreas mais seguras do mundo
Visivelmente ausente entre as cinco primeiras está a Qantas, que deteve o título de companhia aérea mais segura do mundo de 2014 a 2017, bem como de 2019 a 2021 (nenhum vencedor claro foi encontrado em 2018).

O porta-aviões da Austrália ocupa o sétimo lugar desta vez devido a um "ligeiro aumento nos incidentes juntamente com a idade da frota."

Em outubro de 2021, um Boeing da Qantas viajando da cidade australiana de Perth para Adelaide, no oeste da Austrália, foi desviado devido a um desequilíbrio de combustível , em uma ocorrência classificada como um "incidente grave".

"Os últimos dois anos foram extremamente difíceis para as companhias aéreas, com a Covid-19 reduzindo as viagens e os editores da Airline Ratings têm se concentrado principalmente nos esforços que as companhias aéreas estão empreendendo para treinar os pilotos antes de um retorno ao serviço", explica Thomas.

"A Air New Zealand é líder neste campo, com reciclagem abrangente."

Avanços de segurança

A companhia aérea também recebeu elogios por ser líder mundial em avanços de segurança operacional nas últimas quatro décadas.

Suas várias iniciativas incluem recentemente se tornar uma das primeiras companhias aéreas do mundo a testar o uso da tecnologia Assaia Apron AI para melhorar o tempo de giro de suas aeronaves.

"A Air New Zealand tem se destacado em todo o amplo espectro de segurança, nunca perdendo de vista os menores detalhes enquanto cuida de suas tripulações de vôo que trabalharam sob estresse significativo", disse Thomas à CNN Travel.

Em algumas ocasiões, AirlineRatings escolheu simplesmente nomear o vencedor, antes de listar o restante das principais companhias aéreas em ordem alfabética.

Mas o site recentemente optou por classificar cada uma das 20 principais companhias aéreas em ordem numérica, revelando algum movimento significativo de ano para ano.

A operadora dos Emirados Árabes Unidos ficou em 20º lugar na lista, que monitora
385 operadoras de todo o mundo
Por exemplo, a Emirates estava em quinto lugar na lista de 2021 , mas a companhia aérea dos Emirados Árabes Unidos foi listada em 20º lugar este ano, enquanto a Southwest Airlines ficou em 13º lugar em 2021, mas não está incluída no novo top 20 de 2022.

AirlineRatings.com também produziu uma lista das companhias aéreas de baixo custo mais seguras do mundo, que são listadas em ordem alfabética e igualmente classificadas, mais uma vez.

As 10 principais companhias aéreas de baixo custo mais seguras são: Allegiant Air, easyJet, Frontier Airlines, Jetstar Group, Jetblue, Ryanair, Vietjet Air, Volaris, Westjet e Wizz Air.

As companhias aéreas mais seguras de AirlineRatings.com em 2022:

1. Air New Zealand

2. Etihad Airways

3. Qatar Airways

4. Singapore Airlines

5. TAP Air Portugal

6. SAS

7. Qantas

8. Alaska Airlines

9. EVA Air

10. Virgin Australia / Virgin Atlantic

11. Cathay Pacific Airways

12. Hawaiian Airlines

13. American Airlines

14. Lufthansa

15. Finnair

16. KLM

17. British Airways

18. Delta Air Lines

19. United Airlines

20. Emirates

Por Tamara Hardingham-Gill (CNN)

Conheça o Projeto 14-X, de tecnologia hipersônica, desenvolvido pela FAB

Projeto PropHiper da Força Aérea Brasileira pode garantir ao Brasil o domínio da tecnologia de motores scramjet para impulsionar veículos hipersônicos.

Concepção artística do veiculo hipersônico brasileiro-meta e atingir 12.000 km/h
Por definição, veículos supersônicos são aqueles capazes de alcançar qualquer velocidade acima de Mach 1 (1.235 km/h) até Mach 5 (6.175 km/h).

Além dessa faixa entramos na zona hipersônica, um território que está sendo explorado por pesquisadores brasileiros do Departamento de Ciência e Tecnologia Aeroespacial (DCTA) da Força Aérea Brasileira (FAB).

No último dia 14 de dezembro, o Centro de Lançamento de Alcântara (CLA), no estado Maranhão, sediou o lançamento do primeiro veículo com motor hipersônico aspirado (scramjet na sigla em inglês) construído no Brasil, o demonstrador 14-X S.

O teste foi uma etapa do projeto Propulsão Hipersônica 14-X, batizado assim em homenagem ao 14-Bis de Alberto Santos Dumont que voou em 1906.

Porém, enquanto o avião de Santos Dumont contava com um motor de meros 50 hp de potência que permitiu um voo a cerca de 30 km/h, o propulsor scramjet do 14-X S gera em torno de 5.000 hp e alcançou uma velocidade próxima a Mach 6 (seis vezes a velocidade do som) logo no primeiro teste de voo do projeto, iniciado pela FAB em 2008.

Demonstrador 14-X S - modelo testou a combustao supersônica do motor scramjet
A velocidade de Mach 6 alcançada pelo 14-X S, no entanto, é apenas uma fração do potencial dos motores scramjet.

De acordo com FAB, o sistema em desenvolvimento no Brasil será capaz de voar a Mach 10 (cerca de 12.000 km/h). Como comparação, o Concorde, o último avião comercial supersônico, voava a cerca de Mach 2.04 (2.179 km/h).

“Nesse primeiro ensaio em voo, o objetivo foi o estabelecimento das condições de partida do motor scramjet, isto é, a validação em ambiente relevante das condições em que se observa a ocorrência do processo de queima de combustível pelo motor scramjet, conhecido como combustão supersônica”, informou a FAB em contato com o CNN Brasil Business.

O projeto prevê pelo menos mais três ensaios de voo nos próximos anos para demonstrar o funcionamento e rendimento do motor scramjet brasileiro. Na última etapa, chamada 14-XWP, a FAB espera ter um veículo hipersônico autônomo totalmente funcional, com capacidades de controle e manobra.

Motor relativamente simples

Diferentemente de motores a jato, o scramjet não possui partes móveis, como compressores e turbinas que comprimem o ar nas câmaras de combustão. Esse tipo de propulsor também dispensa sistemas de ignição.

Em vez disso, a queima da mistura de combustível e ar ocorre pelo calor na câmara de combustão, que esquenta por força do atrito gerado pela passagem do ar em alta velocidade. De certa forma, o motor hipersônico tem uma concepção relativamente simples. O difícil é fazer ele funcionar.

Comparativo entre um motor a jato convencional e o scramjet, que nao possui partes moveis
O motor hipersônico só “liga” em velocidades altíssimas, pois somente desta forma ele consegue aspirar a quantidade massiva de ar necessário para realizar a combustão supersônica.

Por isso, é comum que veículos hipersônicos tenham dois estágios de propulsão, sendo o primeiro normalmente um foguete convencional que acelera o conjunto até o ponto ideal de acionamento do scramjet, onde ocorre a separação.

O protótipo 14-X S testado no CLA, por exemplo, foi acoplado a um Veículo Acelerador Hipersônico, baseado no foguete de sondagem VSB-30, construído no Brasil pelo Instituto de Aeronáutica e Espaço.

O conjunto voou até a faixa dos 30 km de altitude, onde ocorreu a separação e em seguida a ignição do scramjet, que continuou acelerando até esgotar o combustível (no caso hidrogênio) e alcançar uma velocidade próxima de Mach 6, a cerca de 50 km de altitude.

Segundo a FAB, o demonstrador atingiu o apogeu de 160 km (acima da linha de Kármán, a “fronteira” entre a Terra e o espaço), percorrendo um total de 200 km de distância, e caiu numa área segura no Oceano Atlântico.

“O scramjet apresenta vantagens como ganho de espaço de carga útil, redução do peso total de decolagem e da quantidade de combustível necessário para a operação da aeronave de aplicação civil ou militar em velocidade hipersônica”, relatou a FAB à reportagem.

Aplicações para o scramjet

Motores scramjets são propostos para um dia impulsionarem os “aviões espaciais”, espaçonaves que serão capazes de decolar da Terra, viajar até o espaço e retornar, algo que os Ônibus Espaciais da Nasa faziam no passado, mas com custos muito menores. A motorização também é sugerida para aviões comerciais hipersônicos, previstos para o fim do século 21.

Por ora, a tecnologia scramjet está começando a surgir em mísseis de cruzeiro hipersônicos, um tipo de armamento que deve reformular completamente as doutrinas de defesa e ataque nos próximos anos.

Motores hipersônicos também já foram testados em drones, que no futuro podem servir como aeronaves de espionagem ou mesmo de combate.

Os países mais avançados em pesquisas na área hipersônica são a China, Estados Unidos e Rússia, com projetos de mísseis e aeronaves não tripuladas com motores scramjet.

A tecnologia também está em desenvolvimento para aplicações militares na Austrália, França e Japão. O Brasil é o membro mais recente deste seleto grupo de nações que estudam o voo hipersônico.

Questionada sobre quais utilizações o veículo hipersônico brasileiro pode ter, a FAB respondeu que o “objetivo do projeto é essencialmente garantir o domínio da tecnologia” do motor scramjet.

Seja qual for a escolha de sua aplicação, o resultado final do projeto 14-X será a máquina mais rápida projetada e construída no Brasil.

Por Thiago Vinholes (CNN Brasil Business)

sábado, 8 de janeiro de 2022

Avião cai em área de mata no Norte de Mato Grosso e piloto morre


O acidente envolvendo a aeronave de pulverização agrícola Embraer EMB-202A Ipanema, prefixo PT-UXZ, ocorreu na tarde deste sábado (8) numa área de mata de uma propriedade, localizada a cerca de cinco quilômetros do assentamento Piratininga, em Nova Ubiratã (173 quilômetros de Sinop).

O Corpo de Bombeiros confirmou que o piloto morreu ainda no local e ficou preso às ferragens. Ele foi identificado como Selbi Matiello, de 40 anos. Uma equipe deverá ajudar na retirada do corpo.


Devido ao impacto com algumas árvores, o avião se despedaçou e ficou completamente destruído.

O local será analisado pelo Sexto Serviço Regional de Investigação e Prevenção de Acidentes Aeronáuticos (SERIPA VI) para apontar as possíveis circunstância e fatores que contribuíram para queda.

Vídeo: Reportagem Especial - Abate do voo 752 da Ukraine International Airlines - Uma Tragédia Canadense

Via CBC News

Ative a legenda em português nas configurações deste vídeo.

Aconteceu em 8 de janeiro de 2020: Voo 752 da Ukraine International Airlines - Sistema de defesa aérea iraniano abate avião ucraniano


O voo 752 da Ukraine International Airlines (PS752) era um voo internacional regular de Teerã, no Irã, para Kiev, na Ucrânia, operado pela Ukraine International Airlines (UIA). Em 8 de janeiro de 2020, o Boeing 737-800 que operava a rota foi abatido logo após a decolagem do Aeroporto Internacional Teerã Imam Khomeini pela Iranian Islamic Revolutionary Guards Corp (IRGC). Todos os 176 passageiros e tripulantes morreram.

O ataque ocorreu durante a crise do Golfo Pérsico de 2019-2020, cinco dias depois que o presidente dos EUA Donald Trump lançou um ataque com drones que matou o major-general Qasem Soleimani do IRGC em retaliação ao ataque de 2019-2020 à embaixada dos Estados Unidos em Bagdá pelo Kata'ib Hezbollah, e quatro horas depois que o Irã lançou mísseis contra bases americanas no Iraque.

Aeronave 



A aeronave era o Boeing 737-8KV, prefixo UR-PSR, da Ukraine International Airlines (foto acima), número de série 38124. O avião tinha três anos e meio quando foi abatido, tendo voado pela primeira vez em 21 de junho de 2016. Ele foi entregue à companhia aérea em 19 de julho de 2016 e foi a primeira aeronave 737 Next Generation comprada pela Ukraine International Airlines. A companhia aérea defendeu o registro de manutenção do avião, dizendo que ele havia sido inspecionado apenas dois dias antes do acidente.

Voo e explosão 


O voo era operado por Ukraine International Airlines, a maior companhia aérea da Ucrânia, em um voo programado da capital iraniana Teerã para o Aeroporto Internacional de Boryspil, na capital ucraniana Kiev. 


Além de seis comissários de bordo, a tripulação consistia no Capitão Volodymyr Gaponenko (11.600 horas na aeronave Boeing 737, incluindo 5.500 horas como capitão), o piloto instrutor Oleksiy Naumkin (12.000 horas no Boeing 737, incluindo 6.600 como capitão) e o primeiro oficial Serhiy Khomenko (7.600 horas no Boeing 737).

A aeronave transportava 176 pessoas, incluindo nove tripulantes e 167 passageiros, sendo quinze deles crianças.

De acordo com as autoridades iranianas, 146 passageiros usaram passaportes iranianos para deixar o Irã, dez usaram passaportes afegãos, cinco usaram canadenses, quatro suecos e dois usaram passaportes ucranianos. Há alguma discordância de outras fontes com esta contabilidade de nacionalidades, possivelmente devido a alguns passageiros serem nacionais de mais de um único país.


O voo 752 decolou da pista 29R uma hora atrás do planejado, às 06h12:08 horário local (UTC +3h30), e deveria pousar em Kiev às 08h00 horário local (UTC +2h00). Entre 06h14:17 e 06h14:45 o avião desviou do rumo de decolagem de 289° para o rumo de 313°, seguindo sua rota normal.

De acordo com os dados, a última altitude registrada foi 2.416 metros (7.925 pés) acima do nível médio do mar, com uma velocidade de solo de 275 nós (509 km/h; 316 mph). 

O aeroporto está 1.007 metros (3.305 pés) acima do nível médio do mar, mas o terreno ao redor da cidade de Parand, condado de Robat Karim, em Teerã, e o local do acidente são várias centenas de pés mais alto. 

O voo estava subindo um pouco abaixo dos 3000 pés/min quando o registro de dados de voo parou abruptamente em campo aberto perto da extremidade norte do Enqelab Eslami Boulevard, em Parand. 

A análise de vários vídeos do The New York Times mostra que a aeronave foi atingida quase imediatamente pelo primeiro de dois mísseis de curto alcance (que derrubou seu transponder) lançados com trinta segundos de intervalo pelo IRGC, e com a aeronave tendo mantido seu rastro, pelo segundo míssil, cerca de 23 segundos depois, depois do qual ele vira para a direita e pode ser visto em chamas antes de desaparecer de vista.


Investigadores ucranianos acreditaram que os pilotos foram mortos instantaneamente por estilhaços do míssil que explodiu perto da cabine. No entanto, uma análise do gravador de voz da cabine indicou que por pelo menos 19 segundos após o primeiro ataque do míssil, todos os três tripulantes da cabine continuaram a tentar pilotar a aeronave e não houve indicação de ferimentos ou danos à saúde durante esse período.


Os dados finais ADS-B recebidos foram às 06h14:57, menos de três minutos após a partida, após o que sua rota foi registrada apenas pelo radar primário. Seus últimos segundos foram capturados em várias gravações de vídeo. 

A aeronave caiu em um parque e campos nos arredores da vila de Khalajabad 15 quilômetros (9,3 mi; 8,1 milhas náuticas) a noroeste do aeroporto, e cerca de 10 milhas (16 km; 8,7 nmi) ENE do último ataque com míssil, cerca de seis minutos após a decolagem. Todos as 176 pessoas a bordo morreram na hora. Não houve vítimas em solo.


De acordo com o ministro das Relações Exteriores da Ucrânia, Vadym Prystaiko, e um manifesto de voo divulgado pela UIA, dos 167 passageiros com cidadania, 82 foram confirmados como iranianos, 63 eram canadenses, três eram britânicos, quatro eram afegãos, 10 eram suecos e três eram alemães. Onze ucranianos também estavam a bordo, nove deles fazendo parte da tripulação. 


O Ministério das Relações Exteriores alemão negou que qualquer alemão estivesse a bordo; as três pessoas em questão eram cidadãos afegãos que viviam na Alemanha como requerentes de asilo. De acordo com a lei de nacionalidade iraniana, o governo iranianoconsidera cidadãos com dupla nacionalidade apenas como cidadãos iranianos.


Dos 167 passageiros, 138 viajavam para o Canadá via Ucrânia. Muitos dos canadenses iranianos eram afiliados a universidades canadenses, como estudantes ou acadêmicos que viajaram para o Irã durante as férias de Natal. 

O acidente foi a maior perda de vidas canadenses na aviação desde o bombardeio do voo 182 da Air India em 1985. Em 15 de janeiro de 2020, o ministro canadense dos transportes, Marc Garneau, disse que 57 canadenses morreram no acidente.


Logo após o acidente, equipes de emergência chegaram com 22 ambulâncias, quatro ônibus  ambulâncias e um helicóptero, mas os incêndios intensos impediram uma tentativa de resgate. Os destroços foram espalhados por uma ampla área, sem sobreviventes encontrados no local do acidente. A aeronave foi completamente destruída no impacto.

Investigação 


A Organização de Aviação Civil do Irã (CAOI) informou logo após o incidente que uma equipe de investigadores foi enviada ao local do acidente. No mesmo dia, o governo ucraniano disse que enviaria especialistas a Teerã para ajudar na investigação. O presidente Volodymyr Zelensky instruiu o Procurador-Geral da Ucrânia a abrir uma investigação criminal sobre o acidente. O governo ucraniano enviou 53 representantes ao Irã para ajudar na investigação, entre eles funcionários do governo, investigadores e representantes da UIA.


Um Ilyushin Il-76 da Força Aérea Ucraniana levou para o Irã especialistas do Escritório Nacional de Investigação de Aviação Civil e Incidentes com o Serviço de Aviação Civil, Serviço de Aviação Estatal, Linhas Aéreas Internacionais da Ucrânia e da Inspetoria Geral de o Ministério da Defesa da Ucrânia.

De acordo com as normas da Organização de Aviação Civil Internacional (ICAO), conforme o Anexo 13 da Convenção de Chicago, o Conselho Nacional de Segurança de Transporte dos Estados Unidos (NTSB) participaria da investigação, por representar o estado do fabricante da aeronave. 


O Bureau d'Enquêtes et d'Analyses da França para a Sécurité de l'Aviation Civile (BEA) participaria como representantes do estado de fabricação dos motores da aeronave (uma joint venture EUA-França) e o Ministério da Infraestrutura da Ucrânia participaria como representantes do estado em que a aeronave foi registrada. 

Dada a crise do Golfo Pérsico de 2019-20, não se sabe como essas organizações estariam envolvidas, embora tenha sido relatado que o Irã havia dito que autoridades americanas, francesas e ucranianas estariam envolvidas.


O chefe da comissão de acidentes do CAOI disse que não recebeu nenhuma mensagem de emergência da aeronave antes do acidente. Foi relatado que as caixas pretas da aeronave (gravador de voz da cabine (CVR) e gravador de dados de voo (FDR)) foram recuperadas, mas a CAOI disse que não estava claro para qual país os gravadores seriam enviados para que os dados poderiam ser analisados. A associação disse que não entregaria as caixas pretas à Boeing ou às autoridades dos EUA. 

Em 9 de janeiro, os investigadores iranianos relataram que as caixas pretas foram danificadas e que algumas partes de suas memórias podem ter sido perdidas. Mary Schiavo, ex-inspetora-geral do Departamento de Transportes dos EUA, disse que nenhuma mensagem automática de socorro foi enviada da aeronave ou por sua tripulação.

Em 9 de janeiro, a Autoridade Sueca de Investigação de Acidentes e o Conselho de Segurança de Transporte do Canadá (TSB) foram oficialmente convidados pela equipe de investigação a participar da investigação do acidente. 


O NTSB, a Ucrânia e a Boeing também foram convidados a participar da investigação. Devido às sanções econômicas americanas impostas ao Irã, os investigadores dos EUA precisariam de uma licença especial do Tesouro e dos Departamentos de Estado para viajar para lá.

Em 9 de janeiro, relatos da mídia mostraram bulldozers sendo usados ​​para limpar o local do acidente. Alguns especialistas em investigação de aeronaves expressaram preocupação sobre perturbar e danificar o local do acidente antes que uma investigação completa possa ser conduzida. O Irã negou ter destruído as evidências. 

Em 10 de janeiro, o governo iraniano concedeu aos investigadores ucranianos permissão para investigar os gravadores de voo e os investigadores ucranianos visitaram o local do acidente, com planos de baixar os gravadores em Teerã.


Em 14 de janeiro, o chefe do TSB, Kathy Fox, disse que havia sinais de que o Irã permitiria que o TSB participasse do download e da análise de dados do gravador de dados de voo e gravador de voz da cabine do avião. Em 23 de janeiro, o TSB anunciou que havia sido convidado pelo Irã para ajudar com os gravadores de voo.

Em 2 de fevereiro, o canal de TV ucraniano transmitiu uma gravação que vazou da troca de informações entre o piloto iraniano de um voo da Aseman Airlines e um controlador de tráfego aéreo iraniano. O piloto teria afirmado em persa que viu um flash semelhante a um míssil disparado no céu e, em seguida, uma explosão. 

Após o vazamento, o presidente ucraniano Volodymyr Zelensky disse que as novas evidências provam que o Irã estava bem ciente desde os primeiros momentos de que o avião de passageiros da Ucrânia foi derrubado por um míssil. 


No dia seguinte, o Irã cessou a cooperação com a Ucrânia em sua investigação sobre o desastre devido a esta gravação vazada. O Irã retomou a cooperação em 15 de fevereiro.

Gravador de dados de voo e gravador de voz da cabine 

Em 20 de janeiro, o Irã pediu ajuda à França e aos Estados Unidos para recuperar os dados do gravador de dados de voo e do gravador de voz da cabine. Em 5 de fevereiro, o Canadá instou o Irã a enviar os gravadores para a França. O Irã negou o pedido.

Em 12 de março, o Irã concordou em entregar os gravadores à Ucrânia. No entanto, a pandemia COVID-19 atrasou essa ação. Durante esse tempo, a impaciência começou a aumentar na Ucrânia, Canadá e ICAO.

Em 11 de junho, o Irã anunciou que os gravadores de voo seriam enviados diretamente para o Bureau d'Enquêtes et d'Analyses para a Sécurité de l'Aviation Civile (BEA) na França.

A Aviação Civil do Irã apresentou imagem de caixa-preta do avião no dia 10 de janeiro de 2020
Autoridades canadenses instaram o Irã a concluir esta ação "o mais rápido possível", citando os atrasos anteriores na entrega dos gravadores. Esta declaração foi ainda mais reforçada 11 dias depois, quando o ministro das Relações Exteriores iraniano Mohammad Javad Zarif comentou sobre esta intenção durante um telefonema com o ministro das Relações Exteriores canadense François-Philippe Champagne.

Em 20 de julho, o exame dos dados começou em Paris; Champagne rejeitou a constatação do CAOI de que " erro humano" causou o lançamento dos mísseis que destruíram a aeronave: "Não pode ser apenas o resultado de um erro humano. Não há nenhuma circunstância em que uma aeronave civil possa ser abatida apenas pelo resultado do erro humano nos dias de hoje. Todos os fatos e circunstâncias apontam para mais do que apenas um erro humano, então certamente continuaremos a prosseguir vigorosamente a investigação."

Causa do acidente 


Em 8 de janeiro, o Ministério de Estradas e Transportes do Irã divulgou um comunicado de que a aeronave pegou fogo após um incêndio em um de seus motores, fazendo com que o piloto perdesse o controle e se espatifasse no solo. A companhia aérea opinou que o erro do piloto era impossível de ser citado como a causa do acidente, já que os pilotos foram treinados exclusivamente para os voos de Teerã por anos, observando que o Aeroporto de Teerã "não era um simples aeroporto".

Fontes do governo iraniano e ucraniano culparam inicialmente os problemas mecânicos a bordo da aeronave pela queda. O governo ucraniano posteriormente retirou sua declaração e disse que tudo era possível, recusando-se a descartar que a aeronave foi atingida por um míssil. O presidente Zelensky disse que não deveria haver qualquer especulação sobre a causa do acidente.

Em 9 de janeiro, oficiais de inteligência e defesa dos EUA disseram acreditar que a aeronave havia sido abatida por um míssil Iranian Tor ( nome do relatório da OTAN SA-15 "Gauntlet"), com base em evidências de imagens de satélite de reconhecimento e dados de radar. 

As autoridades ucranianas disseram que um tiroteio era uma das "principais teorias de trabalho", enquanto as autoridades iranianas negaram, afirmando que as alegações de um míssil atingido eram " guerra psicológica ". 


Os oficiais de defesa britânicos concordaram com a avaliação americana de um tiroteio. O Primeiro Ministro do Canadá, Justin Trudeau, disse que evidências de várias fontes, incluindo inteligência canadense, sugerem que a aeronave foi abatida por um míssil iraniano.

Após três dias descrevendo-o como "uma mentira americana", "um cenário injusto da CIA e do Pentágono" e "uma tentativa de impedir que as ações da Boeing caíssem", em 11 de janeiro, as Forças Armadas da República Islâmica do Irã admitiram ter derrubado o avião, tendo-o identificado erroneamente como um alvo hostil.

O voo estava atrasado mais de uma hora porque o comandante havia decidido descarregar algumas bagagens porque a aeronave estava acima do peso certificado de decolagem.

De acordo com uma declaração anterior do IRGC, quando o avião parecia se dirigir a um "centro militar sensível" do IRGC, os controladores o confundiram com um "alvo hostil" e o derrubaram. A Organização de Aviação Civil do Irã contestou esta linha do tempo, argumentando que o avião estava no curso correto o tempo todo e não havia desvio de voo comprovado. O ponto de vista do CAOI também foi apoiado por um artigo da Radio Canada International que usou dados públicos de rastreamento de voos ADS-B.

O general brigadeiro iraniano Amir Ali Hajizadeh, do IRGC Aerospace Defense, disse que um operador de mísseis em Bidganeh agiu de forma independente, confundiu o avião com um míssil de cruzeiro dos EUA e o abateu. Hajizadeh também disse que o avião estava na pista e "não se enganou".

Especialistas ocidentais haviam notado anteriormente que o voo 752 estava voando perto de várias instalações de mísseis balísticos iranianos, incluindo a base de mísseis Shahid Modarres em Bidganeh, perto de Malard , que os iranianos poderiam ter acreditado que seriam alvos de retaliação por seu ataque algumas horas antes.

Em 11 de julho de 2020, o CAOI relatou que o Irã agora culpava o ataque do míssil que derrubou o PS752 por "má comunicação" e "mau alinhamento". De acordo com os iranianos, a bateria de mísseis "havia sido realocada e não foi reorientada adequadamente" e os culpados não incluíam a cadeia de oficiais de comando de alto escalão.

Análises baseadas em mídia social 

Em 9 de janeiro, a conta do Instagram Rich Kids of Tehran publicou um vídeo com a legenda: "A filmagem real do momento em que o vôo #Ucraniano foi abatido por um míssil Tor-M1 de fabricação russa momentos após a decolagem do aeroporto de # Teerã". 

O vídeo foi publicado ao mesmo tempo que as autoridades iranianas alegavam problemas técnicos para o acidente. Qassem Biniaz, porta-voz do Ministério de Estradas e Transportes do Irã, disse que o piloto "perdeu o controle do avião" depois que um incêndio estourou em um de seus motores, negando que o avião ucraniano tenha sido atingido por um míssil.

Em 9 de janeiro, um vídeo foi postado em um canal público do Telegram mostrando o que foi, de acordo com Bellingcat, aparentemente uma explosão no ar. O New York Times contatou a pessoa que filmou o vídeo e confirmou sua autenticidade. 


Uma equipe de investigação de Bellingcat realizou uma análise desse vídeo e o localizou em uma área residencial em Parand, um subúrbio a oeste do aeroporto. Bellingcat também examinou fotos de uma fonte desconhecida e disse que essas imagens de um cone de nariz de míssil ainda não tinham sido verificadas, apesar das alegações de várias fontes.

A ogiva do míssil Tor está localizada no meio, o que significa que seu nariz não pode ser destruído em uma explosão. Fotografias semelhantes de fragmentos foram tiradas no leste da Ucrânia, mas nenhuma foi considerada igual às atribuídas ao recente incidente.

O USA Today relatou que a empresa IHS Markit revisou as fotografias que mostram a seção de orientação de um míssil e "avalia que são confiáveis". O grupo de monitoramento de aviação Opsgroup disse: "Recomendamos que a suposição inicial seja que este foi um evento de abate, semelhante ao MH17 - até que haja evidências claras em contrário" afirmando que as fotografias "mostram buracos de projétil óbvios em a fuselagem e uma seção da asa ".

Desenvolvimentos subsequentes 

Em 9 de janeiro, o presidente Trump disse que o avião "estava voando em um bairro bastante violento e alguém poderia ter cometido um erro". Ele disse que os EUA não tiveram envolvimento no incidente e que não acreditava que um problema mecânico tivesse algo a ver com o acidente. Fontes de inteligência dos EUA informaram aos meios de comunicação dos EUA que estavam "confiantes de que o Irã pintou o avião ucraniano com radar e disparou dois mísseis terra-ar que derrubaram a aeronave".

Também em 9 de janeiro, em uma entrevista coletiva em Ottawa, o primeiro-ministro canadense Justin Trudeau disse que o avião provavelmente foi derrubado por um míssil iraniano, citando informações do Canadá e de outras fontes, e disse que o incidente "pode ​​muito bem ter sido não intencional".

Em 10 de janeiro, durante uma entrevista à Sky News, o embaixador do Irã no Reino Unido, Hamid Baeidinejad, rejeitou o vídeo obtido pela mídia americana que mostrava escavadeiras limpando o local do acidente como "absurdo". Baeidinejad negou ainda que um míssil iraniano derrubou o avião e disse que "acidentes de pista são uma questão muito técnica, não posso julgar, você não pode julgar, repórteres no terreno não podem julgar. Ninguém pode julgar. Um ministro das Relações Exteriores ou um primeiro-ministro não pode julgar sobre esta questão." 

Em 11 de janeiro, o Irã admitiu ter derrubado o jato ucraniano por "acidente", resultado de erro humano. O general Amir Ali Hajizadeh, chefe da divisão aeroespacial do IRGC, disse que sua unidade aceita "total responsabilidade" pelo abate. Em um discurso transmitido pela televisão estatal, ele disse que, quando soube da queda do avião, "desejei estar morto". Hajizadeh disse que, com suas forças em alerta máximo, um oficial o confundiu com um míssil hostil e tomou uma "má decisão".

Zona de impacto da aeronave abatida pelos mísseis iranianos
Em 14 de janeiro, a conta do Instagram dos Rich Kids of Tehran publicou um novo vídeo, mostrando dois mísseis atingindo a aeronave. A filmagem da câmera de segurança, verificada pelo The New York Times , mostra dois mísseis, disparados com 30 segundos de intervalo. Em 20 de janeiro, a Organização de Aviação Civil do Irã também admitiu que o IRGC do país havia disparado dois mísseis Tor-M1 de fabricação russa contra a aeronave.

Em 10 de agosto, o oficial do IRGC Gholamreza Soleimani disse à TV estatal iraniana que o Irã não compensaria a Ukraine International Airlines pelo ataque porque o "avião é segurado por empresas europeias na Ucrânia e não por empresas iranianas". Os países iriam negociar a compensação novamente em outubro.

Em 30 de dezembro, o Irã anunciou unilateralmente que havia alocado US$ 150.000 para cada família de uma vítima ucraniana de acidente de avião. A Ucrânia foi crítica, afirmando que a compensação deve ser definida por meio de negociações após estabelecer as causas do acidente, e que "o lado ucraniano espera do Irã um rascunho de relatório técnico sobre as circunstâncias do abate da aeronave".

Resultado 


Em 17 de janeiro, o governo canadense anunciou que forneceria C$ 25.000 aos parentes de cada um dos 57 cidadãos canadenses e residentes permanentes que morreram no acidente. Os recursos seriam para ajudar a cobrir necessidades imediatas, como despesas com funeral e viagens. No entanto, o primeiro-ministro canadense Justin Trudeau também disse que considera o Irã financeiramente responsável.

Em 19 de janeiro, os corpos de 11 cidadãos ucranianos, mortos no acidente, foram devolvidos à Ucrânia em uma cerimônia solene no Aeroporto Internacional Boryspil. Os caixões, cada um envolto em uma bandeira ucraniana , foram transportados um a um de um avião militar ucraniano Il-76 da 25ª Brigada de Aviação de Transporte.

O presidente Zelensky, o secretário do Conselho Nacional de Segurança e Defesa da Ucrânia Oleksiy Danilov, o primeiro-ministro Oleksiy Honcharuk, o presidente da Verkhovna Rada Dmytro Razumkov e outros oficiais e militares participaram da cerimônia.


Reações 


O tráfego aéreo 

O desastre ocorreu em meio a uma crise política intensificada no Golfo Pérsico, horas depois que os militares iranianos lançaram 15 mísseis contra bases aéreas militares dos EUA no Iraque em resposta ao ataque aéreo no Aeroporto Internacional de Bagdá que matou o general iraniano Qasem Soleimani. 

Em resposta, a Administração Federal de Aviação dos Estados Unidos (FAA), em um aviso aos aviadores (NOTAM), proibiu todas as aeronaves civis americanas de sobrevoar o Irã, o Iraque, o Golfo de Omã e o Golfo Pérsico. 

Embora o NOTAM da FAA não seja vinculativo para companhias aéreas não americanas, muitas companhias aéreas o levam em consideração ao tomar decisões de segurança, especialmente após o abate do voo 17 da Malaysia Airlines em 2014.

Várias companhias aéreas, incluindo a austríaca Airlines, Singapore Airlines, KLM, Air France, Air India, SriLankan Airlines, Qantas e Vietnam Airlines começaram a redirecionar seus voos. Outras companhias aéreas, como Lufthansa, Emirates, Flydubai e Turkish Airlines cancelaram alguns voos para aeroportos no Irã e no Iraque e fizeram outras alterações operacionais conforme necessário.

A Ukraine International Airlines (UIA) suspendeu os voos para Teerã por tempo indeterminado logo após o incidente, com voos após o dia do acidente não mais disponíveis. A suspensão também obedeceu a uma proibição emitida pela Administração Estatal de Aviação da Ucrânia para voos no espaço aéreo do Irã para todas as aeronaves de registro ucranianas.

Desde o acidente, outras companhias aéreas, como a Air Astana e a SCAT Airlines, também redirecionaram os voos que sobrevoaram o Irã. Isso seguiu uma recomendação do Ministério da Indústria e Desenvolvimento de Infraestrutura do Cazaquistão, emitido para companhias aéreas do Cazaquistão após o acidente, para evitar voar sobre o espaço aéreo do Irã e/ou cancelar voos para o Irã. A Air Canada redirecionou seu voo Toronto-Dubai para sobrevoar o Egito e a Arábia Saudita em vez do Iraque.

Prisões 

Em 14 de janeiro de 2020, o judiciário do Irã anunciou que várias prisões foram feitas devido ao abate acidental da aeronave. O porta-voz, Gholamhossein Esmaili, não indicou nenhum suspeito nem disse quantos foram detidos. Em um discurso transmitido pela televisão, o presidente Rouhani disse que o judiciário montaria um tribunal especial com um juiz de alto escalão e dezenas de especialistas para supervisionar a investigação.

Em 14 de janeiro, foi anunciado que as autoridades iranianas prenderam a pessoa que publicou um vídeo do avião sendo abatido. Um jornalista iraniano baseado em Londres que inicialmente postou a filmagem insistiu que sua fonte estava segura e que as autoridades iranianas prenderam a pessoa errada. De acordo com a Tasnim News Agency e a semi-oficial Fars News Agency, as autoridades iranianas estão procurando a(s) pessoa(s) que distribuíram o vídeo.

Famílias das vítimas 

A Rádio Farda do Irã relatou que, de acordo com Zeytoun (um site persa com sede no exterior), agentes da inteligência iraniana forçaram as famílias das vítimas a dar entrevistas na TV estatal, declarando seu apoio ao governo iraniano, caso contrário o governo não entregaria os corpos das vítimas.

Em fevereiro, em Toronto, uma ação coletiva proposta foi movida no Tribunal Superior de Justiça de Ontário contra o Irã, o líder supremo iraniano Ali Khamenei e vários ramos do exército iraniano, entre outros. Os advogados das famílias das vítimas canadenses estão buscando uma indenização de pelo menos US$ 1,1 bilhão.

Em 3 de abril de 2020, as famílias das vítimas formaram uma associação em Toronto, Ontário, no Canadá, para acompanhar o caso pela via judicial. O porta-voz da associação, Hamed Esmaeilion, disse que o objetivo da associação é "levar os autores do crime à justiça, incluindo aqueles que o ordenaram". 


Em julho de 2020, Esmaeilion ficou indignado com o fato de a ICAO ainda não ter condenado o incidente e apontou que a ICAO precisava de apenas três meses para adotar uma resolução unânime condenando nos termos mais fortes a destruição e supostos assassinatos do voo MH17 da Malaysia Airlines.

Em 13 de janeiro, o ministro das Relações Exteriores da Ucrânia, Vadym Prystaiko, disse que cinco dos países que tinham cidadãos a bordo do avião - Canadá, Ucrânia, Afeganistão, Suécia e Reino Unido - se reuniriam em Londres em 16 de janeiro para discutir uma possível ação legal.

O embaixador do Reino Unido no Irã, Robert Macaire, foi preso em 11 de janeiro de 2020 durante protestos em Teerã, mas foi libertado logo depois. O embaixador foi detido sob suspeita de ter participado de manifestações contra o governo; ele negou e esclareceu que compareceu a um evento anunciado como uma vigília, para homenagear as vítimas, e saiu cinco minutos depois que as pessoas começaram a gritar. O governo britânico chamou sua prisão de "violação flagrante do direito internacional".


Por Jorge Tadeu (com Wikipedia, ASN e baaa-acro.com)

Vídeo: Mayday Desastres Aéreos - West Air Sweden 294 - Terríveis Evidências


Aconteceu em 8 de janeiro de 2016: Voo 294 da West Air Sweden - Terríveis Evidências


No dia 8 de janeiro de 2016, um avião de carga sueco de repente despencou de 30.000 pés em menos de dois minutos antes de bater com o nariz no chão a mais de 700 quilômetros por hora. No local remoto do acidente no Ártico sueco, nada restou além de uma cratera coberta de neve, deixando pouco reconhecível como parte de um avião. 

Com os dois membros da tripulação mortos, as caixas pretas teriam que contar a história do que aconteceu com o voo 294 da West Air Sweden - somente quando os investigadores decifraram o gravador de dados de voo, eles perceberam que os dados não faziam nenhum sentido. 

No final das contas, os dados falsos e o destino do avião estavam intimamente ligados. A falha de um giroscópio crítico fez com que os instrumentos do capitão enlouquecessem, convencendo-o de que ocorrera uma virada repentina. Foi sua reação a essa emergência - exacerbada por uma interface mal projetada e pela falha dos pilotos em se comunicarem - que condenou os dois homens e sua carga.

A West Air Sweden é uma subsidiária do West Atlantic Group, uma empresa que possui duas companhias aéreas de carga dedicadas, West Air Sweden e West Atlantic UK. A West Air Sweden é uma das maiores transportadoras de carga aérea da Suécia, com uma frota de quase 40 aeronaves, incluindo quatro Boeing 767 de fuselagem larga, bem como 33 turboélices gêmeos British Aerospace ATP (totalizando mais da metade de todos os exemplos desse tipo existente). 

A parte final da frota era composta por um punhado de jatos regionais Bombardier CRJ200. Em uma configuração de passageiro, o CRJ200 podia transportar cerca de 50 passageiros, mas os de propriedade da West Air Sweden foram todos convertidos para a configuração “Package Freighter”, que incluiu a remoção de todas as janelas e amenidades da cabine. 


Foi um desses CRJ200, o Canadair CL-600-2B19 Regional Jet CRJ-200PF, prefixo SE-DUX (foto acima), que na noite de 7 de janeiro de 2016 estava programado para operar o voo 294 da West Air Sweden, um vôo regular de correio de Oslo, Noruega, para a cidade de Tromsø, no Ártico da Noruega.

No comando do voo estavam um capitão espanhol e seu primeiro oficial francês, nenhum dos quais foi nomeado; eles tiveram uma experiência combinada razoavelmente média de cerca de 6.600 horas de voo e nenhuma deficiência significativa de treinamento. 

Em meio ao tempo frio e céu claro, o voo 294 partiu de Oslo no horário às 23h11 e rumou para o nordeste em direção a Tromsø. 


Os pilotos estabeleceram-se na rotina de voo de cruzeiro, conversando preguiçosamente sobre assuntos pessoais enquanto o dia 7 de janeiro passava para o dia 8. 

Por volta das 00h17, enquanto o voo 294 fazia um cruzeiro a 33.000 pés sobre o espaço aéreo sueco perto da fronteira com a Noruega, a tripulação decidiu realizar o briefing de aproximação, repassando todas as etapas que seriam necessárias para pousar em Tromsø. À medida que prosseguiam com essa tarefa rotineira, não tinham como saber que algo estava prestes a dar catastroficamente errado.

Às 00:19 e 20 segundos, o giroscópio da unidade de referência inercial número um falhou inesperadamente. Uma unidade de referência inercial, ou IRU, é um dispositivo que mede o movimento angular da aeronave usando um giroscópio e um acelerômetro. 


O giroscópio determina a inclinação e guinada da aeronave, enquanto o acelerômetro mede a aceleração; a IRU então processa essas informações e as envia para vários sistemas, incluindo os visores primários de voo dos pilotos (PFDs), o piloto automático e o gravador de dados de voo. O CRJ-200 possui duas IRUs, designadas IRU-1 e IRU-2, que alimentam os instrumentos do capitão e do primeiro oficial, respectivamente. 

A bordo do voo 294 da West Air Sweden, uma falha desconhecida - talvez um erro de processamento de dados - fez com que os dados de pitch produzidos pelo IRU-1 fossem corrompidos. 

Esses dados falhos de 'pitch' foram repassados ​​para todos os sistemas mencionados, incluindo o PFD do capitão. O PFD contém a maior parte da instrumentação necessária para um piloto pilotar o avião, incluindo o indicador de atitude - que exibe inclinação e inclinação lateral - junto com a velocidade do ar, altitude e outras informações críticas. Quando os dados de pitch corrompidos do IRU-1 alcançaram o PFD do capitão, isso fez com que seu indicador de atitude exibisse um movimento de pitch up que não estava realmente ocorrendo.

No início, o aumento aparente era pequeno, mas depois de alguns segundos aumentou rapidamente em magnitude. Simultaneamente, o piloto automático se desconectou ao receber comandos de pitch conflitantes das duas IRUs, disparando um alarme alto e contínuo. 

Um comparador medindo a diferença entre as indicações dos dois PFDs também detectou uma incompatibilidade, e um aviso amarelo piscando "pitch miscompare" apareceu nos indicadores de atitude de ambos os pilotos, junto com uma mensagem automática na tela do computador e um sinal sonoro emitido pelos alto-falantes da cabine . 

Tudo isso aconteceu em menos de três segundos, pegando os dois pilotos completamente de surpresa. Observando um 'pitch' aterrorizante que parecia representar um grave perigo para a segurança do voo, o capitão exclamou: "Que porra é essa!" e começou a empurrar o nariz para baixo.

Reconstituição dos PFDs dos pilotos conforme eles apareciam dois segundos
após o início do evento. Os avisos de equalização de pitch estão destacados
Enquanto isso, o primeiro oficial, cujo PFD indicou que eles ainda estavam em voo nivelado, lutou para descobrir o que estava acontecendo.

Como o ângulo da inclinação indicada excedeu 30 graus, o PFD do capitão entrou no modo conhecido como “organizador”. Quando a inclinação do avião é maior que 30 graus ou menor que -20 graus, ou o ângulo de inclinação é maior que 65 graus, todas as informações desnecessárias desaparecem do PFD, deixando apenas a indicação de atitude bruta e um conjunto de setas vermelhas informando o piloto como voar fora da atitude incomum. 
Reconstituição dos PFDs dos pilotos conforme eles apareciam quatro segundos após o início do evento. Observe que o aviso de erro de comparação de pitch do capitão desapareceu
Essa “organização” do PFD tem como objetivo ajudar o piloto a se concentrar em visualizar a atitude do avião para que ele possa recuperar o controle com mais facilidade. Mas um dos itens removidos no modo de organização é o aviso de equalização.

Quando a inclinação indicada no PFD do capitão excedeu 30 graus, ele entrou no modo de organização e o aviso de miscompare desapareceu, removendo qualquer indicação de que o PFD pode estar funcionando incorretamente.


Apenas quatro segundos se passaram desde o início da falha, o aviso já havia sumido e o capitão estava começando a empurrar o nariz para baixo para se recuperar de uma chateação que não estava acontecendo de verdade. 

Quando o capitão empurrou o avião para um mergulho, o primeiro oficial, dominado pela confusão, só conseguiu exclamar: "Que porra é essa?" 

As forças G negativas causadas pela manobra repentina enviaram itens não protegidos contra o teto e causaram severa desorientação. As forças incomuns também interromperam o funcionamento dos motores, fazendo com que uma voz automatizada gritasse: “ÓLEO DO MOTOR”. 

Depois de alguns segundos, ficou claro para o primeiro oficial que eles estavam entrando em um mergulho e precisavam sair. "Suba!" ele exclamou. A essa altura, seu PFD registrou uma atitude de nariz para baixo superior a -20 graus e também entrou no modo de organização. 

Ainda teria sido simples para qualquer um dos pilotos olhar para o PFD do outro e perceber que havia uma incompatibilidade, mas a visão de túnel assumiu o controle, fazendo com que ambos se concentrassem estreitamente nas indicações extremas que exigiam sua atenção. 

“Vamos, me ajude, me ajude!” o capitão gritou. Ele pensou que eles estavam em uma posição de nariz elevado, com certo perigo de travar, mas suas sugestões não estavam fazendo nada para corrigir o problema. Da mesma forma, o primeiro oficial sabia que eles estavam mergulhando, mas achou que o capitão estava lutando para parar, sem sucesso.

O avião agora entrou em uma rotação crescente para a esquerda devido a uma entrada aleatória feita durante as tentativas anteriores do primeiro oficial de agarrar a coluna de controle enquanto estava em G. negativo "Vire à direita!" disse ele, mas não percebeu que o PFD do capitão mostrava uma curva na direção oposta. 

A IRU requer informações de inclinação corretas para calcular o ângulo de inclinação e, quando os dados de inclinação são falsos, a indicação do ângulo de inclinação também é corrompida. 

“Me ajude, me ajude!” o capitão exclamou novamente. Conforme o avião acelerou para baixo, ele excedeu sua velocidade máxima de operação, disparando um aviso de velocidade excessiva que encheu a cabine com um som de estalo contínuo e rápido. 

“Sim, estou tentando!” disse o primeiro oficial. 

“Vire à esquerda, vire à esquerda!” 

Com o avião apontado diretamente para o solo, rolando 90 graus para a esquerda, ele havia sucumbido completamente à desorientação. 

Um aviso começou a soar: "ÂNGULO DO BANCO, ÂNGULO DO BANCO." 

O primeiro oficial acionou seu microfone e transmitiu uma chamada de socorro em pânico para o controle de tráfego aéreo. “Mayday, mayday, mayday, Air Sweden 294! Mayday, mayday, mayday!” 

“294?” perguntou o controlador, assustado com as exclamações repentinas e frenéticas. 

“Mayday, mayday, mayday, Air Sweden 294!” o primeiro oficial repetiu. “Estamos voltando! Mayday, mayday! ” 

“294, mayday, 294,” o controlador reconheceu. Mas ele podia ver que o avião não estava voltando; em vez disso, estava perdendo altitude rapidamente, despencando para baixo e desviando do curso para o leste próximo à velocidade do som. 

“Precisamos escalar, precisamos escalar!” disse o capitão, pela primeira vez reconhecendo que estavam perdendo altitude. 

Mas seu PFD ainda exibia uma posição de nariz alto, e ele continuou empurrando o nariz para baixo para tentar nivelar o avião. 

“Sim, precisamos escalar!” respondeu o primeiro oficial. 

Mas ele ainda parecia estar focado em seu ângulo de inclinação extrema. 

“Vire à esquerda, vire à esquerda!” ele repetiu. 

“Não, continue certo, continue certo!” disse o capitão. 

"Ok, merda!" “Não, me ajude, me ajude por favor!” 

“Não sei, não vejo nada!” o primeiro oficial implorou.

"Eu acho que você tem o direito de corrigir!" 

"Ok, ok, sim!"

"Que porra é essa!" 

A essa altura, o avião estava completamente de cabeça para baixo, caindo em um curso assustador em direção ao solo, muito além de qualquer esperança de recuperação. 


O capitão cuspiu palavrões na cacofonia de avisos antes que a gravação de voz da cabine chegasse ao fim abruptamente. 

Apenas 80 segundos após o início da reviravolta, o CRJ 200 invertido bateu o nariz em um vale coberto de neve em uma área remota e desabitada do Ártico sueco.


O impacto de alta velocidade explodiu uma cratera por vários metros de neve e no cascalho abaixo, compactando o avião como um acordeão no buraco antes de cuspir os destroços mutilados de volta, deixando uma mancha negra na neve como o único sinal de sua passagem .

Assim que o avião desapareceu do radar, uma operação de busca e salvamento foi lançada para localizar a aeronave. Aeronaves suecas e norueguesas vasculharam as montanhas cobertas de neve do extremo noroeste da Suécia sob a noite polar, na esperança de que a tripulação fosse encontrada viva.

Às 03h07, dois F-16 noruegueses tropeçaram no local do acidente perto do Lago Akkajaure, perto da fronteira com a Noruega. Eles relataram o que todos já suspeitavam: o avião havia atingido o solo em alta velocidade e era óbvio que nenhum dos pilotos poderia ter sobrevivido.


A tarefa de encontrar a causa do acidente caiu para a Autoridade Sueca de Investigação de Acidentes, ou SHK. Os investigadores sabiam que o local do acidente seria um grande desafio. 

Não havia estradas perto do local do acidente, neve profunda cobriu a área e as temperaturas variaram de -25 a -40˚C. Além disso, em tal latitude norte em janeiro, eles podiam esperar apenas 2 horas e 15 minutos de luz do dia a cada 24 horas. Eles teriam apenas uma breve janela para coletar evidências, após a qual a maior parte da análise teria de ser feita em Estocolmo.

Após uma viagem truncada ao local do acidente, os investigadores trouxeram de volta vários itens importantes, incluindo as duas caixas pretas do avião. Essa poderia ser a chave que desvendaria a história do voo 294 da West Air Sweden. 


Mas quando os investigadores baixaram os dados do gravador de dados do voo, algo não deu certo. A caixa preta registrou um aumento repentino em voo de cruzeiro que continuou por algum tempo, momentaneamente revertido para um grande passo para baixo, então voltou a um grande passo para cima pouco antes do impacto. 

Mas os outros parâmetros, como velocidade e ângulo de ataque, não corresponderam a esta leitura. Se o avião tivesse se inclinado, sua velocidade deveria ter diminuído e sua altitude deveria ter aumentado; em vez disso, aconteceu o oposto - o avião acelerou e começou a perder altitude. Nesse ponto, os investigadores perceberam que os dados do pitch deviam estar errados. 

O gravador de dados de voo (ou FDR) adquire seus dados de inclinação da unidade de referência inercial número um. O fato de ter gravado dados de pitch falsos significava que o canal de pitch do IRU-1 deve ter falhado. Tal falha também afetaria a tela principal de voo do capitão, mas não a do primeiro oficial, ou o indicador de espera no console central. 

As entradas de controle gravadas no FDR foram consistentes com uma reação aos dados de falso pitch alimentados tanto para o FDR quanto para o PFD do capitão. Portanto, ficou estabelecido que o capitão deve ter se abaixado para corrigir o que ele pensava ser uma perigosa atitude de nariz empinado - e no processo, ele voou com seu avião direto para o solo.


Isso deixou duas questões principais: por que a IRU falhou e por que os pilotos não perceberam que as indicações eram falsas? Não seria fácil de responder. 

Para tentar entender a falha da IRU, o SHK examinou todo o histórico operacional desse tipo de unidade, mas não encontrou incidentes semelhantes em milhões de horas de serviço. 

Mais de 9.000 dessas unidades exatas estavam em uso em uma ampla variedade de aeronaves Airbus, Bombardier e SAAB e, ainda assim, nenhum defeito sério havia ocorrido. A taxa de falha da unidade - qualquer tipo de falha - foi de 5,7 por milhão de horas de voo em toda a frota. 


O que quer que tenha acontecido com a IRU no voo 294 da West Air Sweden deve ter sido inimaginavelmente raro. O SHK se uniu ao fabricante da IRU para executar uma ampla variedade de testes em uma unidade representativa, mas eles foram incapazes de reproduzir uma falha que se assemelha, mesmo remotamente, à que precipitou o acidente. 

A IRU com falha do voo 294 foi completamente destruída no acidente que nenhuma informação útil pôde ser obtida dela. No final, o SHK não foi capaz de determinar o que causou a falha da IRU, exceto que deve ter envolvido o giroscópio de pitch e não deve ter excedido as limitações que fariam com que a unidade marcasse os dados como inválidos. 

Além disso, havia pouco que eles pudessem dizer. e não deve ter excedido as limitações que fariam com que a unidade marcasse os dados como inválidos. Além disso, havia pouco que eles pudessem dizer. e não deve ter excedido as limitações que fariam com que a unidade marcasse os dados como inválidos. Além disso, havia pouco que eles pudessem dizer.


Mas no final do dia, a falha do IRU-1 não foi uma emergência terrível. Afetou apenas a indicação apresentada a um dos dois pilotos, e não teve efeito na controlabilidade do avião, exceto pelo desligamento do piloto automático, o que não deve causar nenhuma dificuldade real para a tripulação. 

A chave para a sequência de eventos está em como essa falha foi apresentada aos pilotos, como ela afetou seus estados de espírito e como eles foram treinados para lidar com ela. Não demorou muito para que os investigadores descobrissem que o design dos PFDs dos pilotos provavelmente teve uma função. 

Quando o comparador detecta uma incompatibilidade entre os dois conjuntos de dados de atitude, ele exibe um aviso de incompatibilidade (neste caso, “PIT”) nos PFDs de ambos os pilotos, que pisca repetidamente por vários segundos para chamar sua atenção antes de estabilizar. Mas o fato de que o aviso de equalização desapareceria se o PFD entrasse no modo de organização representava uma falha de projeto significativa. 

O perigo desse recurso era óbvio, porque o aviso de equalização ainda desapareceria mesmo se a “atitude incomum” que acionou o modo de organização fosse causada por uma falha do instrumento. No caso, isso tornou mais difícil para o capitão perceber que seu PFD estava com defeito, porque o aviso de equalização apareceu por apenas quatro segundos - tempo insuficiente para ele processar o que significava.


Apesar da ausência do aviso de equalização, o capitão poderia ter olhado para o PFD de seu copiloto ou para o indicador de atitude de espera para perceber que eles mostravam algo diferente. 

Mas, embora esses indicadores estivessem facilmente dentro de seu campo de visão, percebê-los teria sido mais difícil do que pode parecer. Quando o capitão repentinamente viu seu indicador de atitude mostrando uma inclinação para cima em voo de cruzeiro, ele foi pego pelo que é conhecido como efeito surpresa. 

O repentino aparecimento de perigo essencialmente colocou seu cérebro em modo de luta ou fuga. Sua visão se estreitou no que ele precisava fazer para sobreviver - que era, ao que parecia, jogar o nariz para baixo. 

Com essa visão de túnel fazendo com que ele se concentrasse tão intensamente em eliminar o perigo percebido, era menos provável que seu cérebro captasse pistas em sua visão periférica, como o PFD do primeiro oficial. Na escuridão da noite, sem horizonte visível, não havia outras pistas significativas que o teriam dito que sua indicação de atitude estava errada.


A recuperação da situação, portanto, dependia do primeiro oficial comunicar-se claramente com o capitão sobre o que estava acontecendo. Momentos depois da falha da IRU e das subsequentes entradas de controle do capitão, os dois pilotos desenvolveram modelos mentais conflitantes da situação. 

O capitão viu um arremesso alto com setas vermelhas incitando-o a empurrar para baixo, enquanto o primeiro oficial viu um arremesso baixo com setas vermelhas incitando-o a puxar para cima. 

A fim de recuperar o controle, eles precisavam reconciliar esses modelos mentais. Mas antes que pudessem fazer isso, eles precisavam perceber que seus modelos mentais eram diferentes. Cada homem presumiu que o outro tinha o mesmo modelo mental. 

Quando o capitão gritou: "Me ajude, me ajude", ele provavelmente queria que seu copiloto o ajudasse a empurrar o nariz para baixo, mas o primeiro oficial certamente não poderia ter chegado a essa conclusão, e para ele seria mais provável que o capitão quisesse que ele ajudasse a puxar o nariz para cima. 

Se o capitão, a qualquer momento, tivesse mencionado como queria que o primeiro oficial o ajudasse, a primeira etapa - reconhecendo que seus modelos mentais eram diferentes - poderia ter ocorrido e, a partir daí, teria sido possível detectar a incompatibilidade de atitude e talvez recuperar o controle. 

Infelizmente, enquanto os pilotos surpresos e em pânico entravam em seus próprios PFDs, essa realização crucial nunca ocorreu. 

As caixas pretas muito danificadas recuperadas do local do acidente
Em uma situação como essa, o treinamento desempenha um papel crítico. Muito do treinamento que os pilotos recebem sobre o voo sem um horizonte visível concentra-se na confiança nos instrumentos, e por boas razões. Muitos aviões caíram porque os pilotos confiaram em sensações físicas não confiáveis, embora seus instrumentos estivessem contando uma história diferente. 

No caso do voo 294 da West Air Sweden, esse treinamento funcionou muito bem: o capitão confiou em seus instrumentos, excluindo outras pistas que indicavam que o avião ainda estava em voo nivelado e não inclinava. Mas existe um tipo de treinamento que pode ajudar em tal situação.

Chamado de "Upset Recovery", este treinamento ensina aos pilotos como ficar calmos e se comunicar quando o avião está em uma atitude incomum. Durante o "Upset Recovery", os pilotos são ensinados a suprimir suas reações instintivas e, em vez disso, evocar a natureza da chateação usando a fraseologia padrão, como "nariz alto" ou "nariz baixo". O outro tripulante então confirma ou nega a observação. 

No momento do acidente, o treinamento de recuperação não era necessário na Europa, mas a West Air Sweden começou a fornecê-lo a alguns de seus pilotos de qualquer maneira. Infelizmente, os pilotos envolvidos no acidente não estavam entre eles. Se o capitão tivesse recebido esse treinamento, ele poderia primeiro ter gritado “Nariz alto” antes de lançar para baixo, e os pilotos teriam percebido rapidamente que havia uma incompatibilidade de instrumentos. O acidente, com toda probabilidade, não teria ocorrido.

O local do acidente vários meses depois, após o derretimento da neve na primavera

Em maio de 2016, cinco meses após o acidente, a Agência Europeia para a Segurança da Aviação (EASA) ordenou que todas as companhias aéreas da Europa fornecessem treinamento de recuperação para os pilotos, e a West Air Sweden introduziu um treinamento que ajudaria os pilotos a detectar e responder a falhas de instrumentos. 

Além dessas medidas, o SHK recomendou que a Organização da Aviação Civil Internacional promova o treinamento de recuperação incômodo em todo o mundo e que os fabricantes garantam que os avisos de equalização ainda estejam presentes no PFD, mesmo no modo de organização. 

Clique AQUI para acessar o Relatório Final do acidente

A lógica do software dos visores primários de voo do CRJ 200 foi retrabalhada como resultado desta recomendação para garantir que os avisos de equalização nunca sejam removidos dos PFDs, enquanto existir uma incompatibilidade. 

A queda do voo 294 da West Air Sweden ilustrou um dos principais dilemas do treinamento de pilotos; a saber, que o mau funcionamento que precipitou o acidente era tão raro que seria inútil treinar pilotos para reagir a esse problema específico.


Mas o treinamento moderno visa cada vez mais ajudar os pilotos a lidar com o inesperado, fornecendo chamadas e procedimentos padrão que podem ser aplicados a uma ampla gama de emergências. 

Além do treinamento de recuperação desagradável, outras novas estratégias também estão sendo desenvolvidas. Por exemplo, no caso de uma desconexão inesperada do piloto automático, o piloto voando, ao perceber a desconexão, deve silenciar o aviso e anunciar “Piloto automático desligado, eu tenho o controle”. A causa da desconexão do piloto automático não importa; este procedimento pode ser aplicado universalmente. 

Nesse caminho, os regimes de treinamento estão cada vez mais contornando a realidade de que o número de possíveis emergências é muito grande para um piloto aprender sobre todas elas. 

A queda do voo 294 da West Air Sweden pode e deve servir como um momento de aprendizado, já que a indústria aérea continua a adotar essa abordagem de segurança.

Edição de texto e imagens: Jorge Tadeu (Site Desastres Aéreos)

Com admiralcloudberg e ASN - Imagens: Bureau of Aircraft Accidents Archives, VGTV, Google, SHK, NRK e Mirko Bleuer. Clipes de vídeo cortesia de Mayday (Cineflix)