terça-feira, 23 de março de 2021

Por que os pilotos medem a velocidade do ar em nós?

Enquanto a maioria de nós no solo está acostumada a medir a velocidade em quilômetros ou milhas por hora, os pilotos usam uma unidade de medida diferente: milhas náuticas por hora - também conhecidas como nós. Os nós também são como a velocidade dos barcos é medida. Mas por que esta unidade é o padrão, em vez do que estamos acostumados a ver quando estamos dirigindo?

Um Boeing 777 navega a cerca de 518 nós. Isso se traduz em cerca de 960 quilômetros por hora (Foto: Vincenzo Pace)

Uma unidade comum


Quem viaja qualquer tipo de distância - internacionalmente ou até mesmo em um grande país - sabe que várias coisas são feitas de forma diferente dependendo da região. Claro, ao cruzar as fronteiras internacionais, essas diferenças são ainda mais perceptíveis.

Geralmente encontramos diferenças como idioma, moeda e normas sociais em nossa vida diária (não-aviador). Mas para os que estão no cockpit, que precisam lidar com controladores de tráfego aéreo no exterior e outras autoridades, o estabelecimento de padrões para dados críticos como velocidade e altitude garante operações relativamente suaves entre fronteiras e oceanos. Isso foi possível graças ao trabalho da Organização da Aviação Civil Internacional (ICAO).

Em 1947, a primeira assembléia da ICAO adotou uma resolução que recomendava um sistema de unidades padronizado. Conhecido como Anexo 5, o sistema foi adotado em 1948, embora levasse mais algumas décadas para colocar todos na mesma página em termos de unidades comuns.

A ICAO introduziu o Sistema Internacional de Unidades, conhecido como SI do “Système International d'Unités”, como o sistema básico padronizado a ser usado na aviação civil. O metro era a unidade básica de todas as medições do SI que lidam com comprimento.

No entanto, foi reconhecido que algumas unidades não pertencentes ao SI têm um lugar especial na aviação e tiveram que ser mantidas - “pelo menos temporariamente”, observa a ICAO.

“São a milha náutica e o nó, assim como o pé quando é usado na medição de altitude, elevação ou altura apenas. Alguns problemas práticos surgem no encerramento do uso dessas unidades e ainda não foi possível fixar uma data de encerramento.” - ANEXO 5 à Convenção sobre Aviação Civil Internacional, ICAO

O nó é baseado na milha náutica e é uma unidade não SI (Foto: Vincenzo Pace)

Por que nós?


Segundo a Scandinavian Traveller, o uso de nós (kt) facilita a navegação aérea e náutica por ser baseada na milha náutica.

A milha náutica está intimamente relacionada ao sistema de coordenadas geográficas de longitude/latitude e é baseada na circunferência da Terra.

“Imagine que o equador é um círculo dividido em 360 graus (como uma bússola). Cada grau pode ser dividido em 60 partes iguais chamadas minutos. O comprimento de cada um desses minutos é igual a aproximadamente 1 milha náutica. Um nó é igual a 1 milha náutica por hora ou 1,85 km/h.” - Primeiro Oficial Jimisola Laursen, SAS Pilot via Scandinavian Traveller

A HighSkyFlying aponta que na aviação, as rotas aéreas são definidas em termos de waypoints (latitude, longitude), e sua distância é expressa em termos de milhas náuticas. Portanto, o uso de nós fornece uma estimativa rápida dos requisitos de tempo e velocidade para os pilotos.

Além disso, nota-se que o uso de nós é mais simples, pois os números estão dentro de uma faixa menor no que diz respeito à velocidade de aeronaves comerciais - entre 0kt e 400kt.

A aviação divide os nós em vários tipos diferentes: A velocidade do ar indicada é mostrada no indicador de velocidade do ar estático de pitot padrão de uma aeronave. Velocidade real (TAS) - a velocidade em relação ao ar não perturbado e Velocidade no solo (GS) - a velocidade em relação ao solo. Em altitudes mais elevadas, Mach (com base na velocidade do som) é usado (Foto: Vincenzo Pace)

O resultado final


No final das contas, os nós foram essencialmente herdados do setor marítimo e, assim, ganharam destaque à medida que a indústria da aviação se tornou mais proeminente.

Mesmo sendo uma unidade não SI, a ICAO reconheceu que o uso de nós é muito comum para encerrar seu uso. A facilidade de uso, compreensão e história da unidade significam que ela estará em uso em um futuro previsível.

Aeronave da Segunda Guerra Mundial voa novamente para a Marinha dos EUA


Um Douglas DC-3 reconstruído que voou pela primeira vez antes do Dia D, está voando novamente para a Naval Air Warfare Center Aircraft Division (NAWCAD), desta vez equipado com a antena aerotransportada mais avançada do mundo para receber sinais de instrumentos de aeronaves.

Originalmente fabricado em 1944 na fábrica da Douglas Aircraft em Oklahoma City, o C-47 renascido - a versão militar do avião de passageiros e carga DC-3 - foi quase totalmente reconstruído. Agora conhecido como BT-67, ele tem várias vantagens sobre as aeronaves modernas que normalmente carregam instrumentos de teste de voo para os intervalos de teste do Atlântico (ATR) da NAWCAD na Estação Aérea Naval de Patuxent River, em Maryland.

“Mais espaço interior, operação mais barata, alcance muito maior e durabilidade mais longa”, disse Dennis Normyle, arquiteto-chefe da ATR. “Ele pode ficar de oito a 10 horas na estação, um aumento significativo em relação às aeronaves de alcance normal.”

Mais espaço para equipamentos
A ATR emprega aeronaves de longo alcance para apoiar testes offshore, muito além do alcance das instalações em terra. A aeronave capta sinais, conhecidos como telemetria, enviados de instrumentos de medição instalados nos aviões ou outros veículos aéreos em teste. A aeronave de alcance, então, retransmite os sinais de telemetria, junto com os sinais de comunicação, vídeo e GPS de volta para as instalações terrestres do ATR, e registra todos os dados a bordo também.

“Como o BT-67 está voando em altitude, ele pode retransmitir sinais de uma aeronave de teste no horizonte para o ATR”, disse Dan Skelley, engenheiro chefe do projeto.

A adição de equipamento mais significativa do BT-67 para ATR é uma antena de telemetria 'phased array' controlada digitalmente exclusiva que pode rastrear vários alvos ao mesmo tempo. Projetado e construído de acordo com as especificações ATR pela Raven Defense, Albuquerque, Novo México, o Raven Advanced Phased-Array Telemetry Resource (RAPTR) é o primeiro de seu tipo já instalado em uma aeronave, disse Skelley. “É um sistema híbrido com sinais analógicos sob controle digital.”

A antena de telemetria RAPTR
Instalada no nariz da aeronave, a antena consiste em vários elementos receptores minúsculos. “O sistema de controle varia o tempo, ou fase, das saídas dos elementos e os combina de uma forma que permite que a antena rastreie até três alvos”, disse ele.

O BT-67 também carrega uma antena de matriz de tela plana separada montada em um barrilete. A unidade pode rastrear uma única fonte de telemetria girando mecanicamente para seguir um alvo em voo.

“Agora podemos rastrear três alvos”, disse Normyle. “Por exemplo, podemos rastrear um F-18 disparando um míssil, o próprio míssil e o alvo do míssil, tudo ao mesmo tempo. As atualizações futuras irão expandir esse número. ”

A combinação de uma antena 'phased array' e de tela plana quadruplica a capacidade de rastreamento da aeronave de suporte de alcance King Air padrão do ATR. Ele carrega apenas uma única antena de tela plana. “Com a antena mais antiga, temos que tomar uma decisão: qual sinal seguir - uma arma ou um alvo”, disse Normyle. “Agora podemos seguir três e escanear os céus por mais.”

A ATR pagou pelas antenas e consoles de suporte de missão instalados na aeronave. A AIRTec, Inc., da Califórnia, Maryland, comprou o avião e é responsável por todas as operações de voo, armazenamento e manutenção, de acordo com Brady Lesko, diretor de programas de telemetria e segurança da empresa.

O benefício para o ATR é: “Só pagamos quando o usamos”, disse Normyle. “É uma taxa simples pelo serviço.”

Um novo cockpit foi instalado
A Basler Aircraft de Oshkosh, Wisconsin, constrói o BT-67 a partir dos antigos DC-3s e C-47s. “Eles vasculham o mundo em busca de outros em condições reconstruíveis”, disse Skelley. A aeronave ATR é um C-47 das Forças Aéreas do Exército dos EUA reconstruído, usado para treinamento durante a Segunda Guerra Mundial.

Mas as funções dos DC-3s e C-47s durante a guerra iam muito além do treinamento. Os C-47 rebocaram planadores e lançaram paraquedistas atrás das linhas alemãs no Dia D. E os C-47s e os DC-3s transportaram suprimentos durante a guerra sobre o tempestuoso Himalaia, “o Hump”, da Índia à China para lutar contra os japoneses. A versátil aeronave também realizou missões de reabastecimento para a ponte aérea de Berlim durante o bloqueio soviético do pós-guerra.

O Comandante Supremo Aliado, General Dwight Eisenhower, disse que o C-47 foi uma das quatro peças de equipamento mais importantes para vencer a Segunda Guerra Mundial, junto com a escavadeira, o jipe ​​e o caminhão de duas toneladas e meia. “Curiosamente, nenhum desses foi projetado para o combate”, observou ele.


Para sua reencarnação moderna, a Basler remodela completamente a aeronave, alonga a fuselagem 42 polegadas entre a cabine e as asas e substitui a maioria das longarinas longitudinais e outros membros estruturais. O renascido BT-67 também possui um painel de instrumentos digital - um “cockpit de vidro” - tanques de combustível adicionais nas asas e dois motores turboélice no lugar das antigas usinas de pistão radial.

“A Administração Federal de Aviação o considera um novo avião”, disse Lesko, ex-piloto de avião fretado. “Tudo o que resta é a estrutura de suporte da asa que passa pela fuselagem e o trem de pouso.”

O novo BT-67 também melhora a resistência, o alcance e a capacidade de carga que outrora tornaram os DC-3s e C-47s com motor a pistão os aviões mais populares do mundo. Na véspera da Segunda Guerra Mundial, os voos DC-3 representavam 90% do tráfego aéreo internacional.

Levando em conta a relação custo-benefício, Lesko disse que o BT-67 atualizado é superior a qualquer aeronave moderna para a missão de suporte de alcance do ATR. “É muito estável e pode voar a uma velocidade lenta, o que torna mais fácil permanecer em uma área de teste designada”, disse ele. “Você pode fazer 89 nós (92 mph) o dia todo.”

O grande leme de cauda antiquado oferece outra vantagem sobre as aeronaves modernas. “O avião pode fazer curvas 'derrapadas' planas com o leme que mantém as asas niveladas”, disse ele. “Com uma curva inclinada convencional, uma asa desce e pode impedir que os sinais de telemetria atinjam a antena.”

A fuselagem espaçosa também tem muito espaço para consoles de telemetria, estações de controle e as pessoas para operá-los. E é barato de operar. Lesko estima que seja menos de um quinto do custo de uma aeronave de patrulha marítima P-3 com equipamento semelhante e um quarto do custo de um Dash 8, uma aeronave turboélice de passageiros de médio porte.

“Pode não parecer possível que um avião projetado na década de 1930 seja superior às aeronaves modernas para esta missão de suporte de alcance”, disse ele. “Mas é ideal para o papel, embora não pareça muito diferente dos que voavam há 85 anos.”

Via dcmilitary.com - Imagens: Reprodução

Helicóptero Ingenuity tem seu primeiro contato com o ambiente de Marte


O rover Perseverance passou longos meses na viagem com destino a Marte — foi em fevereiro que o veículo pousou na cratera Jezero, levando preso em sua “barriga” o helicóptero Ingenuity, para que essa pequena aeronave tente realizar alguns voos experimentais em Marte. Enquanto não chega o momento de entrar em ação, o Ingenuity foi liberado de seu escudo protetor no último fim de semana, tendo seu primeiro contato com o Planeta Vermelho — o que, claro, foi registrado pelas câmeras do Perseverance.

As informações vêm de uma publicação dos oficiais da NASA, feita na conta do rover no Twitter: “lá se vai o escudo de detritos, e aqui está a nossa primeira visão do helicóptero”, descreveu o tuíte. “Ele ainda está dobrado e preso, então ainda tem algum origami reverso a ser feito antes de colocá-lo no solo”. Antes disso, o rover irá passar alguns dias se deslocando até o “heliponto”, para somente depois posicionar delicadamente o Ingenuity no solo de Marte para voar. Assim, o descarte do escudo é já é uma preparação para esta etapa.

O rover Perseverance da NASA lançou o escudo de destroços que cobria o helicóptero de Marte Ingenuity, um passo em direção ao lançamento e voo do pequeno helicóptero. Esta foto tirada por Perseverance foi tuitada pela conta oficial do rover no Twitter em 21 de março de 2021 (Imagem: NASA / JPL-Caltech)
Ainda não há novas informações sobre o local do “heliponto” e do plano de voo que aguarda o Ingenuity, mas a NASA deverá trazer detalhes em uma conferência que será realizada ainda nesta semana. De qualquer forma, o Ingenuity ainda tem alguns dias pela frente para continuar preso ao rover para se manter protegido, e somente depois vai dedicar um mês marciano — ou seja, 31 dias na Terra — para as atividades relacionadas aos voos.

O Ingenuity é, na verdade, uma demonstração de tecnologia: é que, ao contrário do Perseverance, ele não irá realizar estudos científicos em Marte, mas sim tentar realizar os primeiros voos autônomos já feitos em outro planeta por uma aeronave equipada com rotores. A equipe irá realizar uma primeira tentativa e, dependendo dos resultados obtidos, pode tentar algumas manobras mais “ousadas” com o helicóptero. Se tudo correr bem, o Ingenuity poderá abrir o caminho para novas formas de exploração de Marte no futuro e, por que não, de outros mundos do Sistema Solar.

Depois que os voos do Ingenuity forem finalizados, o Perseverance vai se dedicar aos principais objetivos da sua missão. Assim, ele irá iniciar as investigações na área da cratera Jezero para buscar bioassinaturas que, se existirem, podem estar bem preservadas na região. Além disso, o rover também coletará cerca de 40 amostras, que serão distribuídas em tubos. Estes tubos vão ficar em diferentes lugares, para serem coletados no futuro por uma missão feita em uma parceria entre a Agência Espacial Europeia (ESA) e a NASA.


Fonte: CanalTech/Space.com

Maior aeronave do planeta será 100% elétrica

Ela terá aproximadamente 72 metros de comprimento e utilizará baterias convencionais e
12 motores elétricos (Crédito: Reprodução/Divulgação)
O co-fundador da Google, Sergei Brin, está acelerando o lançamento do seu novo grande projeto: a maior nave aérea do planeta. Esta aeronave será a maior do mundo com um gerador elétrico voador mais potente já criado, segundo o executivo.

Intitulada de Pathfinder 1, a primeira versão da aeronave já foi registrada na Administração de Aviação dos EUA. Ela tem aproximadamente 72 metros de comprimento e utilizará baterias convencionais e 12 motores elétricos para transportar 14 passageiros, segundo matéria do El Confidencial.

Os planos de Sergei Brin, que é a oitava pessoa mais rica do mundo, vão muito além do Pathfinder 1, que acabará por parecer um brinquedo ao lado da versão final da aeronave. O objetivo do co-fundador da Google é criar a maior máquina voadora do mundo, com um comprimento de cerca de 198 metros. Isso seria mais que o dobro do maior avião do mundo — o Antonov An-225 Mriya (84 metros) e o HAV Airlander 10 (92 metros).

As aeronaves da empresa LTA não necessitam de pistas de descolagem e aterragem e podem aterrar diretamente no solo.

Para dar asas a este projeto, a empresa de Brin tem um grande número de vagas de emprego abertas, neste momento, desde técnicos de teste e engenheiros de materiais a programadores e um gestor de programas de hidrogênio.

Com pane em trem de pouso, avião faz pouso de barriga em em Ji-Paraná (RO)

Um vídeo de apenas 10 segundos mostra o momento em que um avião faz um pouso de emergência (de barriga), nesta segunda-feira (22), em Ji-Paraná, em Rondônia.


O piloto da aeronave, um Mitsubishi MU-2B-25, prefixo PT-JGA, de propriedade do senador Acir Gurgacz (PDT/RO), sobrevoou a região do aeroporto para consumir boa parte do combustível e comunicou as equipes em solo sobre uma falha nos trens de pouso. 

O caso ocorreu por volta das 17h. Não há registro de feridos. Entre os tripulantes estava um ex-deputado estadual de Rondônia. O senador não estava a bordo.

Equipes de Bombeiros rapidamente se posicionaram e jogaram um produto na pista, o qual dificulta a combustão, para tentar impedir que o avião pegasse fogo com as faíscas produzidas no atrito da fuselagem com o asfalto.

O procedimento de pouso foi realizado com sucesso pelo piloto e a aeronave aterrissou de barriga, deslizando até parar.


A aeronave teve algumas avarias, porém ninguém ficou ferido. O turboélice está com situação de aeronavegabilidade regular, de acordo com a ANAC, porém ainda não há informações sobre o que teria motivado a pane que impediu que os trens de pouso fossem abaixados.

Via CGN / G1 RO

segunda-feira, 22 de março de 2021

Avião de Donald Trump é fotografado abandonado e sem um dos motores em hangar de Nova York


Recluso em Mar-a-Lago, sua residência-clube na Flórida, desde quando deixou a Casa Branca como ex-presidente dos Estados Unidos, Donald Trump está sem avião particular. Uma foto do Boeing 757 que ele costumava usar antes de sua chegada ao cargo mais importante do mundo foi registrada na semana passada, e na imagem o brinquedo aéreo aparece abandonado em um hangar de Nova York, sem um dos motores, e com o outro parcialmente coberto por um plástico, aparentemente por falta de manutenção.


Trump comprou seu 757 muitos anos atrás, e de segunda mão, o que costuma fazer para conseguir bons preços. Anteriormente, a aeronave fazia parte da frota comercial da American Airlines, que é renovada de tempos em tempos pela companhia. Mantê-lo funcionando e pronto pra decolar a qualquer momento consome cerca de US$ 6 milhões (R$ 33,3 milhões) por ano.


Já na presidência, o antecessor de Joe Biden costumava viajar a bordo do icônico Air Force One, um modelo 747-200 também fabricado pela Boeing que é considerado o mais seguro do mundo entre os aviões. O fato de que Trump anda sumido ao mesmo tempo em que está sem avião está sendo entendido por muitos como um indício de que as finanças pessoas dele podem estar em seus piores dias.

Vídeo mostra momento em que avião é atingido por raio durante voo

Ocorrências desse tipo são mais comuns do que se imagina e as aeronaves estão preparadas para este tipo de evento.


As estatísticas indicam que cada avião comercial é atingido por um raio uma vez a cada 3.000 horas de voo e uma vez por ano. O ELAT, Grupo de Eletricidade Atmosférica do INPE (Instituto Nacional de Pesquisas Espaciais), calcula que aviões comerciais são atingidos por relâmpagos uma vez por ano — e isso durante decolagem ou aterrissagem, quando estão em alturas abaixo de 5 quilômetros do solo.

Mesmo assim não ouvimos falar de aviões caindo por raios. Por quê? Aviões são seguros e preparados para descargas elétricas.

Especialistas aeronáuticos destacam que há efeitos diretos e indiretos quando um raio atinge um avião. Os diretos são danos físicos ocasionados pela passagem da corrente elétrica na aeronave, enquanto que os indiretos são as interferências nos equipamentos eletrônicos devido ao campo eletromagnético que ocorre quando há uma descarga atmosférica.


E ocorrências desse tipo são mais comuns do que se imagina e as aeronaves estão preparadas para este tipo de evento.

As estatísticas indicam que cada avião comercial é atingido por um raio uma vez a cada 3.000 horas de voo e uma vez por ano. O ELAT, Grupo de Eletricidade Atmosférica do INPE (Instituto Nacional de Pesquisas Espaciais), calcula que aviões comerciais são atingidos por relâmpagos uma vez por ano — e isso durante decolagem ou aterrissagem, quando estão em alturas abaixo de 5 quilômetros do solo.

Mesmo assim não ouvimos falar de aviões caindo por raios. Por quê? Aviões são seguros e preparados para descargas elétricas.

Especialistas aeronáuticos destacam que há efeitos diretos e indiretos quando um raio atinge um avião. Os diretos são danos físicos ocasionados pela passagem da corrente elétrica na aeronave, enquanto que os indiretos são as interferências nos equipamentos eletrônicos devido ao campo eletromagnético que ocorre quando há uma descarga atmosférica.


O primeiro geralmente é pontual e sem riscos, sendo inspecionado pelos mecânicos de aeronave quando a tripulação reporta “lightning strike“, enquanto que os efeitos indiretos são resolvidos com uma rápida reinicialização de sistema.

Com efeito, a forma e o tamanho das aeronaves podem atrair as descargas elétricas, mas os resultados, geralmente, não causam danos irreversíveis. Na grande maioria das vezes, o que acontece é que, ao adentrar uma nuvem ou mesmo voar próximo dela, um avião pode intensificar o campo elétrico e dar início a descargas, formando relâmpagos induzidos.

Após formado, o raio pode vir de dentro de uma nuvem, da nuvem ao solo ou mesmo se formar entre duas nuvens.


Desde que um acidente atingiu um Boeing 707 em 1963, nos Estados Unidos, a indústria aeroespacial modificou o projeto das aeronaves. Na época, um raio acertou em cheio o Boeing em pleno voo e ocasionou a explosão do tanque de combustível, resultando na queda do avião e morte de 81 pessoas.

A partir daí, novas pesquisas foram conduzidas e a indústria remanejou o projeto dos aviões, modificando o sistema de combustível para praticamente eliminar os riscos de acidentes como esse.


Hoje, quando um raio atinge uma aeronave, causa, via de regra, no máximo danos parciais na fuselagem e nas antenas externas.

Os sistemas eletrônicos das aeronaves geralmente são blindados para evitar interferências da radiação dos relâmpagos. Além disso, com o avanço das tecnologias aéreas, os pilotos conseguem antever condições climáticas e evitam voar próximos às nuvens carregadas.


Os modelos mais atuais, como o Boeing 787 Dreamliner, E-Jets da Embraer e o Airbus 350, não possuem fuselagem metálica, às vezes optando por materiais leves, como o plástico.

A parte externa é uma cobertura ultrafina de malha de cobre ou mesmo tinta de alumínio espacial — desenvolvida especificamente para conduzir a eletricidade e garantir o efeito da Gaiola de Faraday que faz uma blindagem elétrica da aeronave.

Via MetSul

Aconteceu em 22 de março de 2010: Acidente na aterrissagem do voo Aviastar-TU 1906 em Moscou

O voo Aviastar-TU Airlines 1906 operado por um Tupolev Tu-204 que realizou um pouso duro ao tentar aterrissar no aeroporto Domodedovo, em Moscou, na Rússia, em meio a forte neblina em 22 de março de 2010. 


A aeronave da Aviastar-TU Airlines estava em um voo de balsa* do Aeroporto Internacional Hurghada, no Egito para o Aeroporto de Moscou. Não havia passageiros a bordo e todos os oito tripulantes sobreviveram ao acidente. Quatro membros da tripulação ficaram gravemente feridos e levados para um hospital, enquanto outros sofreram ferimentos leves.

*Os voos de balsa abrangem muito mais do que os voos de entrega e aposentadoria de aeronaves. Toda vez que um avião tem um problema que não pode ser consertado no local, ele geralmente pode obter uma autorização de balsa para levá-lo a um aeroporto em que a manutenção possa ser concluída.

Aeronave



A aeronave envolvida no acidente foi o Tupolev Tu-204-100, prefixo RA-64011, da Aviastar-TU (foto acima), msn 1450741364011. A aeronave voou pela primeira vez como RA-64011 em 25 de março de 1993. Em 3 de setembro de 1993, entrou em serviço com a Vnukovo Airlines . Em janeiro de 2001, foi vendida para a Sibir Airlines .

Acidente


O voo 1906 foi um voo de balsa com apenas oito tripulantes a bordo da aeronave. Às 02h34 hora local (23h34 de 21 de março UTC), o avião pousou com força cerca de 1.450 metros antes da pista 14R no aeroporto de Domodedovo ao tentar aterrissar à noite em meio ao nevoeiro e em condições precárias visibilidade. O METAR para o aeroporto no momento indicava a direção do vento 160° a 3 metros por segundo (5,8 kn) e visibilidade de 100 metros (330 pés).

Quando a aeronave estava na final, os pilotos receberam vários avisos do ATC de que estavam de 1.000 a 2.000 metros à esquerda do curso de pouso, seguido por outro aviso de que estavam muito baixos. 

Os pilotos estavam confusos sobre sua localização e tentavam descobrir com base em relatórios do ATC, o computador de voo e um dispositivo GPS portátil. De acordo com o relatório final da investigação, eles também ignoraram as leituras de altitude automáticas que começaram a 60 m acima do nível do solo e continuaram a cada 10 m. 

Nove segundos antes do impacto, o piloto contatou o ATC para perguntar se eles estavam fora do curso, ainda concentrado em alinhar a aeronave com a pista e não em sua altitude. Os pilotos não fizeram nenhum esforço para interromper a descida.


A aeronave pousou em uma floresta de bétula às 23h35, horário local. Sua asa esquerda se partiu e o casco se partiu em dois. Não houve incêndio.

Os bombeiros chegaram 30 minutos depois. Todos os membros da tripulação, exceto o engenheiro de voo que ficou gravemente ferido, escaparam do avião acidentado por conta própria. 


Eles não puderam explicar imediatamente o motivo do acidente, dizendo que aconteceu muito rápido. Um dos tripulantes (comissário) chegou à rodovia próxima e parou um carro que a levou ao hospital. Três outros tripulantes também chegaram à rodovia e esperaram por uma ambulância.

Os dois pilotos sofreram fraturas e contusões graves; outros dois foram levados ao hospital, onde foram descritos como se encontrando em condições satisfatórias. Os quatro tripulantes restantes foram tratados por ferimentos leves no centro médico de Domodedovo. O acidente resultou na primeira perda do casco de um Tupolev Tu-204 e na primeira perda do casco do Aviastar-TU.


Antes dessa ocorrência, a aeronave já havia se envolvido em outros dois acidentes. Em 14 de janeiro de 2002, a aeronave voava de Frankfurt para Novosibirsk quando teve que ser desviado para Omsk devido ao mau tempo no destino. Na aproximação, os pilotos relataram problemas de abastecimento de combustível, seguido por um apagamento de ambos os motores. A aeronave planou e pousou com sucesso, mas ultrapassou a pista e colidiu com as luzes após a cabeceira da pista. Não houve feridos. A aeronave foi reparada e continuou o serviço. A partir de agosto de 2006, a aeronave foi alugada para várias companhias aéreas russas - Red Wings Airlines, Aviastar-TU, Interavia Airlines e, em seguida, Aviastar -TU novamente.


Em 21 de março de 2010, um dia antes do acidente, a aeronave voava de Moscou para Hurghada com 210 passageiros a bordo, quando teve que retornar a Moscou devido à fumaça na cabine. O acidente foi causado por um aquecedor defeituoso na cabine, que foi prontamente reparado.

Investigação


Apesar do clima adverso, o serviço federal russo de transporte aéreo Rosaviatsia diz que a aeronave conduziu uma aproximação normal e "a tripulação não relatou nenhuma falha, mau funcionamento ou intenção de fazer um pouso de emergência". 


O principal investigador da Rússia disse em 22 de março que o pouso de emergência pode ter sido causado por uma violação das regras de segurança. O método que a tripulação usou para navegar na aeronave é uma via particular para a investigação do acidente.

A Rosaviatsia informou que os gravadores de voo foram recuperados e enviados ao Comitê de Aviação Interestadual (МАK) para análise. Enquanto se aguardava a investigação, a companhia aérea - Aviastar-TU - foi proibida de transportar passageiros e suas operações foram investigadas.


A análise preliminar dos dados de voo mostrou que a aeronave não foi danificada no ar por nenhum incêndio ou explosão, e ambos os motores operaram até o impacto. De acordo com o chefe da Agência Federal de Transporte Aéreo da Rússia, Alexander Neradko, o "fator humano" foi a causa provável do acidente.

Em 30 de março de 2010, foi relatado que a aeronave tinha 9 toneladas de combustível a bordo no momento do acidente. Na aproximação ao Domodedovo, o sistema de piloto automático falhou quando a aeronave desceu 4.200 metros (13.800 pés). A tripulação então voou a aeronave manualmente, mas não comunicou a falha do sistema de autoflight ao Controle de Tráfego Aéreo.


Dois meses antes da queda, o capitão foi punido por uma violação menor (acidentalmente operar spoilers em voo durante a aproximação com os flaps abaixados).

Por Jorge Tadeu (com Wikipedia, ASN e baaa-acro.com)

Vídeo: Air Crash Investigation - USAir Flight 405 (Best Documentary 2016)

(em inglês)

Aconteceu em 22 de março de 1992: Voo 405 da USAir - O assassino branco ataca novamente


Em 22 de março de 1992, o voo 405 da USAir, operado por um Fokker F-28, não conseguiu decolar ao tentar decolar do aeroporto LaGuardia, em Nova York. O avião caiu da pista e caiu em Flushing Bay, matando 27 das 51 pessoas a bordo.

Após este acidente, a Federal Aviation Administration lançou uma revisão da forma como os aviões eram descongelados - uma revisão que a investigação sobre o acidente no voo 1363 da Air Ontario, ocorrido em 10 de março de 1989, já havia recomendado.


O Fokker F28 Fellowship 4000, prefixo N485US, da USAir (foto acima), operando o voo 405 de Nova York a Cleveland se preparava para decolar do Aeroporto LaGuardia. O voo já estava com mais de uma hora de atraso quando chegou ao LaGuardia, e mais atrasos estavam aumentando rapidamente. 

Primeiro, os pilotos optaram por descongelar o avião no portão usando fluido descongelante tipo 1, que ainda era o tipo mais amplamente usado. Mas após o degelo, ocorreu um atraso de 20 minutos porque um dos veículos de degelo quebrou atrás do avião e o impediu de taxiar para longe do portão. 


Quando foi consertado, o fluido de descongelamento havia perdido sua força e os pilotos optaram por descongelar o avião novamente. Finalmente, o avião deixou o portão às 21h00, com uma hora e 40 minutos de atraso, levando a bordo 47 passageiros e quatro membros da tripulação.

Mas o voo logo foi atrasado novamente. Uma das duas pistas do LaGuardia foi temporariamente fechada para que pudesse ser lixada, resultando em uma longa fila de aeronaves esperando para decolar na pista restante. 

Durante os próximos 35 minutos, o voo 405 ficou na fila enquanto uma neve muito leve caiu no aeroporto. Durante esse tempo, os pilotos certamente pensaram no gelo - na verdade, o primeiro oficial John Rachuba acendeu repetidamente as luzes nas asas para que pudesse olhar para trás e verificar se havia contaminação do gelo. 

Ele aparentemente não viu nenhum, comentando com o capitão William Majure: "Parece muito bom para mim, pelo que posso ver." Mesmo assim, se eles quisessem descongelar o avião novamente, eles teriam perdido seu lugar na fila - e isso poderia tê-los colocado de volta na mesma situação mais tarde, se não fizesse com que o voo fosse cancelado completamente .

No final das contas, o gelo estava de fato se formando nas asas à medida que a eficácia do fluido de degelo tipo 1 se dissipava rapidamente. Mas nenhum dos pilotos conseguiu ver o gelo porque a quantidade que se formou, embora certamente perigosa, não era visível da cabine, embora as tripulações da USAir universalmente acreditassem que seria. 

Ilustração de Matthew Tesch em "Air Disaster: Volume 3, de Macarthur Job"
O voo 405 foi finalmente liberado para decolar às 21h35 com seus pilotos totalmente inconscientes de que o gelo nas asas estava aumentando consideravelmente sua velocidade de estol. O Capitão Majure optou por uma velocidade V1 mais baixa do que o normal (ou seja, a velocidade acima da qual a decolagem não pode ser abortada) devido à possibilidade de neve derretida na pista. Isso teria um efeito colateral indesejado. 

No Fokker F28, V1 e VR (a velocidade na qual o nariz é girado para cima) são normalmente os mesmos, mas com um V1 mais baixo, eles agora eram diferentes. Contudo, enquanto o avião acelerava na pista, o primeiro oficial Rachuba instintivamente chamou VR imediatamente após V1, levando o capitão Majure a girar prematuramente. 

A contaminação do gelo já estava reduzindo a capacidade das asas de gerar sustentação, e a rotação inicial pode muito bem ter sido a gota d'água que impediu o avião de decolar. Tanto o gelo quanto a rotação inicial levaram a um ângulo de ataque maior - o ângulo do nariz em relação à corrente de ar - e, subsequentemente, a um estol. 

O voo 405 flutuou apenas alguns pés acima do solo, incapaz de encontrar o elevador para subir. Os pilotos perceberam imediatamente que seu avião não voaria, mas pouco podiam fazer para evitar um acidente. 


A asa esquerda atingiu a pista, lançando fagulhas e arrastando o avião para a esquerda na grama. Ele atingiu vários postes indicadores, tocou brevemente, saltou de volta no ar, atingiu o farol localizador ILS e demoliu uma casa de bombas, que arrancou a asa esquerda. Se partindo enquanto avançava, o voo 405 rolou sobre o quebra-mar e caiu invertido nas águas rasas da Baía de Flushing.


O acidente matou 12 pessoas imediatamente, mas as 39 restantes agora enfrentavam as ameaças simultâneas de incêndio e afogamento. 

Os passageiros e a tripulação na frente do avião viram-se pendurados de cabeça para baixo com as cabeças debaixo d'água. 


O resto do avião pousou em pé meio submerso na baía, mas muito do que estava acima da superfície pegou fogo rapidamente. 

Os passageiros se atrapalharam para soltar os cintos de segurança e escapar pela água gelada. Alguns escalaram o paredão e cambalearam para a pista, enquanto outros se agarraram aos destroços flutuantes e foram resgatados pelos bombeiros que chegaram ao local quase imediatamente. 


Muitos mais nunca conseguiram sair. Além dos 12 mortos no impacto, 15 morreram afogados após o acidente, elevando o número de mortos para 27, enquanto 24 sobreviveram. Entre os mortos estava o capitão Majure, mas o primeiro-oficial Rachuba conseguiu escapar.


Os investigadores descobriram que os pilotos da USAir foram ensinados sobre os perigos da formação de gelo, mas não foram ensinados a formas eficazes de detectá-lo. O simples fato é que a contaminação da asa não pode ser vista com segurança da cabine de qualquer avião. 

Os procedimentos exigiam que os pilotos olhassem da cabine se não tivessem certeza, mas a maioria dos pilotos acreditava que a visão da cabine era igualmente boa. Na verdade, a única maneira de ter certeza se há gelo nas asas é tocá-las fisicamente. 


Mas os pilotos de todos os lugares estavam decolando com gelo nas asas porque muitas vezes era impossível descongelar o avião imediatamente antes da decolagem para que o fluido descongelante tipo 1 tivesse força total.

Isso representou um grande problema no setor de aviação civil - um problema que poderia ter sido resolvido antes. Melhor treinamento em torno do perigo do gelo e uma substância descongelante mais forte foram as duas recomendações que surgiram da queda do voo 1363 da Air Ontario, que poderia ter evitado a queda em LaGuardia.
A USAir treinou seus pilotos para o perigo do gelo, mas não forneceu meios para os pilotos saberem com certeza se seu avião tinha gelo. Quando se decidiu entre decolar com possibilidade de gelo, quando não havia gelo, ou cancelar o voo, os pilotos ficaram compreensivelmente relutantes em cancelar o voo. 

E o voo 405, como todos os outros aviões do LaGuardia naquela noite, foi descongelado usando fluido descongelante tipo 1, que era conhecido por ser ineficaz. O relatório provisório da Comissão Moshansky, incluindo essas recomendações, foi publicado em 1989, apenas alguns meses após o acidente em Dryden, mas de alguma forma a FAA não considerou suas recomendações e o acidente da Air Ontario não foi mencionado no relatório do NTSB sobre o voo 405 da USAir!


Ainda não está claro até hoje porque ninguém nas FAA sabia das descobertas de Moshansky. Anos depois, Moshansky afirmou que enviou o relatório provisório à FAA, mas que provavelmente acabou “enfiado em uma gaveta em algum lugar” e nunca chegou às pessoas certas. 

As descobertas da comissão provavelmente teriam circulado em publicações da indústria, mas na USAir, a companhia aérea em rápido crescimento não tinha meios de comunicação estabelecidos para levar essas informações a pilotos como Majure e Rachuba, que haviam ingressado recentemente na USAir com a aquisição de outras companhias aéreas como Piedmont e Empire. O resultado foi que as lições da queda do voo 1363 da Air Ontario não só não chegaram aos pilotos do voo 405 da USAir, como na verdade nunca saíram do Canadá.

Após a queda do USAir 405, o NTSB recomendou muitas das mesmas coisas que Moshansky recomendara anos antes, e a FAA finalmente entrou em ação. Hoje, todos os pilotos são treinados para tratar a contaminação das asas com o máximo de cautela, especialmente em aeronaves vulneráveis como o Fokker F28. 


O fluido de degelo tipo 1 agora é usado apenas para limpar a neve e, se houver condições de gelo, ele é sempre seguido pelo tipo 4, que pode evitar a formação de gelo por até duas horas após a aplicação. 

E outra recomendação do relatório Moshansky, que as instalações de descongelamento sejam colocadas perto da pista para que os aviões possam descongelar antes da decolagem, também está amplamente implementada (É importante notar que a FAA arrastou os pés nesta recomendação porque a instalação de equipamentos perto da pista representava um perigo em cenários de escoamento da pista. Essa visão foi finalmente abandonada).


As lições dessas duas falhas são de longo alcance. Eles não apenas ajudaram a revolucionar o tratamento da indústria para a contaminação de asas, mas também serviram como um lembrete severo da importância da comunicação. 

Se a comunicação entre a comissão de inquérito no Canadá e as FAA nos Estados Unidos tivesse sido mais padronizada, o relatório Moshansky não teria escapado pelas rachaduras e 27 pessoas poderiam não ter morrido no voo 405 da USAir. 

Hoje, é altamente improvável que a FAA nunca mais esqueceria um relatório sobre um grande acidente - graças em parte ao mundo muito mais interconectado em que vivemos agora.


E, finalmente, esse par de acidentes ressalta o princípio fundamental por trás do motivo pelo qual investigamos acidentes com aeronaves: essa mudança deve vir de cada acidente, para não correr o risco de deixar que aconteça novamente.

Clique AQUI para acessar o Relatório Final do acidente.

Edição de texto e imagens por Jorge Tadeu

Com Admital Cloudberg, ASN, Wikipedia, baaa-acro.com

Aconteceu em 22 de março de 1998: Acidente durante a aterrissagem do voo Philippine Airlines 137


Em 22 de março de 1998, o 
voo PR137 era um voo doméstico de passageiros programado de Manila para Bacolod nas Filipinas. A aeronave que operava o voo era o Airbus A320-214, prefixo RP-C3222, da Philippine Air Lines (foto acima). A bordo estavam 124 passageiros e seis tripulantes.

A aeronave decolou às 18h40 com o reversor do motor nº 1 inoperante. Às 19h20, o voo PR137 chamou o Bacolod Approach Control e relatou a passagem de FL260 e 55 DME para Bacolod. A tripulação então solicitou instruções de pouso e foi instruída a descer para o FL90 após passar por Iloilo e descer para 3.000 pés para uma aproximação da pista 04 do VOR. O vento era 030° a 08 nós, altímetro 1014 mbs, nível de transição no FL60 e temperatura a 28° C. 

Às 19h28, o voo solicitou a interceptação da aproximação final para a pista 04 e o Controle de Aproximação respondeu: "PR 137 aproximação visual na final". 

Às 19h37, a Torre Bacolod autorizou o voo para pousar na pista 04 e a autorização foi reconhecida pelo piloto. A abordagem foi realizada com o sistema Autothrust ativado no modo SPEED. A alavanca de empuxo do motor nº 1 foi deixada no detentor de escalada. 

Após o toque, o primeiro oficial gritou "sem spoilers, sem reverso, sem desaceleração". O motor nº 2 foi ajustado para reversão total após o toque, mas a alavanca de empuxo do motor nº 1 não foi retardada para marcha lenta e permaneceu na posição de potência de subida. Consequentemente, os spoilers não foram acionados. 

Como um motor foi configurado para reverter, o sistema autothrust foi desativado automaticamente. Com o autothrust desativado, o impulso do motor nº 1 foi aumentado para elevar o impulso. Devido à condição de empuxo assimétrico, o A320 saiu do lado direito da pista.


Nessa velocidade, o leme e a direção da roda do nariz ficaram ineficazes. O motor nº  2 foi movido de ré para mais de 70 por cento e o avião desviou de volta para a pista. O A320 continuou para além do final da pista. 

A aeronave atingiu a cerca do perímetro do aeroporto e, em seguida, saltou sobre um pequeno rio. O A320 prosseguiu, cortando uma cerca de blocos, onde passou por vários aglomerados de barracos e árvores. Nenhum incêndio ocorreu após o acidente.


Todos os passageiros e tripulantes sobreviveram. Porém, três pessoas morreram em solo.

A causa provável deste acidente foi a incapacidade do piloto voando de avaliar adequadamente a condição situacional da aeronave imediatamente após o toque com o motor reverso n° 1 inoperante, causando assim uma condição de voo adversa de aplicação de potência diferencial extrema durante a rolagem de pouso resultante na excursão da pista e, finalmente, um overshoot. 


Contribuiu para este acidente a aparente falta de conhecimento de sistemas técnicos e falta de apreciação dos efeitos desastrosos de disposições e requisitos de interpretação incorreta de uma Lista de Equipamento Mínimo (MEL).


Esse acidente é bastante semelhante ao ocorrido com o voo 3054 da TAM, no Aeroporto de Congonhas, em São Paulo, em 17 de julho de 2007.

Por Jorge Tadeu (com ASN e baaa-acro.com)

Aconteceu em 22 de março de 1984: Violento incêndio durante taxiamento do voo 501 da Pacific Western Airlines


Em 22 de março de 1984, o Boeing 737-275, prefixo C-GQPW, da Pacific Western Airlines (foto acima), realizando o voo 501 programado de Calgary para Edmonton, em Alberta, no Canadá, iniciou o taxiamento às 07h35. A bordo da aeronave estavam 114 passageiros e cinco tripulantes.

Após a partida do motor, a aeronave taxiou para a pista 34 para decolar. A decolagem foi iniciada às 07h42 no cruzamento da pista 34 com a pista de taxiamento C-1. Cerca de 20 segundos após o início da corrida de decolagem, a uma velocidade no ar de aproximadamente 70 nós, a tripulação ouviu um grande estrondo que foi acompanhado por uma ligeira guinada para a esquerda.

O capitão Stan Fleming imediatamente rejeitou a decolagem usando freios e empuxo reverso. Ambos os membros da tripulação suspeitaram que um pneu do trem de pouso principal esquerdo havia estourado. O capitão decidiu taxiar para longe da pista de taxiamento C-4. Aproximando-se da pista C-4, a tripulação notou que a rotação da unidade de baixa pressão do motor esquerdo indicava 0 por cento.

Vinte e três segundos após o início da decolagem rejeitada, o primeiro oficial gritou para sair da pista na frequência da torre: "501 claro aqui na Charlie 4". O comissário então entrou na cabine de comando e relatou um incêndio na asa esquerda.

A torre de controle então confirmou que havia um incêndio: "Uma quantidade considerável na parte de trás - no motor do lado esquerdo ali - e - eh - está começando a diminuir ali. Eh - há um incêndio acontecendo no lado esquerdo."

Um minuto e dois segundos se passaram desde o início da decolagem rejeitada. Imediatamente a seguir, o comissário afirmou ainda que "todo o lado esquerdo, todo o lado posterior está pegando fogo". O primeiro oficial solicitou equipamentos de emergência.

Decorrido 1 minuto e 36 segundos, a campainha de advertência de incêndio da cabine foi ativada. Simultaneamente, o comissário voltou a entrar na cabine e relatou que estava ficando ruim na parte de trás.


O comandante parou a aeronave e a tripulação realizou os procedimentos para uma evacuação de emergência, que foi iniciada com o tempo decorrido de 1 minuto e 55 segundos. Todos os 119 ocupantes foram evacuados, entre eles 29 ficaram feridos. A aeronave foi destruída pelo fogo.


O Conselho de Segurança da Aviação Canadense (CASB) determinou que ocorreu uma falha incontida do disco do compressor de décimo terceiro estágio do motor esquerdo. Resíduos do motor perfuraram uma célula de combustível, resultando no incêndio. 


A falha do disco foi o resultado de rachadura por fadiga. O incêndio foi atribuído a um disco do compressor com defeito que explodiu, rompendo os tanques de combustível. Este incidente foi semelhante à causa do desastre do voo 28M da British Airtours , que custou 55 vidas em 1985.


Por Jorge Tadeu (com Wikipedia, ASN e baaa-acro.com)

O segredo do sucesso da Ethiopian Airlines

A Ethiopian Airlines é de longe a principal companhia aérea da África e tem o dobro do tamanho da número dois. Ele cresceu mais rápido do que o resto dos dez primeiros países da África juntos. Tem uma frota bastante diversificada, embora isso não seja realmente surpreendente, dada a estratégia da transportadora. O que impulsionou seu sucesso?

A Ethiopian Airlines é, de longe, a principal companhia aérea da África em tamanho (Foto: Vincenzo Pace)
A Ethiopian Airlines cresceu extremamente rápido entre 2011 e 2019, com a transportadora de serviço completo mais do que dobrando de tamanho. Acrescentou quase 15 milhões de lugares - mais de cinco milhões a mais do que todos os outros no top-10 combinados.

Ela cimentou sua posição como a principal companhia aérea da África, auxiliada por cortes significativos em outras, principalmente na South African Airways, por causa de seus principais desafios contínuos e, geralmente, de crescimento mínimo em toda a linha.

A Ethiopian Airlines encerrou 2019 com 26,8 milhões de assentos - mais do que o dobro do número dois, EgyptAir. Apesar de ser 100% estatal, a Ethiopian deve em grande parte seu sucesso a:
  • O governo permite que ele opere comercialmente (muito incomum na África)
  • A eficácia de sua gestão (incomum na África)
  • Sua posição geográfica
  • Falta de competidores adequados, especialmente para intra-África
  • Abordagem geralmente rígida de manter os concorrentes fora

As 10 maiores companhias aéreas da África


Aqui está o desenvolvimento das 10 maiores companhias aéreas da África,
com base no fato de serem as 10 maiores em 2019 (Fonte: OAG)

Frota extremamente mista


A Ethiopian Airlines possui uma frota extremamente mista. Segundo a companhia aérea , atualmente possui 128 aeronaves:
  • 28 Dash-8-400s
  • 19 B787-8s
  • 18 B737-800s
  • 16 A350-900s
  • 10 B737-700s
  • Oito B787-9s
  • Quatro B777-300ERs
  • Quatro B737 MAX 8s (aterrado)
  • Seis B777-200LRs
  • Três B767-300ERs
E no lado do frete:
  • 10 B777-200Fs
  • Dois B737-800Fs
Ela também tem mais 41 pedidos em B737 MAXs, A350-900s, B787-9s e Dash-8-400s.

Sua nova aeronave deve ajudar a racionalizar um pouco sua frota, mas não espere muitas mudanças. A frota altamente complexa da Ethiopian Airlines é freqüentemente o caso de operadoras hub-and-spoke com muitos comprimentos de setor diferentes e níveis muito variados de demanda em suas rotas.

A Ethiopian Airlines possui uma frota de aeronaves altamente complexa (Foto: N509FZ via Wikimedia)

Muitas conexões


A Ethiopian Airlines é uma operadora de hubs altamente coordenada que usa seu hub de Addis Abeba bem posicionado para atingir mercados em crescimento e cada vez mais importantes. Ele se concentra principalmente em conectar o Oriente Médio, Ásia, Europa e América do Norte com o Leste, Sul, Central e Oeste da África, além de conectar:
  • Principais cidades da África Oriental e Meridional com a África do Norte, Central e Ocidental
  • África do Norte e Central para a África Oriental, Ocidental e Meridional
  • São Paulo, Brasil, para a Ásia em geral e China em particular
Para isso, ele tem duas ondas reais de voos internacionais a cada dia, conforme mostrado abaixo, com os bancos de chegadas e partidas de cada um tendo uma direção de voos amplamente diferente.

A Ethiopian Airlines é uma operadora de hubs muito forte, com isso mostrando
seus voos no próximo verão (Fonte: OAG)

Duas ondas principais, mas uma terceira crescendo


O banco de chegadas na vaga um, por volta das 05h00 às 08h00, envolve chegadas do outro lado:
  • Europa
  • O Oriente Médio
  • Ásia
  • América do Norte
  • Várias cidades na África Central, do Norte, do Leste e do Sul
Em seguida, os aviões partem pela África entre cerca de 0800-1000. Aeronaves em voos de ida e volta de longo dia, como para a Cidade do Cabo, partem naturalmente mais cedo no banco de embarque, neste caso às 8h15. Eles então chegam mais tarde na próxima onda principal de chegadas, no caso da Cidade do Cabo às 22h.

Os voos no banco de saída da onda um formam o banco de chegada da onda dois, que é quase totalmente 1900-2100, mas estendendo-se até 2200.

O banco de partidas da onda dois é principalmente 2200-0030, que vê as aeronaves partindo para:
  • O Oriente Médio
  • Europa
  • Ásia
  • América do Norte
  • Algumas das principais cidades da África do Norte, Central, Oriental e Meridional
Em seguida, eles voltam a formar as chegadas da onda um, embora isso mostre um problema de ter apenas duas ondas principais. Para maximizar a alimentação, as aeronaves podem permanecer no solo em seu destino por muitas horas, como Manchester: chegando às 06h20 e decolando às 20h30.

Os Dash-8-400s da Ethiopian Airlines desempenham um papel importante no mercado interno. E agora são cada vez mais usados ​​em outros hubs das companhias aéreas, como em Moçambique e no Chade (Foto: Raimund Stehmann via Wikimedia)

Frota etíope não é muito surpreendente


Muitos operadores hub-and-spoke - e operadoras de serviço completo em geral - costumam perguntar 'de que aeronave precisamos para operar a rota X?' Em contraste, as companhias aéreas de baixo custo perguntaram: 'Eu tenho aeronaves Y, então onde posso pilotá-las?' Isso é visto claramente na Ethiopian Airlines.

De todas as suas aeronaves, o B787-8 é o que tem mais assentos neste verão (Foto: Vincenzo Pace)
Obviamente, a maior complexidade da frota, embora mais cara, também permite um melhor dimensionamento correto entre a demanda e o fornecimento para garantir o uso de uma aeronave eficiente. Isso vai ao cerne do modelo hub-and-spoke. À medida que a conectividade e a demanda aumentam, tanto de passageiros quanto de carga, cada vez mais pares de cidades devem ser capazes de usar aeronaves maiores e mais econômicas.

Isso é fortemente demonstrado com a Ethiopian Airlines, com 75% de seus assentos e metade de seus voos neste verão em widebodies.