Mostrando postagens com marcador Informação Geral. Mostrar todas as postagens
Mostrando postagens com marcador Informação Geral. Mostrar todas as postagens

segunda-feira, 15 de abril de 2024

Vídeo: Como é feito um helicóptero? Visitamos a Helibras, única fábrica do Hemisfério Sul


Há 500 anos, Leonardo da Vinci já vislumbrava helicóptero como o da Nasa em Marte

"Helicóptero" de Leonardo da Vinci, ou parafuso helicoidal aéreo (Imagem: Reprodução)
Em 1493, o pintor e cientista italiano Leonardo da Vinci desenhou o primeiro "helicóptero" que temos registro: um objeto voador vertical, com pá giratória em espiral. Olhando para ele, é possível constatar a impressionante semelhança com o Ingenuity, o helicóptero-robô da Nasa que está voando em Marte.

Chamado parafuso helicoidal aéreo, foi mais um dos projetos mais inovadores de da Vinci, desenhado cerca de 450 anos antes do primeiro voo do que conhecemos hoje como um helicóptero. Até a cor do papel usado lembra a do solo marciano.

De acordo com o inventor, "se este artefato em forma de parafuso for bem construído, ou seja, feito de linho recoberto com goma de amido e girado rapidamente, o dito artefato em forma de parafuso vai 'perfurar' o ar com sua espiral e subirá alto".

Há até quem brinque que o parafuso era, na verdade, uma máquina do tempo, e que da Vinci, um homem tão à frente de sua época, era na verdade um marciano que ficou preso no Renascimento após uma viagem. E, não conseguindo construí-la novamente, se dedicou apenas à arte.

Frágil e rudimentar, a estrutura seria feita de madeira, tecido engomado e arames, e o mecanismo operado por uma equipe de quatro passageiros. O desenho, provavelmente, foi inspirado pelo Parafuso de Arquimedes, uma bomba de água da Antiguidade.

Mas, pelas limitações tecnológicas da época, não havia como um helicóptero ser de fato construído. Era preciso um rotor que produzisse a potência necessária para superar a força da gravidade, além de materiais leves e resistentes o suficiente.

(Imagem via @decifrandoastronomia)
Após 582 anos, algo parecido com o que da Vinci sonhou ultrapassou as fronteiras do nosso planeta. Com duas grandes hélices de uma moderna espuma de fibra de carbono, o Ingenuity pesa apenas 1,8 kg. Ele já fez vários voos de sucesso em Marte.

As pás de 1,2 metro de comprimento tiveram de trabalhar a uma absurda taxa de 2.500 rotações por minuto. Isso é cinco vezes mais rápido que um helicóptero terrestre comum, que dá 400 a 500 giros por minuto.

Essa velocidade e leveza foram necessárias para conseguir decolar em uma atmosfera que tem 1% da densidade do ar terrestre no nível do mar. Foi como voar a mais de 30 mil metros de altitude em nosso planeta.

A revolução científica e tecnológica moderna, de alguma forma, nos conecta à época do Renascimento. Dois objetos voadores, separados por mais de meio século e 300 milhões de quilômetros. Se a Nasa de alguma forma se inspirou no desenho, não sabemos —mas caberia uma homenagem, da mesma forma que fizeram com Orville e Wilbur Wright.

A agência espacial batizou o local onde o Ingenuity está decolando e pousando em Marte de "Wright Brothers Field", em homenagem aos irmãos pioneiros, que "disputam" com Santos Dumont o posto de inventores do avião. Isso gerou revolta entre os brasileiros.

Qual foi? Fiquei maior felizão com o voo do ingenuity mas irmãos Wright é meus ovo, com catapulta até elefante voa. Por meios próprios quem conseguiu foi apenas O 14 BIS de Santos Dumont.

O Ingenuity, ao lado do robô-jipinho Perseverance, está transformando a exploração espacial. Se bem-sucedido, abrirá portas para uma extensiva exploração aérea de Marte e de outros planetas em futuras missões, adicionando um ponto de vista que não consegue ser capturado nem por rovers nem por sondas orbitadoras.

Via Marcella Duarte (Colaboração para Tilt)

domingo, 14 de abril de 2024

Golfo de Sidra: o que aconteceu durante as únicas vitórias em combate dos EUA na década de 1980

O F-14 Tomcat prevaleceu em ambos os encontros.

Grumman F-14D(R) Tomcat (Foto: BrayLockBoy/Wikimedia Commons)
Apesar de uma série de conflitos globais ocorridos durante a década de 1980, os Estados Unidos obtiveram apenas quatro vitórias em combate, todas atribuídas aos F-14 Tomcats. Dois incidentes ocorreram durante a década no mesmo local, no Golfo de Sidra, no Mediterrâneo.

Cada um desses dois incidentes viu um par de F-14 Tomcats, um caça de geometria variável há muito aposentado pelas Forças Armadas dos Estados Unidos, abatendo um par de caças da era soviética fornecidos à Força Aérea da Líbia pela URSS. O primeiro desses eventos, mais comumente referido como Incidente no Golfo de Sidra de 1981, viu dois Su-22 Fitters serem abatidos.

F-14 Tomcat (Foto: Marinha dos Estados Unidos)
O segundo evento, que ocorreu aproximadamente na mesma área geográfica, mas um pouco mais próximo da costa, ocorreu oito anos depois e é mais comumente conhecido como Batalha Aérea de Tobruk, mas também foi referido como Incidente do Golfo de Sidra de 1989. Neste encontro, os caças dos Estados Unidos derrubaram dois MiG-23 Floggers.

Os ataques aéreos dos EUA às forças navais da Líbia também ocorreram aproximadamente na mesma região em 1986, mas as únicas vitórias em combate ar-ar das Forças Armadas dos EUA da época ocorreram nestes dois incidentes. Neste artigo, examinaremos mais profundamente a história dos Incidentes no Golfo de Sidra.

Prelúdio


Em 1973, o governo líbio liderado pelo ditador Muammar Gaddafi alegou que o Golfo de Sidra fazia parte das suas águas territoriais, uma violação do direito marítimo internacional. Como resultado, os EUA empreenderam operações militares para garantir a liberdade de navegação na região, o que levou a uma rápida escalada das tensões.

Porta-aviões da Marinha dos EUA (Foto: Marinha dos Estados Unidos)
Em 1980, de acordo com o The New York Times, as forças líbias começaram a disparar contra voos de reconhecimento dos EUA e a rastrear transportes de carga, levando o presidente Ronald Reagan a enviar o USS Forrestal e o USS Nimitz, um par de porta-aviões, para a zona disputada. . Em 18 de agosto de 1981, aeronaves líbias aproximaram-se dos porta-aviões norte-americanos, levando à interceptação de caças, e um MiG-25 líbio disparou um míssil contra caças americanos pouco depois.

O primeiro incidente


Mais tarde, em agosto de 1981, em meio ao auge das tensões entre as duas nações sobre disputas territoriais no sul do Mediterrâneo, dois F-14 Tomcats foram encarregados de interceptar dois caças Su-22 Fitter da Líbia. Ao perceber que estavam prestes a ser interceptados, um dos pilotos líbios disparou um míssil AA-2 "Atoll" contra os Tomcats, que errou por pouco o alvo.

Ao receber fogo inimigo, os F-14 atacaram seus alvos, e o par de jatos Su-22 imediatamente se separou ao ser alvejado para realizar manobras evasivas. Depois de um duelo, os F-14 foram capazes de abater ambas as aeronaves inimigas usando mísseis ar-ar de curto alcance AIM-9L Sidewinder.

Fontes estão em conflito sobre o que aconteceu depois que os dois jatos líbios foram abatidos com sucesso. Todas as fontes podem confirmar que os pilotos líbios foram ejetados. No entanto, alguns, incluindo um Relatório da Marinha dos EUA, disseram que seus paraquedas não abriram durante a descida, levando a mortes em combate.


Na sequência deste combate inicial, dois MiG-25 logo tentaram atingir porta-aviões dos EUA na área, mas foram rapidamente interceptados por mais F-14 Tomcats. Os líbios continuaram a provocar os porta-aviões norte-americanos ao longo dos meses seguintes, mas nenhum envolvimento ar-ar directo resultou no Golfo de Sidra nos anos seguintes.

Interlúdio


Ao longo dos anos seguintes, as hostilidades continuaram, com os EUA continuando a não reconhecer as reivindicações territoriais da Líbia. Um ataque terrorista de Abril de 1986 na Alemanha, que resultou na morte de dois soldados americanos e de um civil turco, acabou por estar ligado à Líbia, resultando em ataques aéreos retaliatórios dos EUA contra o país.

(Foto: Marinha dos Estados Unidos)
A Líbia logo começou a tentar obter armas de destruição em massa, algo de grande preocupação para o Presidente Reagan. As tensões chegaram ao ponto máximo em 1988, quando o país começou a construir uma fábrica de armas químicas perto da cidade de Rabta. Com medo de um ataque retaliatório, a Líbia começou a aumentar as suas defesas aéreas na região e colocou os seus militares em prontidão de combate, segundo o The New York Times.

O segundo incidente


O segundo incidente ocorreu em 4 de janeiro de 1989, quando dois Floggers MiG-23 líbios se aproximaram do grupo de ataque do porta-aviões USS John F. Kennedy, algo que alarmou bastante as forças americanas. Em resposta, dois F-14 Tomcats foram rapidamente mobilizados para interceptar os caças líbios.

À medida que os MiG-23 se aproximavam do grupo de porta-aviões, os pilotos de caça dos EUA rapidamente procuraram interceptá-los, seguindo todo o protocolo operacional padrão para interceptação de caças. Embora os caças líbios tentassem evitar o confronto direto com os caças americanos, eles eventualmente não conseguiram evitar um confronto e rapidamente se encontraram em rota de colisão com os Tomcats.

Os F-14 mergulharam rapidamente para evitar a detecção do radar e armaram os mísseis ar-ar AIM-7 Sparrow assim que a autorização apropriada foi dada. Os pilotos do Tomcat rapidamente tentaram estabelecer comunicação com os jatos líbios, mas não conseguiram e começaram a disparar seus mísseis.


A salva inicial de mísseis ar-ar AIM-7 não atingiu seus alvos, forçando os F-14 a recorrer a manobras defensivas e começaram a disparar mísseis ar-ar AIM-9 Sidewinder. Esses mísseis atingiram seus alvos com sucesso, com mortes atribuídas aos F-14 Tomcats com indicativos Gypsy 202 e Gypsy 207. Os pilotos norte-americanos compreenderam extremamente bem a dinâmica do MiG-23, como resultado de inúmeras horas de testes em aeronaves capturadas, de acordo com The Washington Post.

Tal como aconteceu durante o incidente de 1981, as fontes não chegaram a um consenso sobre o que aconteceu aos dois pilotos líbios, ambos ejetados dos seus aviões. Após o combate, ambos os F-14 Tomcats retornaram prontamente ao grupo de ataque do porta-aviões com o qual viajavam.

Com informações do Simple Flying

Avião da Segunda Guerra é descoberto com restos mortais de tripulantes em mar infestado de crocodilos

Avião da Segunda Guerra é descoberto com restos mortais de tripulantes em mar infestado de crocodilos.

Bombardeiro da Segunda Guerra Mundial foi localizado em 2020, mas 50 mergulhos
foram necessários para confirmar identificação de aeronave (Foto: Divulgação)
Autoridades australianas anunciaram, nesta quarta-feira, terem descoberto os destroços de um bombardeiro da Segunda Guerra Mundial na Papua-Nova Guiné, em uma área habitada por crocodilos de águas salgadas. Os restos mortais dos tripulantes da aeronave também foram encontrados pelos pesquisadores.

O bombardeiro A9-186 foi atingido por armas antiaéreas durante um ataque de setembro de 1943. O avião foi localizado em 2020 há uma profundidade de 42 metros da superfície. Cerca de 50 mergulhos foram necessários para confirmar a identificação da aeronave.

— É um ambiente bastante desafiador por causa dos crocodilos de água salgada e da baixa visibilidade (...) É muito desafiador, depois de 80 anos em água salgada, obter uma identificação positiva — disse Steve Burnell, líder da expedição, em entrevista ao canal de televisão CBS.

Testes de DNA confirmaram que os restos mortais do A9-186 pertenciam a dois australianos: os suboficiais Clement Batstone Wiggins, de 28 ano, e Russell Henry Grigg, de 34. "Infelizmente, é com pesar que podemos confirmar que nenhum resto dos outros dois tripulantes, o Sargento de Voo Albert Beckett e o Sargento de Voo Gordon Lewis Hamilton, foram recuperados", diz a nota da Força Aérea Australiana que anunciou a descoberta.

Avião foi localizado em buscas financiadas por bilionário pelo corpo do tio desparecido
no conflito mundial há 80 anos (Foto: Divulgação)
"A placa de identificação da aeronave e a alavanca da cabine foram recuperadas no local e serão devolvidas à Austrália", diz a nota divulgada pelas autoridades do país.

As buscas por destroços de aeronaves da Segunda Guerra Mundial na costa de Papua Nova Guiné são uma iniciativa do bilionário australiano Andrew Forrest. O empresário busca localizar o avião de seu tio, David Forrest, desaparecido em combate aos 22 anos, em 1943. O avião de David foi visto pela última vez quatro meses antes do ataque que derrubou o bombardeiro A9-186.

Forrest havia saído em uma missão noturna para atacar uma base japonesa na vila de Gasmata, na parte sul da ilha. Ele e os demais tripulantes do bombardeiro não foram mais encontrados desde então.

"Continuamos esperançosos em nossa busca por meu falecido tio David e seus companheiros de tripulação. Nunca desistiremos até encontrá-los", disse Andrew Forrest, em um comunicado.

sábado, 13 de abril de 2024

História: O "Esquadrão 303" - Os Heróis Poloneses na Batalha da Grã-Bretanha

Pilotos do Esquadrão 303: F/O Ferić , F/Lt Ten Kent, F/O Grzeszczak, P/O Radomski,
P/O Zumbach, P/O Łokuciewski, F/O Henneberg, Sgt Rogowski, Sgt Szaposznikow (em 1940)
Os pilotos poloneses conquistaram um lugar especial na história britânica. Formado em 2 de agosto de 1940, o 303º Esquadrão de Caças Tadeusz Kościuszko Varsóvia mostrou sua excepcional eficiência e bravura durante a Batalha da Grã-Bretanha. Com seu heroísmo, o No. 303 Squadron provou estar à altura dos feitos de seu grande patrono, Tadeusz Kościuszko.

A Batalha da Grã-Bretanha foi uma campanha aérea travada no sul e centro da Inglaterra de 10 de julho de 1940 a 31 de outubro de 1940. O objetivo da massiva ofensiva alemã era preparar as Ilhas Britânicas para o desembarque nazista, e as ideias por trás do Terceiro Reich os ataques aéreos estavam destruindo a RAF, dominando o espaço aéreo britânico e cortando as rotas de comunicação das forças aliadas. 

A batalha foi travada entre a Luftwaffe alemã e unidades britânicas da RAF. Os pilotos poloneses do Esquadrão No. 303 lutaram lado a lado com a Força Aérea Real Britânica. Para eles, foi uma oportunidade não apenas de demonstrar suas habilidades de combate, mas também de se vingar dos alemães no primeiro ano da guerra destrutiva. O Terceiro Reich começou em 1939 com o ataque a Wieluń e o bombardeio de Westerplatte (Polônia) pelo encouraçado alemão SMS Schleswig-Holstein.

Por decisão do Comando de Caça da RAF britânica, o Esquadrão nº 303 foi autorizado a travar batalhas aéreas sobre a Grã-Bretanha em meados de agosto de 1940. Essa decisão, no entanto, inicialmente consistia em uma autorização limitada para lutar como uma unidade militar de reserva. 

A principal razão para isso foi o processo ainda em andamento de apresentar aos pilotos poloneses os procedimentos britânicos e adquirir habilidades linguísticas. Os britânicos também acreditavam que os poloneses não seriam capazes de dominar sua tecnologia de aviação, pois já haviam voado em máquinas obsoletas. 

O principal crítico da participação do Esquadrão No. 303 na Batalha da Grã-Bretanha foi o oficial da RAF Hugh Dowding. A situação mudou quando os alemães começaram a ganhar uma vantagem perigosa nos primeiros dias de batalha. Naquela época, o comando da RAF decidiu dar uma chance aos poloneses.

Os pilotos poloneses fizeram seu primeiro voo operacional em 24 de agosto de 1940, em uma patrulha aérea sobre o aeródromo de Northolt. Após a primeira ação bem-sucedida, o No. 303 Squadron iniciou patrulhas regulares do espaço aéreo britânico.


O primeiro voo de combate com os poloneses ocorreu em 30 de agosto de 1940. Ainda assim, pretendia ser um exercício de treinamento com o objetivo de introduzir o esquadrão polonês no combate aéreo real. Durante esse treinamento, cujo objetivo específico era simular um ataque a um bombardeiro britânico Bristol Blenheim, o piloto polonês Ludwik Paszkiewicz avistou um caça alemão Messerschmitt Bf 110 na área e o abateu. No dia seguinte, o esquadrão foi declarado operacional e oficialmente colocado em serviço integral. 

Como o Coronel Witold Urbanowicz lembrou em uma reportagem para a Rádio Polonesa, depois de apenas alguns dias de luta, os pilotos poloneses eram bons o suficiente para se tornarem instrutores dos britânicos. Durante a Batalha da Grã-Bretanha, os alemães perderam 1.733 aeronaves (quase 700 a mais que as forças aliadas) e cerca de 650 foram danificadas. Isso era mais da metade do potencial total da Luftwaffe.

No. 303 Squadron RAF está classificado entre as melhores unidades de caça da Segunda Guerra Mundial. Na época da Batalha da Grã-Bretanha em 1940, foi creditado por abater 126 máquinas alemãs, colocando-o em primeiro lugar entre os esquadrões de caça na batalha. 

Quatro esquadrões poloneses lutaram na Batalha da Grã-Bretanha: dois esquadrões de bombardeiros (300 e 301) e dois esquadrões de caças (302 e 303). Além disso, havia 81 pilotos poloneses nos esquadrões britânicos. De acordo com documentos oficiais do Instituto Polonês de Memória Nacional (IPN) e um relatório de Robert Gretzyngier e Wojciech Matusiak, 145 pilotos poloneses participaram da batalha, mas este número não inclui o pessoal técnico polonês, cuja contribuição para a vitória foi igualmente significativo.


Em reconhecimento aos pilotos poloneses, que foram cruciais para a vitória da Grã-Bretanha e seus aliados, o Memorial da Força Aérea Polonesa foi erguido em 1948 no oeste de Londres (perto da estação RAF Northolt original). É um monumento comemorativo dos pilotos do No. 303 Squadron que ajudaram os Aliados durante a Segunda Guerra Mundial. 

Na Polônia, nossos heróis também têm seus monumentos, e o dia que comemora sua contribuição para a vitória sobre a Alemanha na Batalha da Grã-Bretanha é 1º de setembro. Todo polonês deve cultivar a memória e o legado dos bravos pilotos que, em nome da liberdade, se levantaram para lutar contra um regime totalitário.

Edição de texto e imagens por Jorge Tadeu

Raio pode derrubar um avião? O que acontece com a aeronave nessa hora?

Aviões são atingidos por raios enquanto voam
(Imagem: YouTube/Sjónvarp Víkurfrétta/Ziggy Van Zeppelin/ Valk Aviation)
Milhares de aviões são atingidos por raios anualmente. Estima-se que cada um dos mais de 27 mil aviões comerciais espalhados pelo mundo seja atingido pelo menos de uma a duas vezes por ano.

Mesmo causando preocupação nas pessoas, e até mesmo sendo assustador às vezes, hoje isso não representa mais riscos para quem está voando. Os aviões modernos são desenvolvidos para não sofrerem com os raios, e ainda passam por revisões de segurança cada vez que isso ocorre.

Avião de Miley Cyrus foi atingido 


No mês passado, a cantora norte-americana Miley Cyrus postou em suas redes sociais que seu avião havia sido atingido por um raio. 

Ela voava da Colômbia com destino a Assunção, capital do Paraguai, mas, após a ocorrência, precisou fazer um pouso não programado no aeroporto de Guarani, perto de Ciudad del Este, devido ao mau tempo. 

A cantora mostrou o momento em que o raio atinge o avião e, posteriormente, como ficou um pedaço da fuselagem atingida. Houve apenas um susto, e poucas horas depois os passageiros foram realocados em outros voos enquanto o avião era inspecionado.


Proteção


Quem está dentro de um avião não sofre com a descarga elétrica de um raio devido ao conceito da Gaiola de Faraday. De maneira simplificada, a fuselagem metálica do avião forma um invólucro que conduz a eletricidade à sua volta, mantendo quem está do lado de dentro seguro.

Assim, o raio é conduzido pelo lado de fora da aeronave apenas, e quem está do lado de dentro deve sentir só o incômodo do clarão e do som (se for o caso). 

Até mesmo nos aviões modernos, com a fuselagem feita de materiais compósitos, que não são tão bons condutores de eletricidade, há estruturas e tratamentos para isso. Nessas situações, os materiais, como a fibra de carbono encontrada na fuselagem, são cobertos com uma fina camada de cobre, além de serem pintados com uma tinta que contém alumínio.

Nariz do avião possui fios condutores para não ser afetado caso seja atingido por raios
(Imagem: Alexandre Saconi)
Um desses locais é o nariz do avião, que não costuma ser de material metálico, já que ali ficam sensores e o radar meteorológico da aeronave. Caso ele fosse metálico, atrapalharia os sinais dos equipamentos e, por isso, ele conta com fios para conduzir a eletricidade para o corpo do avião e dissipá-la no ambiente.

Precisa pousar?


Em grande parte das vezes em que um avião é atingido por um raio, o piloto decide pousá-lo para que sejam feitas inspeções de segurança. São os tripulantes que definem se será possível continuar voando até o destino ou se será preciso colocar o avião no solo o quanto antes.

O ponto onde o raio atinge o avião não costuma ser grande, e sua dimensão pode ser a mesma da cabeça de um lápis. Isso é detectado pelas equipes de manutenção no solo, que observarão se não há maiores danos. 

Essas marcas podem ser, por exemplo, um rebite danificado, um ponto mais escurecido na pintura, tinta lascando, entre outras. Dependendo do tamanho do dano, o avião pode continuar a voar normalmente por um tempo, ainda que alguma pequena parte tenha sido danificada.

Para inspecionar todo o contorno do avião, algumas empresas usam, inclusive, drones com câmeras para poder observar em partes mais difíceis de serem alcançadas se houve algum dano.

Avião já caiu por raio (mas isso é coisa do passado)


Em dezembro de 1963, o avião que fazia o voo Pan Am 214 caiu em decorrência de um raio, matando todas as 81 pessoas a bordo. O Boeing 707 se aproximava do aeroporto internacional da Filadélfia (EUA) quando um raio atingiu sua asa.

O relatório do acidente indicou que a causa mais provável para a queda tenha sido uma explosão da mistura de combustível com o ar dentro da asa, que teria sido induzida pelo raio.

Após essa tragédia, foram feitas algumas recomendações de segurança, entre elas: 
  • Instalação de descarregadores de eletricidade estática nos aviões que ainda não os possuíam;
  • Utilização apenas de combustível Jet A nos aviões comerciais, já que esse gera menos vapor inflamável em comparação com outros combustíveis;
  • Mudança de peças e sistemas nos tanques das asas para evitar a formação de vapores que possam entrar em ignição com tanta facilidade.
Os computadores dos aviões modernos também são blindados para evitar qualquer tipo de problema. Somando-se a isso, pilotos tendem a evitar regiões com nuvens mais carregadas, onde há mais chance de esse tipo de descarga ocorrer.

Via Alexandre Saconi (UOL) - Fontes: Consultoria Oliver Wyman; Anac (Agência Nacional de Aviação Civil), Iata (Associação Internacional de Transportes Aéreos, na sigla em inglês), Inpe (Instituto Nacional de Pesquisas Espaciais), Blog da KLM e Serviço Meteorológico Nacional dos Estados Unidos.

Caças x drones: os UAVs assumirão a liderança no combate?

Os UAVs complementam as capacidades dos caças tradicionais.

Boeing MQ-25 Stingray (Foto: United States Navy)
Os recentes avanços tecnológicos permitiram a concepção de veículos aéreos não tripulados (UAV), ou drones, que são controlados a partir de estações terrestres através de computadores e software altamente sofisticados. De pequenos drones fotográficos a grandes veículos utilitários e equivalentes militares, o futuro parece ser para os UAVs. Para aplicações militares, os UAV são um substituto direto para aviões de combate, uma vez que as suas capacidades de combate são iguais?

As aeronaves de combate tradicionais existem há muito tempo e têm evoluído continuamente desde a Primeira Guerra Mundial. Os caças atuais são capazes de participar de quase qualquer tipo de missão de combate. Alguns dos programas de aeronaves de combate mais modernos são caros e essas aeronaves vieram para ficar por pelo menos mais algumas décadas.

Três F-16 voando em formação (Foto: Staff Sgt. Jessi Roth/US Air Force)
Lockheed Martin afirma sobre a icônica aeronave F-16 Block 70: “Os novos F-16 de produção aproveitam atualizações estruturais e de capacidade que garantem que a frota internacional de F-16 possa operar até 2060 e além.”

Os UAVs liderarão missões de combate e eventualmente substituirão os caças tripulados? Este artigo explora como as duas tecnologias diferem e alguns fatores complementares, conforme destacado por DW.com e MiGFlug.

Jatos de combate caros


Os caças modernos estão equipados com tecnologias, instrumentos e munições de última geração, o que os torna altamente capazes para missões de combate e extremamente caros para construir, comprar e operar. O Lockheed Martin F-35 Lightning II é o projeto de defesa mais caro da história. Custando quase 400 mil milhões de dólares, o projeto Joint Strike Fighter é mais caro do que o PIB de muitas nações consideravelmente grandes.

Lockheed Martin F-35A Lightning II da Força Aérea dos EUA (Foto: Mike Fuchslocher/Shutterstock)
As capacidades alegadas do jato F-35 podem justificar de certa forma o custo do programa. A Lockheed Martin afirma: “O F-35 é mais do que um caça a jato, é um poderoso multiplicador de força com sensores avançados e conjuntos de comunicações operando perto do campo de batalha e de uma posição elevada, melhorando significativamente as capacidades de redes aéreas, marítimas, espaciais, de superfície e terrestres. plataformas.”

Com um preço de US$ 154 milhões no F-35A, US$ 238 milhões no F-35B e US$ 237 milhões no F-35C, pode-se questionar se os ganhos de eficiência ainda são altos a esse custo (sem sequer considerar os custos operacionais). Da mesma forma, o custo unitário do F-22 Raptor é de aproximadamente US$ 400 milhões. Os caças modernos são construídos para substituir os jatos antigos da frota.
  • F-35A substitui o F-16 Fighting Falcon da USAF
  • O Fairchild A-10 Thunderbolt II da USAF é substituído pelo F-35A
  • O F-35C substitui a variante porta-aviões F/A-18 Hornet da Marinha dos EUA
  • O jato AV8B dos fuzileiros navais dos EUA é substituído pelo F-35B (variante STOVL)
Vários F-22 durante uma caminhada de elefante em uma pista (Photo: Aditya0635/Shutterstock)
Os ganhos de eficiência dos caças podem não ser suficientes para justificar o custo. Como isso se compara às capacidades e ganhos dos UAVs? Os ganhos de eficiência dos caças podem não ser suficientes para justificar o custo. Como isso se compara às capacidades e ganhos dos UAVs?

Veículos aéreos militares não tripulados (UAVs)

  • Mais fácil para construir e operar
  • Pode ser reduzido em tamanho
  • Pode ser controlado a partir de estações base
  • Pode se envolver em ambientes altamente perigosos
  • Risco mínimo ou nenhum risco de fatalidades
O blog do MiGFlug sugere que os UAV são o segmento que mais cresce na Força Aérea dos EUA. Não apenas em termos da capacidade de guerra da aeronave, mas também da infraestrutura circundante, incluindo treinamento de pilotos de UAV, estações base e exercícios de combate envolvendo UAVs. Enquanto a NATO conduz exercícios militares na Europa utilizando aviões de combate tradicionais, países como a Ucrânia dependem, de certa forma, de drones pequenos e baratos equipados com granadas para combater a guerra real.

Um drone de reabastecimento aéreo Boeing MQ-25 (Foto: Boeing)
Os UAVs são significativamente mais baratos e simples de operar, com riscos mínimos envolvendo humanos. Além disso, a tecnologia incorporada nos UAVs permite que eles sejam quase tão bons quanto os caças atuais. Além das atividades de combate, os UAVs podem realizar outras tarefas vitais, como o reabastecimento aéreo, que não requerem necessariamente um voo tripulado.

Fatores complementares


O Boeing MQ-25 Stingray foi projetado para fazer exatamente isso: revolucionar o reabastecimento aéreo. Estes podem ser dedicados ao desempenho de funções de tanque dentro das forças para liberar outras aeronaves (tripuladas) para missões táticas. 

A Marinha dos EUA declara sobre a ideia do drone MQ-25 Stingray: “Como os Hornets “clássicos”, através do FA-18D, não carregavam um pacote de reabastecimento de “loja de amigos”, os Hornets de modelos posteriores são necessários. Mas a missão do tanque corroeu gravemente a vida útil da fuselagem de seis mil horas do Super Hornet, reduzindo ainda mais a disponibilidade, uma vez que os FA-18E normalmente gastam 25 por cento do seu tempo tanque.”

Boeing MQ-25 em um porta-aviões (Foto: Boeing)
Da mesma forma, a integração do convés do porta-aviões é necessária para os drones mais novos, para que possam realizar uma ampla gama de missões. O MQ-25 Stingray oferece capacidades terrestres e de transporte para a Marinha dos EUA. De acordo com Boeing: “O MQ-25 traz a combinação certa de reabastecimento, autonomia e integração perfeita do porta-aviões para atender aos objetivos da Marinha dos EUA.”

O resultado final


Os UAVs podem ser reduzidos em tamanho e operados remotamente nas missões e regiões mais perigosas, mas não podem executar todas as tarefas que uma aeronave tripulada realiza. O elemento diferente? Um humano que toma decisões na cabine com base na situação. Os sensores não conseguem superar completamente o que os humanos podem fazer, especialmente durante missões estratégicas de alta intensidade.

A Lockheed Martin e a Força Aérea dos EUA evitaram que a plataforma de caça da próxima geração (6ª geração) fosse uma aeronave tripulada. Embora os drones certamente complementem os caças tradicionais, levará muito tempo até que os aviões de combate tripulados sejam totalmente substituídos por drones.

Com informações do SImple Flying

sexta-feira, 12 de abril de 2024

Como funciona a RAT (Ram Air Turbine)?

O pequeno equipamento que utiliza pressão de aríete para funcionar.

Um close da parte inferior do Airbus A350 com sua Ram Air Turbine externa
(Foto: Laurent Errera/Wikimedia Commons)
Uma Ram Air Turbine (RAT) é um pequeno componente que gera energia em caso de falha do motor. Embora as aeronaves sejam equipadas com uma Unidade Auxiliar de Energia (APU) para fornecer a energia necessária aos sistemas críticos em caso de falha completa do motor, o RAT oferece uma camada adicional de segurança.

Os RATs geram energia injetando pressão dinâmica - aquela que é exercida na aeronave devido ao seu movimento no ar. A pressão do aríete depende da velocidade da aeronave. Um RAT está localizado na parte traseira da aeronave e pode ser implantado por meio da força gravitacional.

A Ram Air Turbine de um Airbus A320 (Foto: Curimedia/Wikimedia Commons)
Com milhares de aviões transportando centenas de milhares de passageiros todos os dias, a segurança é a maior prioridade. Este artigo explica as funções do RAT e destaca alguns casos em que ele é utilizado em voos comerciais em situações de emergência.

Como funciona a RAT?


A Ram Air Turbine de uma aeronave é uma pequena hélice auxiliar que pode ser acionada em caso de perda de potência. Ele funciona gerando energia a partir da corrente de ar que passa por ele enquanto o avião voa, fazendo com que a turbina gire. A turbina pode ser conectada a um gerador ou a uma bomba hidráulica. Dessa forma, pode ajudar a alimentar os sistemas elétricos ou de controle de uma aeronave.

De acordo com a Skybrary, esses dispositivos normalmente estão localizados em compartimentos nas asas ou na fuselagem de uma aeronave. A quantidade de energia que um RAT gera depende da velocidade do avião no momento de seu uso. Eles trabalham usando o conceito de pressão dinâmica. Quanto maior a velocidade da aeronave, mais potência o RAT irá gerar.


O tamanho da RAT corresponderá ao da aeronave à qual está acoplado. Como tal, não é surpreendente que, com 1,63 metros de diâmetro, o Airbus A380 tenha o maior RAT entre os aviões contemporâneos. Um RAT típico terá cerca de 80 centímetros de largura e pode gerar entre 5 e 70 kW de potência quando solicitado durante uma emergência.

Uso da RAT em emergências - o 'Gimli Glider'


Houve vários incidentes em que o RAT de uma aeronave foi implantado para fornecer energia de emergência. Na verdade, a Collins Aerospace relata que o dispositivo salvou até 1.700 vidas em 16 incidentes documentados. Talvez entre os mais famosos deles esteja o voo 143 da Air Canada. Este serviço doméstico ficou sem combustível entre Montreal e Edmonton em 1983.

Vários trabalhadores de manutenção testando uma RAT de um Airbus A320
(Foto: Curimedia/ Wikimedia Commons)
A tripulação desceu com sucesso o Boeing 767 de 41.000 pés para fazer um pouso de emergência na Estação RCAF Gimli, em Manitoba. Isso fez com que o incidente se tornasse conhecido como 'Planador Gimli'. As manobras realizadas pela tripulação antes do pouso interromperam o fluxo de ar ao redor do RAT. Isso diminuiu ainda mais sua potência hidráulica, tornando a aeronave mais difícil de controlar. Apesar disso, a tripulação conseguiu pousar a aeronave sem vítimas fatais e apenas dez feridos leves entre os 69 passageiros e tripulantes.

Famosas implantações de RAT do século 21


O RAT também foi utilizado num incidente semelhante de esgotamento de combustível envolvendo o voo 236 da Air Transat em 2001. Neste caso, o Airbus A330 que voava de Toronto para Lisboa planeou durante mais de 160 quilómetros depois de ficar sem combustível sobre o Oceano Atlântico. Acabou por aterrar em segurança no Aeroporto das Lajes, nos Açores, sem vítimas mortais e apenas 18 feridos entre os 306 passageiros e tripulantes.

Uma foto aproximada de uma RAT em um Boeing 757 (Foto: Swampfoot/Wikimedia Commons)
Uma aeronave também pode perder potência como resultado de outros incidentes, como colisões com pássaros. Um dos, se não o mais conhecido ataque de pássaros na memória recente, envolveu o voo 1549 da US Airways em 2009. Neste caso, um Airbus A320 que partia perdeu todo o poder sobre Nova Iorque depois de atingir um bando de gansos.

Numa impressionante demonstração de habilidade e bravura, os pilotos Chesley Sullenberger e Jeffrey Skiles abandonaram com sucesso a aeronave no Rio Hudson após a falha do motor. Sem mortes, o abandono foi sem precedentes e ficou conhecido como o 'Milagre do Hudson'.

Com informações de Simple FlyingSkybrary e Collins Aerospace

'Caveirão voador': Polícia do RJ usa helicóptero da Guerra do Vietnã

Helicóptero Huey da Polícia Civil do RJ; exemplar esteve na Guerra do Vietnã (Imagem: Divulgação)
A Polícia Civil do Rio usa um helicóptero das forças armadas dos EUA que esteve na Guerra do Vietnã (1959 a 1975).

Como é a aeronave?

O helicóptero é um Bell UH-1H. O modelo também é chamado de Huey. Ele foi fabricado em 1967. Seu número de série é o 67-17304. O mesmo exemplar esteve na Guerra do Vietnã. Ele ficou lá de 1968 a 1971.

Essa unidade era apelidada de Strange Daze pelos militares. Especula-se que esse nome seja uma referência a uma música da banda The Doors ("Strange Days"). Ele também serviu na força de segurança pública nos EUA. Isso ocorreu após deixar o Exército norte-americano.

O helicóptero é apelidado de "caveirão voador" ou "caveirão do ar". É uma comparação com o blindado usado pela Polícia Militar do Rio de Janeiro.

Helicópteros do mesmo modelo também foram utilizados pela FAB (Força Aérea Brasileira) entre 1967 e 2018. Na Aeronáutica, seu apelido era "Hzão" ou "Sapão".

Passou a ser usado no Rio em 2008

O helicóptero começou a voar pela Polícia Civil do Rio em 2008. Antes disso ele estava nos Estados Unidos. Foi trazido em uma viagem de seis dias devido à necessidade de parar a cada 455 km, que é a distância máxima que ele pode voar sem reabastecer.

A aeronave possui blindagem contra disparos de arma de fogo, como pistolas e fuzis. Seu custo estimado é de R$ 8 milhões. A Polícia Militar do Rio de Janeiro também possui um Huey.

Helicóptero 'descartável'

Helicóptero UH-1 Huey sendo jogado ao mar ao final da Guerra do Vietnã,
durante a operação Vento Constante (Imagem: Divulgação/Marinha dos EUA)
Os militares norte-americanos jogaram dezenas de helicópteros como o Huey no mar com o fim da Guerra do Vietnã. A medida foi necessária para abrir espaço de resgate nos navios onde os helicópteros ficavam.

Muitas pessoas estavam fugindo do Vietnã na época. Elas iam em direção aos porta-aviões dos EUA.

Não havia muito espaço no convés dos navios. Assim, helicópteros eram atirados ao mar para permitir novos pousos de resgate.

Ao menos 45 UH-1 Huey foram lançados na água. Outros três CH-47 Chinook também foram arremessados.

Perigo em voos

A blindagem do "caveirão do ar" tem um motivo. Há diversos casos de helicópteros que sobrevoam o Rio foram atingidos por disparos a partir do solo.

Associação emitiu alerta a pilotos sobre tiros. A Associação Brasileira de Pilotos de Helicóptero divulgou um mapa em 2022 de regiões da cidade do Rio de Janeiro onde sobrevoos de helicópteros devem ser evitados devido ao alto risco de disparos de arma de fogo.

A medida ocorreu após piloto de helicóptero particular relatar ter sido alvo de tiros. O caso aconteceu na Vila Cruzeiro, e, apesar de estar a uma distância segura, a aeronave foi perfurada pelos disparos.

Ficha Técnica

A norte-americana Bell oferece uma versão modernizada do modelo, o Huey II. Ele conta com novos instrumentos e permite reaproveitar as estruturas dos helicópteros mais antigos para os padrões atuais de voo e segurança.
  • Capacidade: De 12 (configuração padrão) a 15 pessoas a bordo
  • Velocidade de cruzeiro: 196 km/h
  • Distância máxima de voo: 455 km
  • Tempo máximo de voo: 2 horas e 36 minutos
  • Volume do tanque: 799 litros
  • Peso vazio: 2,5 toneladas
Via Alexandre Saconi (Todos a Bordo)

Russos estão testando entradas de ar para sistema elétrico que vai melhorar a sustentação de aviões regionais


Especialistas russos estão testando entradas de ar para um sistema elétrico destinado a proporcionar uma melhora na sustentação em um programa de aeronave regional proposto. O trabalho faz parte do projeto de pesquisa Integral-RS e está vinculado a uma potencial aeronave que substituiria os Yak-40 da Yakovlev e os An-24 da Antonov.

Segundo o Instituto Central de Aerohidrodinâmica, a aeronave seria projetada para decolar de pistas curtas e irregulares em regiões remotas. Neste caso, seria equipada com um impeller elétrico, unidade de potência distribuída para aumentar a capacidade de carga do avião.

Pesquisadores conduziram testes em túnel de vento para estudar as características da entrada de ar em voo de cruzeiro, simulando sua operação a velocidades entre 260 e 400 nós. Os pesquisadores examinaram a dinâmica do fluxo de ar e os perfis de pressão na entrada do motor, para explorar os efeitos do ângulo de ataque e derrapagem lateral.

O instituto diz que os resultados ajudarão na preparação de uma seção experimental de asa a ser testada num laboratório de voo Yak-40.

Com o sistema de impeller, diz Evgeny Pigusov, vice-chefe do centro de tecnologia integrada do instituto, o coeficiente de sustentação da asa pode “aumentar significativamente”, reduzindo o comprimento da corrida de decolagem.

Os institutos envolvidos na cooperação dessa iniciativa incluem o Centro Nacional de Pesquisa de Zhukovsky, o Instituto Central de Motores de Aviação e o Centro de Pesquisa de Aviação Siberiano (SibNIA).

É seguro? Caminho de sua mala até o avião percorre labirinto escuro


Brasileiras tiveram malas trocadas nos bastidores do aeroporto de Guarulhos e acabaram sendo presas em Frankfurt, Alemanha, por tráfico internacional de drogas. As bagagens com as etiquetas delas estavam cheias de cocaína.

O caso é fora do comum na rotina de um aeroporto, até pela atuação de uma quadrilha. Nos bastidores, o normal é um clima de correria constante, assim como uma insistente mistura de perfumes que paira sobre o ar daqueles que estão escolhendo pacotes de chocolates etiquetados com valores em dólares.

Como funciona o sistema que leva suas bagagens despachadas do balcão até as aeronaves?


Estamos no meio do free shop de um saguão de embarques, mas não entraremos em nenhum voo. Entre uma vitrine de perfumes e a parede de outra loja, somos levados a um corredor de serviço que não conta com o glamour dos inúmeros anúncios de cosméticos estampados alguns passos atrás. Este é o segundo labirinto de portas, acessos e liberações por crachás que passamos para acessar a parte técnica do aeroporto.

A primeira é uma rigorosa inspeção de documentos enviados previamente e uma triagem passando por raio-x e detectores de metal até mais minuciosa das enfrentadas pelos viajantes. Dividimos a fila e burocracia com trabalhadores das áreas e do próprio aeroporto que enfrentam diariamente aquele protocolo para chegar nesta área reservada do aeroporto.

Cadê todo mundo?


Depois de uma passagem pela sala de controle, finalmente vamos conhecer as esteiras: aí sim a palavra labirinto pode ser usada de maneira apropriada. Perder-se ali dentro não seria uso exagerado da expressão, e sim uma realidade. Se a sua imagem mental de como sua mala vai do balcão até o avião inclui inúmeros trabalhadores, esqueça.

O que se vê ali são dezenas de centenas de metros de esteiras, rampas e esquinas por onde os mais diferentes tipos de bagagem passam por ali, desengonçadas, trombando pelas paredes e esbarrando em quinas e desaparecendo na escuridão.

É como se fosse uma grande fábrica, escura, com um som intermitente de maquinário, mas não há matéria-prima e nem produto final: só malas indo e vindo e sem parar em um balé que parece caótico, mas organizado por códigos de barra e feixes de laser que fazem suas leituras milhares de vezes por minuto.

Segundo dados passados por um dos funcionários da Vanderlande, que nos guiou juntamente com a equipe da Sita, que é provedora de toda TI da estrutura, são cerca de 350 mil bagagens por mês que passam por ali naquele terminal.

Um labirinto escuro, mas organizado


Quando os funcionários da Sita ou da Vanderlande estão conversando entre si, sempre surge a expressão "bipar". O termo é usado toda vez que é realizada a leitura do código de barra que é fixado na sua mala na hora da entrega no balcão de check-in. Daí a palavra surgida do barulhinho que os aparelhos fazem quando fazem cada registro.

Este é uma parte crucial de todo o sistema que roda ali. É aquela sequência de dígitos que não faz sentido algum para um leigo que determina o proprietário da mala, a companhia aérea, número do voo, qual esteira foi deixada, destino, onde ela está e outras informações que farão com que ela chegue ao avião.

São esses números que fazem o sistema rodar parte mais complexa dos bastidores, definir qual bagagem vai para cada voo. "E caso exista mais de um código de barra na mala?", pergunta a reportagem. De acordo com nosso guia, o algoritmo é inteligente o suficiente para entender os códigos ativos e aqueles expirados. Por via das dúvidas, não custa nada retirar as etiquetas antigas de outras viagens que podem ainda estar presas à bagagem.

Em sua penúltima parada antes do avião, as esteiras levam as malas para um mecanismo que chamam de "sorter" (selecionador, em tradução livre). Cada mala fica sobre uma plataforma conectada com rampas em um andar inferior. Dependendo do destino da mala e das informações colocadas no sistema, estas bandejas se viram e despejam as bagagens na sua respectiva rampa (ver 1min13 do vídeo acima).

Dali, elas escorregam até operadores — nesta etapa sim vemos mais presença humana — que vão organizar as malas nos carrinhos que serão conduzidos até as aeronaves.

Tá olhando o quê?


A rigorosa segurança que enfrentamos para entrar nesta área reservada também acontece com as bagagens. São várias áreas de checagem de raio-x e protocolos para manter as malas seguras. Quem assistiu a qualquer reality show de aeroporto sabe do que falamos: o temor de se ver em meio a um contrabando ou simplesmente ter algo bem seu extraviado.

Existe inclusive um monitoramento dos próprios funcionários que estão ali. Caso algum deles faça um número de checagens exagerada em uma mala ou demonstre um certo interesse fora do padrão em alguma bagagem ou voo em específico, isso fará um alerta às equipes responsáveis para averiguar a situação.

É claro que quem já teve sua mala perdida em um voo sempre terá um friozinho na barriga ao deixá-la no balcão, mas tem muita tecnologia envolvida para evitar que isso aconteça. Lembre-se de deixar sua mala bem identificada, arranque as etiquetas de outros voos e boa viagem!

Via Osmar Portilho (Nossa/UOL)

quarta-feira, 10 de abril de 2024

5 curiosidades sobre decolagens e pousos de porta-aviões:

As decolagens e pousos em porta-aviões são planejados e executados com precisão.

Um T-45C Goshhawk é decolando do convés de voo de um porta-aviões (Foto: Marinha dos EUA)
Operar um caça em um porta-aviões é uma tarefa desafiadora. Ao contrário das operações tradicionais de pista terrestre, a decolagem e o pouso de porta-aviões exigem treinamento, habilidades e planejamento precisos por parte do piloto e do pessoal de apoio em terra.

Os porta-aviões tecnologicamente avançados são construídos para transportar uma variedade de aeronaves no exterior, lançar e pousar aeronaves e servir como centro de comando móvel para operações aquáticas. Simple Flying compila uma lista de fatos sobre procedimentos de decolagem e pouso em porta-aviões, conforme destacado em Howstuffworks.com.

1. Assistência à decolagem


As aeronaves dependem de vários métodos devido à curta distância de decolagem
  • Movendo a direção do navio contra o vento
  • Catapultas
  • Barra de reboque
  • Espera um pouco
  • Defletor de explosão de jato (JBD)
Para que a aeronave decole do solo, grandes quantidades de ar devem fluir sobre as asas para criar sustentação. A pista de decolagem é muito curta (aproximadamente 300 pés, 90 m), portanto a aeronave deverá receber outros auxílios. Primeiro, a direção do navio é alterada para enfrentar o vento contrário, o que auxilia na redução da velocidade de decolagem da aeronave.

Um ataque SEPECAT Jaguar da Força Aérea Francesa pousando em um porta-aviões (Foto: Dassault)
Além disso, a aeronave utiliza sistema de catapulta, engate de reboque, retenção e defletor de jato (JBD) para assistência à decolagem. A aeronave é posicionada na parte traseira da catapulta antes que a barra de reboque seja fixada no trem de pouso do nariz.

A barra de retenção é colocada atrás das rodas (algumas aeronaves, como F-14 e F/A-18, possuem retenção embutida no trem de pouso do nariz). O JBD é elevado à popa da aeronave para desviar a corrente descendente do motor. Quando a barra de reboque, o retentor e o JBD estiverem no lugar e as verificações finais tiverem sido realizadas, é hora de disparar a catapulta.

2. Tiro da catapulta


A pressão da catapulta e o impulso do motor são coordenados com precisão
  • Peso da aeronave 54.000 libras (24.500 kg)
  • Velocidade 0 a 166 mph (0 a 265 km/h)
  • Hora da velocidade de decolagem 2 segundos
  • Distância de decolagem 300 pés (90 m)
Os porta-aviões são geralmente equipados com quatro catapultas, cada uma equipada com dois pistões e dois grandes cilindros paralelos posicionados sob a cabine de comando. Os cilindros são preenchidos com vapor de alta pressão proveniente dos reatores do navio. Quando os pistões são travados no lugar, os cilindros aumentam a pressão.

Aterrissagem do porta-aviões USMC F-35B
(Foto: Corpo de Fuzileiros Navais dos Estados Unidos/Wikimedia Commons)
Quando os cilindros atingem a pressão ideal, os motores são ligados. O holdback mantém a aeronave no lugar enquanto a quantidade necessária de empuxo é gerada. Com a catapulta e o impulso do motor no nível necessário, o oficial libera os pistões. A pressão libera a retenção, jogando a aeronave para frente. A velocidade da aeronave vai de 0 a 165 mph (265 km/h) em dois segundos antes de decolar do convés.

3. Sistema de orientação de pouso


Sistema de pouso óptico de lente Fresnel

  • Luz âmbar alinhada com as luzes verdes: Abordagem normal
  • Luz âmbar acima das luzes verdes: Muito alto
  • Luz âmbar abaixo das luzes verdes: Muito baixo
  • Luzes vermelhas: Demasiado baixo
Os pilotos devem ficar atentos à aproximação e ao pouso da aeronave. O sistema de orientação de pouso, como o Fresnel Lens Optical Landing System, é usado para orientação de pouso. Além disso, os Landing Signal Officers (LSOs) guiam a aeronave através de comunicação de rádio.

Boeing MQ-25 (Foto: Boeing)
O sistema de pouso exibe diferentes luzes no convés, permitindo um pouso preciso no porta-aviões. Com a distância de pouso muito curta (aproximadamente 315 pés, 96 m), os pilotos devem garantir que a luz âmbar permaneça alinhada com as luzes verdes. Está muito alto e a luz âmbar aparecerá acima das luzes verdes. Se estiver muito baixo, a luz âmbar aparecerá abaixo das luzes verdes. Quando os pilotos se aproximam muito baixo, eles veem luzes vermelhas, indicando um erro grave e exigindo correção.

4. Prendendo o gancho traseiro no fio de travamento


Tempo para parar completamente: Dois segundos
  • Peso da aeronave 54.000 libras (24.500 kg)
  • Velocidade de pouso 150 mph (240 km/h)
  • Distância de pouso 315 pés (96 m)
  • Tempo de parada 2 segundos
A cabine de comando está equipada com quatro sistemas de cabos de travamento usados ​​para auxiliar no pouso. Prender o gancho traseiro da aeronave em um dos fios de travamento é a parte mais desafiadora da operação. Os fios de travamento podem suportar o peso da aeronave (cerca de 50.000 lbs, 23.000 kg) e podem parar a aeronave abruptamente.

Um caça Rafale da Força Aérea Indiana pousando em um porta-aviões (Foto: Dassault)
Os pilotos devem apontar para um dos quatro fios de travamento espaçados aproximadamente 50 pés (15 m) um do outro. Pilotos habilidosos geralmente buscam e alcançam consistentemente o terceiro fio. Assim que a aeronave atinge o convés, o piloto aplica aceleração total para garantir que ela tenha potência suficiente para decolar caso nenhum dos cabos seja preso.

Após um obstáculo bem-sucedido, o fio é esticado ao longo do convés e preso a dois cilindros hidráulicos para absorção de energia.

5. Riscos de segurança para o pessoal da aeronave


Motores a jato podem lançar pessoal da cabine de comando ao mar
  • Desgaste do pessoal da cabine de comando:
    • Casacos flutuantes
    • Cranianos
    • Tome precauções de segurança
Por mais engraçado que possa parecer, os motores das aeronaves podem lançar para fora o pessoal da cabine de comando se medidas de segurança não forem tomadas. O pessoal da cabine de comando coreografa cada decolagem e pouso com precisão e, portanto, muitos deles são necessários para operações seguras.

Um F-14B Tomcat estacionado em um porta-aviões
(Foto: Fotógrafos Mate Airman Philip V. Morrill/Marinha dos Estados Unidos)
O pessoal da cabine de comando usa casacos flutuantes, roupas especializadas que inflam em contato com a água. Eles também usam capacetes resistentes, chamados cranianos, para proteger a cabeça e a audição em caso de precipitação radioativa. O pessoal da cabine de comando usa uma variedade de outros equipamentos de segurança durante as operações. A cabine de comando conta ainda com um pequeno caminhão de bombeiros com bicos para água e espuma aquosa em caso de incêndio.

Com informações de Simple Flying