segunda-feira, 18 de janeiro de 2021

Por que o U-2 ainda é o melhor avião espião do mundo, 65 anos após sua criação

Satélites - e drones - tinham como objetivo substituí-lo, mas Lockheed U-2 ainda é imbatível em suas funções
Com uma envergadura quase duas vezes maior do que seu comprimento, o avião espião Lockheed U-2 é uma das aeronaves mais distintas da Força Aérea dos Estados Unidos — e também mais difícil de pilotar.

A fuselagem fina de 19 metros de comprimento, as asas de planador e o motor potente são projetados para lançar o avião a uma altura de mais de 70 mil pés (21 km) — e, essencialmente, mantê-lo lá.

Apelidado de "Dragon Lady", o U-2 opera em tal altitude e com uma margem tão pequena entre sua velocidade máxima e sua velocidade de estol, que os pilotos chamam sua altitude de cruzeiro de "canto do caixão". E nessas condições realizam missões que duram horas seguidas.

O design esguio da aeronave às vezes é difícil de observar. Frequentemente, ela está coberta de cápsulas, antenas pontiagudas, protuberâncias misteriosas e cones frontais (ou de nariz) que escondem os sensores, radares, câmeras e equipamentos de comunicação de que necessita para completar suas missões.

Esses diferentes sensores podem ser conectados ao avião quase como se estivessem montando uma maquete. Há uma lenda urbana que diz que uma dessas protuberâncias ou cápsulas contém um dispositivo de camuflagem — um sinal eletrônico que torna o U-2 invisível ao radar.

A 70 mil pés ou mais, o "Dragon Lady" ainda tem a estratosfera em grande parte só para si, assim como em seu primeiro voo há 65 anos.

A essa altitude, o piloto é mais um astronauta do que aviador. Na cabine pressurizada e semelhante a um casulo do U-2, o piloto respira 100% de oxigênio — usando um traje pressurizado volumoso e um enorme capacete esférico. Alguns elementos deste uniforme podem ser encontrados em trajes espaciais em uso hoje.

No ar tão rarefeito, as margens entre viver e morrer são estreitas. Na verdade, o piloto enfrenta o perigo constante da hipóxia (falta de oxigênio) e da síndrome de descompressão induzida pela altitude.

U-2 foi projetado pelos americanos para espionar território soviético durante Guerra Fria
Como qualquer avião, o U-2 tem que voar rápido o suficiente para que não estole (perca sustentação), e não tão rápido que se desmantele — o desafio para o piloto do U-2 é que a 70 mil pés, pode haver apenas algumas milhas por hora de diferença entre as duas velocidades. Uma esbarrada acidental nos controles da aeronave pode significar um desastre.

Próximo ao solo, os controles mecânicos do avião, fáceis de manipular em grandes altitudes, exigem força muscular. 

O design leve do U-2 torna o avião suscetível a flutuar sobre as pistas, arremeter se o pouso for muito difícil e bastante sensível a ventos cruzados. O trem de pouso no estilo bicicleta, que reduz o peso, torna difícil — e trabalhoso — manter o avião em linha reta e com as asas niveladas à medida que diminui a velocidade.

A visibilidade da cabine é tão limitada que, ao pousar, o piloto precisa confiar nas instruções de outro piloto de U-2 que dirige um carro pela pista acompanhando o avião que está pousando. Esses carros de apoio atingem velocidades próximas a 224 km/h.

"O U-2 realmente atrai o tipo de piloto que quer dizer: 'Eu piloto o avião mais difícil no inventário'", afirma Greg Birdsall, subgerente do programa U-2 da Lockheed Martin.

"Eles pegam um candidato a piloto e o colocam em uma aeronave de treinamento com um piloto instrutor experiente no banco de trás para ver como ele reage às características peculiares de manuseio do avião."

Apenas cerca de 10% a 15% dos pilotos que se inscrevem para participar do programa são aceitos.

Pouso de um avião U-2 apresenta alguns desafios bastante peculiares
Na era da automação e dos algoritmos, é de se imaginar que esses aviões espiões e seus pilotos com "as qualidades certas" são uma relíquia da Guerra Fria — mas não é verdade.

Nos 31 anos desde a queda do Muro de Berlim, o U-2 interceptou vozes e textos, obteve sinais eletrônicos, tirou fotos e usou uma forma especial de radar para capturar imagens digitais.

O U-2 também ganhou novas funções, como a de transmitir dados. Sua capacidade de voar alto no céu significava que ele estava na posição perfeita para passar informações do campo de batalha para o quartel-general.

Nesse processo, ele superou aviões concorrentes e desbancou os satélites de vigilância que deveriam torná-lo obsoleto.

Agora, os 31 aviões U-2 operacionais da frota da Força Aérea americana estão prestes a passar por uma atualização de US$ 50 milhões e ganhar uma nova missão que pode levá-los a voar por mais 30 anos.

"Não vamos desaparecer como programa e estamos investindo pesado para levar o U-2 para o novo ambiente de sua missão", declarou Irene Helley, diretora do programa U-2 da Lockheed Martin. 

"Nesta nova era, não há uma data de expiração planejada." Embora não seja uma relíquia, o U-2 é certamente sinônimo da Guerra Fria.

Na década de 1950, o governo do presidente Dwight D Eisenhower foi surpreendido várias vezes com o avanço nuclear da então União Soviética. Isso aconteceu devido à sua lacuna de inteligência.

A União Soviética era uma sociedade fechada, difícil para a CIA, agência de inteligência americana, penetrar. A falta de espiões nos lugares certos significava que o presidente precisava de um avião espião de grande altitude para dizer a ele o que exatamente a União Soviética estava tramando. E ele precisava disso rapidamente.

Como o gênio da engenharia Kelly Johnson e sua equipe trabalhando no departamento secreto "Skunk Works", como era conhecido o programa de desenvolvimento avançado da Lockheed Martin, a empresa americana contava justamente com o time de profissionais capaz de criar a aeronave.

O mito do "Skunk Works" nasceu quando Johnson e seus engenheiros projetaram e construíram a fuselagem do primeiro jato da Força Aérea americana em apenas 143 dias, em 1943. No fim de 1954, eles começaram a trabalhar neste misterioso avião espião.

Design esguio do U-2 — com asas longas — ajuda a mantê-lo no ar rarefeito da camada superior da atmosfera
O avião teria que manter o voo acima de 70 mil pés, ter um alcance de 4,8 mil km e ser capaz de transportar 212 kg de equipamento.

O U-2 voou pela primeira vez apenas oito meses depois, em 1º de agosto de 1955, em um local remoto em Nevada, hoje conhecido como Área 51. Estava claro que Johnson e sua equipe haviam criado algo especial.

"O U-2 marca o início de uma mudança rumo à inteligência técnica, que está resolvendo esses problemas de inteligência não por meio de espiões no estilo John le Carré em solo, mas por meio de tecnologia avançada", afirma Peter J Westwick, diretor do Projeto de História Aeroespacial do Instituto Huntington-USC sobre a Califórnia e o Oeste americano.

"O U-2 é realmente o primeiro grande salto tecnológico para a inteligência técnica", acrescenta Westwick, que também é autor de Stealth: The Secret Contest to Invent Invisible Aircraft.

A história do U-2 poderia ter sido muito diferente. Em 1966, seu futuro parecia sombrio — apenas 15 dos 55 U-2 originais construídos ainda estavam em operação. Mas, crucialmente, foi decidido reiniciar sua produção na década de 1980, um negócio complicado quando muitos dos engenheiros originais haviam se aposentado.

Os aviões que saíram dessas linhas de produção reformados certamente pareciam semelhantes ao original, mas eram quase 40% maiores e tinham um novo design modular para transportar mais equipamentos — e mais peso — e trocá-los mais facilmente para diferentes tipos de missões .

Os U-2 em operação hoje podem carregar quase três vezes mais peso, voar o dobro da distância e permanecer no ar três vezes mais tempo que a aeronave original.

Na década de 1990, eles foram substancialmente atualizados novamente; e esse processo de modernização continua até hoje.

Ao longo do tempo, surgiram pelo menos cinco substituições possíveis para o U-2. A primeira, na década de 1970, foi a primeira geração de veículos aéreos não tripulados.

Um dos mais recentes é o RQ-4 Global Hawk da Northrop Grumman, com forma de baleia, uma aeronave de vigilância de grande altitude pilotada remotamente. Quando apareceu pela primeira vez em 1998, o U-2 tinha mais de 40 anos. Para pagar pela atualização do U-2, 24 Global Hawks terão que ser descartados.

Com o Global Hawk deixado de lado, a evolução do U-2 poderá dar o próximo passo.

As mudanças no avião incluirão uma aviônica melhor, uma cabine com tela touchscreen (que você pode usar com um traje pressurizado) e um novo computador de missão que permitirá que o avião execute o novo Open Mission System (OMS).

O OMS permitirá que aeronaves como o U-2 se comuniquem facilmente com os sistemas de computador de tanques, navios, aeronaves, satélites e até mesmo armas cibernéticas.

Até agora, a experiência do U-2 tem sido proveitosa. "Ele tem um desempenho comprovado em alta altitude", diz Helley. "Há também o reconhecimento de que suas fuselagens ainda são basicamente adolescentes. Restam a elas cerca de 80% de sua vida útil de design."

Avião espacial Boeing X-37B pode um dia lançar minúsculos satélites capazes de realizar algumas das missões do U-2
Além disso, as plataformas tripuladas também são muito melhores para lidar com surpresas do que os computadores.

"Se você olhar para os recursos de vigilância espacial e de alguns dos outros tipos, eles dependem em grande medida de planejamento prévio para fornecer as informações necessárias. Em contrapartida, o U-2 está sempre disponível e pode estar pronto a qualquer momento ."

"O que sempre me perguntam é: Por que os satélites não podem fazer o que o U-2 faz?", diz Chris Pocock, ex-jornalista de aviação e autor de livros sobre o U-2.

"Bem, eles têm recursos fantásticos agora, mas uma trajetória orbital previsível. Isso significa que os satélites espiões da órbita baixa da Terra não ficam em nenhuma área por muito tempo, enquanto o U-2 pode permanecer por um longo tempo em um local específico."

Os satélites também estão cada vez mais vulneráveis ​​a medidas de defesa, como lasers que podem cegar satélites espiões, interferências ou até mesmo mísseis que podem danificar ou destruir um satélite vital.

O U-2 contribuiu como precursor no uso de enlace de dados (data link) para transmitir inteligência para estações terrestres que podem estar a milhares de quilômetros de distância, enviando o sinal primeiro para um satélite acima dele.

Agora esse papel se tornará ainda mais importante diante da ambição da Força Aérea americana de que todos os seus computadores, independentemente da empresa que os fabrica, sejam capazes de se comunicar entre si. Novos sensores ou câmeras devem ser adicionados e removidos da aeronave de forma mais rápida e barata do que nunca, à frente de seus concorrentes.

O U-2 tem um problema: não é particularmente invisível. E isso significa que não pode voar sobre o espaço aéreo de outros países sem seu conhecimento. Um avião U-2 foi recentemente detectado por militares chineses sobrevoando seus exercícios militares no Mar da China Meridional.

Agora parece que a empresa de defesa americana Northrop Grumman construiu uma pequena frota de drones ultrassecretos que se parecem com seu bombardeiro B-2 para fazer exatamente isso. Alguns acreditam que eles podem substituir o U-2.

Esses drones de reconhecimento de grande altitude e longa duração, que ainda são mantidos em sigilo, popularmente chamados de RQ-180, devem ter dispositivos de camuflagem, já que apenas uma "possível" foto estranha apareceu até agora, um feito surpreendente na era digital.

Embora o dispositivo de camuflagem seja uma peça fictícia de tecnologia que permite que aviões ou espaçonaves se tornem invisíveis, o drone ultrassecreto é conhecido por sua cor clara incomum que o tornaria difícil de localizar. Isso rendeu a ele o apelido de "Grande Morcego Branco", ou de forma mais rebuscada, "Shikaka", o morcego branco sagrado do filme Ace Ventura 2.

"Tudo o que eu disser deve ser considerado provisório", diz Pocock. "Deve ser muito discreto se vai entrar em território não-autorizado e fazer o que o U-2 faz em território amigo, mas não acho que vai substituir o U-2 porque aparentemente é incrivelmente caro. Não estão fabricando muitos [apenas sete] e pode não haver muitas ocasiões em que eles consigam obter permissão para voar."

Os microssatélites representam uma ameaça maior para o futuro do U-2. Pesando entre 10kg a 100 kg, eles são pequenos o suficiente para serem lançados de aviões espaciais como o Boeing X-37.

"Esses microssatélites podem ser lançados em quantidades tão grandes, a partir de um único lançamento de foguete, que começam a superar as vulnerabilidades dos satélites espiões em órbita baixa da Terra", afirma Pocock.

"Se você tem 10 ou mais satélites girando ao redor da Terra em cadeia, então você está revisitando o mesmo lugar na Terra em horas, e não dias", explica.

No entanto, Helley está confiante de que o U-2 vai escapar das ameaças de futuros concorrentes tão bem quanto fez com as anteriores. "O que mais funciona no ambiente em que o U-2 opera?", questiona ela.

"Vemos o U-2 como uma Estrela do Norte em uma constelação muito grande de compilação e disseminação de informações em tempo real."

"É um ambiente muito, muito difícil de operar", acrescenta Birdsall.

"Tentar desenvolver algo para ocupar o seu lugar, ou mesmo complementá-lo naquela altitude, não seria rápido, não seria fácil e seria muito caro. Quando você já tem a capacidade que temos, por que fazer isso?"

Via BBC

Onde está o Boeing 707 de John Travolta?

Nos últimos anos, John Travolta ganhou as manchetes das notícias da aviação com sua aeronave Boeing 707. Um piloto apaixonado, Travolta o doou para a Sociedade de Restauração de Aeronaves Históricas da Austrália (HARS) em 2017. No entanto, parece que ainda não viajou para baixo, com sua transferência tendo sido adiada várias vezes. Então, onde está agora?

O Boeing 707 de John Travolta usa uma pintura retrô da Qantas (Getty Images)

Um piloto privado entusiasta


O ator americano John Travolta é talvez mais conhecido do público em geral por seus papéis em filmes como Grease e Pulp Fiction. Porém, no mundo da aviação, ele tem outro legado. Como piloto particular entusiasta, Travolta possui quatro aeronaves. Um deles é um jato particular da Gulfstream. Ele sofreu uma falha elétrica famosa ao voar com esta aeronave em Washington em novembro de 1992. Isso o forçou a fazer um pouso de emergência que quase resultou em uma colisão no ar.

Boeing 707 da Travolta


No entanto, a aeronave mais famosa de Travolta é um ex-avião Qantas Boeing 707 quadjet. A Aussie Airliners relata que era uma variante 707-138B, que era 10 pés (3 metros) mais curta do que a versão -100 padrão.

Originalmente registrado como VH-EBM, ele entrou em serviço com a transportadora de bandeira australiana em 1964. No entanto, com mais de 55 anos, agora possui o registro N707JT. Ao todo, a aeronave foi o 13º avião da Boeing entregue à Qantas, mas ficou apenas quatro anos na companhia aérea.

John Travolta na cabine de seu Boeing 707 em Frankfurt em 2002. O nome 'Jett Clipper Ella' é uma homenagem aos seus filhos e à Pan Am (Konstantin von Wedelstaedt via Wikimedia Commons)
A Qantas retirou a aeronave em 1968, quando já havia acumulado quase 12.000 horas de voo. Ele passou a ter uma variedade de proprietários pós-Qantas, incluindo Braniff e TAG Aviation. Travolta acabou comprando-o em maio de 1998, sob o nome de Jet Clipper Johnny LLC. Em dezembro daquele ano, foi redesignado como N707JT, um registro personalizado para o ator americano.

Esforços de preservação


Travolta anunciou pela primeira vez a doação da aeronave para a Historical Aircraft Restoration Society em 2017. O grupo está sediado no Aeroporto Shellharbour em Wollongong, Austrália. Após um extenso trabalho de preparação e certificação, a Simple Flying primeiro relatou que sua transferência para baixo estava programada para novembro daquele ano. Embora o próprio Travolta só possa pilotar o avião nos Estados Unidos, ele ainda esperava vê-lo chegar à Austrália.

No entanto, um mês antes da partida planejada, ficou claro que novembro não seria realista. Em outubro de 2019, a necessidade de mais trabalhos de aeronavegabilidade significava que ela teria de ser adiada para 2020. Determinar onde a aeronave reabasteceria em sua rota transpacífica também estava se revelando complicado.

A transferência do luxuoso Boeing 707 da John Travolta para sua nova casa na Austrália sofreu vários atrasos nos últimos anos (Konstantin von Wedelstaedt via Wikimedia Commons)
No ano passado, a pandemia de coronavírus em curso realmente ajudou a dar ao HARS tempo para completar a manutenção essencial em aeronaves raras. No entanto, a pandemia também impediu que ele voasse para a Austrália depois que o trabalho fosse concluído. De fato, o Planelogger relata que a aeronave ainda foi avistada no Aeroporto Brunswick Golden Isles, Geórgia (BQK), recentemente em novembro.

Como tal, a transferência foi mais uma vez adiada para este ano, 2021. Quando exatamente ela fará a viagem ainda não se sabe, já que as fronteiras da Austrália permanecem fechadas. No entanto, o que sabemos é que, quando puder fazer a viagem, será uma visão muito especial.

Via simpleflying.com

Luke Aikins, o homem que pulou de um avião sem paraquedas

Em um ambicioso salto de 7.620 metros, o aventureiro eternizou seu nome com uma proeza realizada com sucesso por poucos.

Luke Aikins saltando sem paraquedas (Divulgação/Youtube)
Na longa carreira de 20 anos, Luke Aikins saltou de paraquedas cerca de 18 mil vezes. O que parece ser a experiência mais radical da vida de algumas pessoas, para ele era comum, parte de sua realidade. Casado e pai de um menino, o homem surpreendeu a todos com o anúncio de que iria elevar sua aventura a um nível que raramente tinha sido visto.

O mundo parou naquele 30 de julho de 2016. Era o dia em que Aikins havia marcado para fazer algo inédito em sua consolidada carreira: pular de um avião sem paraquedas. O ambicioso salto ocorreria a 7.620 metros e seria transmitido ao vivo por emissoras de televisão dos Estados Unidos.

Para realizar o pulo e sobreviver para comemorar, Luke, juntamente com uma equipe de profissionais, montou um esquema que garantiria sua segurança; além de oferecer para o público uma sensação de adrenalina mesmo que de longe.

A estratégia consistiu em instalar uma rede de 30,5 por 30,5 metros, produzida para impedir a queda brusca — que poderia culminar em uma morte dolorosa. Apelidada de ‘Fly Trap’, a proteção foi alocada em Simi Valley, Califórnia, Estados Unidos.

Em entrevista a revista Q13 Fox, Aikins comentou sobre a ansiedade para o tão esperado dia: “Se eu não estivesse [nervoso], seria bobo e não deveria fazer isso”. O homem, que estava com 42 anos, também confessou sua paixão pela profissão que escolheu: “Minha vida inteira foi sobre ar, aviação, voar, pular, todas essas coisas”.

O salto grandioso



Quando chegou o aguardado momento, o público ficou enfeitiçado pela proeza que o aventureiro realizou. Foram dois anos de treinamento e preparação intensa para aqueles poucos e decisivos minutos.

Portando um GPS para localizar o centro da Fly Trap, quatro luzes auxiliaram Luke desde o segundo que ele pulou da aeronave Cessna. Um dispositivo para se comunicar com a equipe e um tanque de oxigênio completavam o uniforme requerido para a façanha.

Voando no céu limpo de barriga para baixo, Aikins caiu em queda livre por dois minutos, em uma velocidade de 193 km/h. O momento em que o paraquedista passou a máscara de oxigênio pra seu colega — este sim portando um paraquedas —, indicou que a aterrisagem estava próxima.

A rede, chamada de Fly Trap que auxiliou na aterrisagem no parquedista (Divulgação)
Para pousar na rede, o americano precisou fazer uma manobra no ar: rolou e dobrou o queixo, caindo assim de costa na superfície. Estava intacto, apenas adrenalina e alívio corria em suas veias.

Através da pequena telinha, os fãs vibraram ao ver que Luke estava bem e que o salto havia sido um sucesso. O sonho de se tornar paraquedista, que havia se tornado realidade pela primeira vez aos 12 anos, alcançava um patamar inimaginável. “Estou quase levitando, é incrível”, nem mesmo toda sua bravura podia acreditar no que tinha acabado de acontecer.

Via Alana Sousa (Aventuras na História)

Aviões An-124 realizam voo em formação pela 1ª vez na história da Rússia

Pela primeira vez na história da Rússia, seis aviões de transporte An-124 Ruslan realizam um voo em formação, em missão de treinamento. Durante o voo, os aviões mantiveram uma distância entre si inferior a 500 metros, a uma velocidade de 400 quilômetros por hora, segundo o canal Zvezda.

O voo foi acompanhado pelo comandante da Força Aeroespacial Russa, Vladimir Benediktov. Entendendo a necessidade atual de aeronaves deste tipo e mantendo o nível de treinamento do pessoal de voo, realizamos hoje a instrução de jovens tripulações neste tipo de aeronave", afirmou.

Desde o início de suas operações, o An-124 Ruslan já estabeleceu 21 recordes mundiais, incluindo de capacidade de carga e de autonomia de voo.

A aeronave é capaz de transportar cinco helicópteros Mi-8, ou dois caças Su-24, ou 880 militares. Graças ao seu exclusivo trem de pouso, composto por 24 rodas, o avião pode regular o espaço e o ângulo entre a fuselagem e a pista, para facilitar as operações de carregamento.

O An-124 Ruslan, desenvolvido na União Soviética, é o maior avião de transporte do mundo entre os produzidos em série, com 70 metros de comprimento e uma envergadura de 73,3 metros. A aeronave conta com um peso máximo de decolagem de quase 400 toneladas e tem uma autonomia de até 17 horas.

Via Sputnik Brasil

domingo, 17 de janeiro de 2021

Pela 1ª vez, empresa lança foguete ao espaço a partir de um avião

Cosmic Girl, o Boeing 747 da Virgin Orbit, levando o foguete LauncherOne para o espaço
A empresa de lançamentos espaciais Virgin Orbit realizou hoje com sucesso o lançamento de um foguete a partir de um avião em movimento. A missão Demo 2 levou dez pequenos satélites da Nasa à órbita da Terra. 

O avião, batizado de Cosmic Girl, é um Boeing 747 adaptado e pilotado por seres humanos. Ele decolou de uma pista na base de testes Mojave Air and Space Port, no deserto da Califórnia, EUA, às 15h47. Debaixo da asa, o foguete LauncherOne, arremessado ao espaço às 16h30 e chegando à órbita da Terra 10 minutos depois.

Com 21 metros de comprimento, composto por dois estágios, o foguete carregava dez Cubesats (satélites de pesquisa e comunicação em formato de cubo, com menos de 1,5 kg cada). Eles fazem parte do programa Educational Launch of Nanosatellites, da agência espacial norte-americana Nasa. 

O progresso da missão foi divulgado em tempo real no Twitter da Virgin Orbit. Uma hora após a decolagem, quando Cosmic Girl atingiu uma altitude de 10 mil metros (35 mil pés, a mesma de um voo comercial em cruzeiro), o foguete foi solto no ar para alcançar sozinho a baixa órbita terrestre, onde deixou os satélites.

Na primeira tentativa frustrada, em maio do ano passado, o foguete apresentou uma falha no motor do primeiro estágio (booster) e não conseguiu chegar à órbita após se separar do avião. Mas ele não carregava nenhum satélite. 

O sistema aéreo da Virgin Orbit, usando um avião comum em vez de um dispendioso lançamento de foguete por terra, consegue carregar satélites de até 500 kg. A ideia é oferecer menor custo, mais flexibilidade e melhor capacidade de resposta em relação a um grande lançamento vertical.

Via Tilt/UOL / Daily Mail

Vídeo: Mayday Desastres Aéreos - Garuda Indonesia 421 - Pouso no Rio

Fonte: Cavok Vídeos

Aconteceu em 16 de janeiro de 2002: Forças da Natureza - A queda do voo 421 da Garuda Indonésia

No dia 16 de janeiro de 2002, um Boeing 737 da Garuda Indonesia voou em uma forte tempestade sobre a ilha de Java. Enquanto os pilotos lutavam contra o vento uivante, a chuva torrencial e o granizo forte, os dois motores voltaram a funcionar simultaneamente. 

Quando a tripulação tentou reiniciá-los, o avião perdeu toda a energia elétrica. Quase sem instrumentos, sem rádios, sem luzes e quase nenhum controle de voo, o avião emergiu das nuvens a apenas alguns milhares de metros acima do solo - e o aeroporto estava longe de ser visto. 

Com apenas alguns segundos para decidir onde pousar, o capitão conseguiu derrubar o avião em um trecho estreito do rio Bengawan Solo, enfiando a agulha entre duas pontes que ficavam a apenas 1.500 metros uma da outra. 

A cauda atingiu o fundo rochoso do rio e foi arrancada, matando um comissário de bordo, mas o resto do avião parou intacto contra a margem, salvando as vidas dos outros 59 passageiros e da tripulação. Contra todas as probabilidades, os pilotos salvaram o dia - mas por direito, eles não deveriam ter precisado. 

Os motores do avião foram avaliados para resistir a quase qualquer tempestade concebível e, mesmo se eles desligassem, os pilotos deveriam ser capazes de reiniciá-los mais tarde. Caberia aos investigadores descobrir o que deu errado.


O voo 421 da Garuda Indonesia era um voo doméstico regular da cidade de Mataram, na ilha de Lombok, para a principal cidade de Javan de Yogyakarta (pronuncia-se Jog-yakarta).

Como muitos outros voos da companhia aérea de bandeira da Indonésia, o avião de escolha para esta rota foi o Boeing 737-3Q8, prefixo PK-GWA, da Garuda Indonesia Airways (foto abaixo), o jato de passageiros mais popular nos céus. A Indonésia depende muito das viagens aéreas para conectar suas centenas de ilhas espalhadas, mas o arquipélago tropical pode apresentar todos os tipos de perigos para os aviões, especialmente o clima severo.

PK-GWA, o Boeing 737 envolvido no acidente
Janeiro cai durante a estação chuvosa da Indonésia, que é conhecida por produzir algumas das tempestades mais intensas do mundo. A navegação em torno dessas tempestades era uma tarefa diária para os pilotos que estavam programados para realizar o voo 421 em 16 de janeiro de 2002. 

Se houvesse alguém em quem pudesse confiar para fazê-lo, pode ter sido o capitão Abdul Rozaq. Ele trabalhou seu caminho desde a venda de frutas nas ruas de Jacarta a voar para a companhia aérea nacional da Indonésia, provando seu valor por meio de trabalho duro: de milhares de candidatos, apenas um punhado recebeu bolsas de estudo de prestígio para ir para a escola de voo de Garuda, e ele estava entre eles. 

Agora, décadas depois, ele acumulava 14.000 horas de voo e era um dos pilotos mais experientes da empresa. Seu primeiro oficial, Harry Gunawan, tinha respeitáveis ​​7.000 horas próprias.

O voo 421 estava com pouca carga naquele dia, com 54 passageiros e seis tripulantes, enchendo o 737 com pouco menos da metade da capacidade. Às 8h20 UTC (16h20 hora local), o voo partiu do Aeroporto Internacional de Lombok, no subúrbio de Mataram, em Ampenan, com destino ao Aeroporto Internacional Adisucipto em Yogyakarta. 

O voo 421 prosseguiu normalmente até por volta das 9h10 UTC, logo após deixar sua altitude de cruzeiro de 28.000 pés. Foi neste ponto que os pilotos observaram uma linha de fortes tempestades entre sua posição e o aeroporto. 


Essas enormes nuvens cúmulos-nimbos se estendiam por até 62.000 pés, alto na estratosfera, e a única maneira de evitá-las era tentando encontrar um ponto fraco para passar entre as células. 

Tendo já entrado na cobertura de nuvens, eles precisariam confiar em seu radar meteorológico de bordo para determinar o caminho de menor resistência. O radar mostrou várias áreas de intensa precipitação indicadas em vermelho, com três lacunas exibidas em verde: uma à direita, uma à esquerda e outra ainda mais à esquerda. 

O capitão Rozaq conhecia a área e acreditava que a primeira lacuna à esquerda seria a mais conveniente. A lacuna mais à esquerda passava por um espaço aéreo militar restrito e ele precisaria de permissão especial do controle de tráfego aéreo para entrar. 

A lacuna à direita era menos direta, mas também tinha um problema muito mais material: um vulcão de 9.500 pés chamado Monte Merapi, que ficaria perto de seu caminho de abordagem se tentassem ir por ali - um grande risco, considerando que eles já foram liberados para descer a 9.000 pés. 

A melhor escolha era, portanto, ir para a lacuna do meio. Após informar ao controlador que estavam fazendo um desvio para evitar o tempo, os pilotos estimaram que chegariam em um waypoint chamado PURWO às 9h22. Mal sabiam eles que esta seria sua última comunicação com o ATC.

O capitão Rozaq e o primeiro oficial Gunawan pensaram que estavam voando para um vão entre as células da tempestade, mas na verdade foram vítimas de um truque tão antigo quanto o próprio radar. 


O sistema de radar do 737 detecta a intensidade da precipitação enviando um pulso eletromagnético e medindo quanta energia é devolvida. Um sinal de retorno mais intenso significa que uma precipitação mais intensa está desviando as ondas de rádio. 

Mas se a precipitação dentro de uma tempestade for suficientemente forte, as ondas de rádio podem ser completamente desviadas sem penetrar totalmente na tempestade. Isso deixa uma sombra de radar: uma zona atrás do ponto de deflexão que é exibida como clara, porque não há nenhum sinal retornando dessa área. 

Ao contrário de uma área livre real, onde o sinal falha em retornar porque não há nada para saltar, esta área parece limpa porque nenhum sinal pode entrar nela em primeiro lugar. 

A “lacuna” que o capitão Rozaq selecionou era na verdade uma sombra de radar, uma área onde a precipitação era tão intensa que seu radar não conseguia penetrá-la.

Assim que o voo 421 entrou nesta lacuna fantasma, a lacuna desapareceu e foi substituída por um mar vermelho no radar meteorológico. Aparentemente do nada, uma poderosa turbulência balançou o avião e uma chuva torrencial bateu contra o para-brisa.

Pequenas pedras de granizo batiam na fuselagem aos milhares a cada segundo. Os pilotos lutaram para manter o controle do avião enquanto ventos violentos o jogavam para cima e para baixo e de um lado para o outro, e eles mal conseguiam ouvir um ao outro por causa do barulho profano do granizo. 

Esta foi de longe a tempestade mais intensa que eles ou seus passageiros já viram. A concentração de granizo era tão densa que disparou o sistema de alerta de proximidade do solo, que começou a soar: “TERRENO! TERRENO!" enquanto o avião descia a 18.000 pés. 

Quase um minuto depois de entrar na tempestade, os motores já estavam se esforçando para permanecer acesos em meio ao violento ataque atmosférico. Quando um motor ingere água e gelo junto com o ar, a densidade efetiva do ar aumenta e o motor tem que trabalhar mais para produzir a mesma quantidade de empuxo. 

À medida que mais e mais chuva e granizo caíam nos motores do voo 421, o volume de água dentro dos motores tornou-se tão grande que eles foram incapazes de sustentar a combustão. Os motores começaram a perder potência e, 90 segundos depois de entrar na tempestade, os dois queimaram simultaneamente.

Observe as flutuações violentas em vários parâmetros da aeronave, começando assim que o avião entra na tempestade. O limite direito do gráfico é o momento em que a chama do motor é apagada. O tempo entre cada linha vertical é de um minuto
A perda de potência do motor também causou uma perda de potência elétrica, pois os geradores dos motores pararam de funcionar. As luzes piscaram e se apagaram, enquanto sistemas essenciais como os instrumentos do capitão Rozaq foram redirecionados por meio do ônibus de emergência para a bateria do avião. 

Com a cabine banhada pelo brilho fraco do painel de instrumentos, Rozaq pediu o procedimento de religamento do motor, um item que os dois pilotos haviam memorizado durante o treinamento. 

O primeiro oficial Gunawan ligou o motor e ligou a chave de ignição, mas nada aconteceu. Ainda havia muita água dentro dos motores para iniciar a combustão e, embora nenhum dos pilotos soubesse, religar os motores seria impossível enquanto eles permanecessem no meio da tempestade. 

Após a primeira tentativa, Rozaq pediu a sequência de reacender novamente. Mas depois de um minuto e o motor não acendeu, parecia-lhe que o processo não estava funcionando. (Embora ele devesse ter esperado três minutos de acordo com o manual, isso não teria feito diferença no resultado real).

Além disso, se eles continuassem tentando, sem sucesso, religar os motores sem a energia da bateria, eles drenariam a bateria, e então eles iriam estar com problemas reais. Rozaq, portanto, instruiu Gunawan a iniciar a Unidade de Energia Auxiliar, ou APU, um gerador que forneceria energia elétrica a todos os sistemas da aeronave e permitiria mais tentativas de reinicialização.

Rozaq e Gunawan não sabiam que já estavam com problemas reais. A bateria deste 737 estava se degradando há algum tempo. Muito antes do voo 421, a corrosão fez com que o sensor de temperatura da bateria se separasse da bateria. 

Sem um sensor de temperatura, as proteções da bateria contra superaquecimento não funcionavam e, nos meses ou anos que se seguiram, a bateria superaqueceu repetidamente devido à sobrecarga. 

A bateria é composta por mais de uma dúzia de células individuais que, juntas, podem produzir uma carga de corrente de 24 volts, mas devido ao superaquecimento repetido, célula # 12 - localizado na parte mais quente da bateria - aberto pouco antes do voo 421, fazendo com que seu suprimento de eletrólito escape. Isso reduziu a capacidade geral da bateria de 24 volts para 22 volts. 


Os pilotos notaram que a bateria estava mostrando uma voltagem mais baixa do que o normal antes do voo, mas 22 volts não era suficientemente baixo para que a bateria fosse considerada defeituosa, então eles não se importaram com isso. 

O que eles não sabiam era que a 22 volts, a bateria não seria capaz de fornecer energia suficiente para duas tentativas de reacender o motor e ainda iniciar o APU. A tensão é uma medida do nível de corrente que a bateria pode fornecer a qualquer momento. Quando a carga da bateria diminui devido ao consumo de corrente, a tensão que ela pode fornecer também diminui. 

As duas tentativas consecutivas de reinicialização do motor caíram a tensão abaixo de 18 volts, mas a ignição da APU exigia uma carga de corrente contínua superior a 18 volts. Quando o primeiro oficial Gunawan apertou o botão para ligar o APU, a tensão caiu para 12 volts, muito baixa para alimentar o barramento de emergência; como resultado, todo o sistema elétrico do avião falhou. 

Tudo que dependia de energia elétrica parou de funcionar, incluindo os conjuntos de instrumentos e as bombas hidráulicas que movem os controles de voo. Todos os controles foram para reversão manual, conectando as superfícies de controle diretamente ao garfo sem assistência hidráulica. 

Todo o painel de instrumentos do capitão Rozaq escureceu, deixando-o com três instrumentos analógicos de reserva logo acima do console central: um minúsculo indicador de atitude, um indicador de velocidade no ar e uma bússola magnética. Ambos os rádios falharam junto com o transponder do avião. 

No centro de controle de tráfego aéreo em Yogyakarta, o voo 421 caiu das telas de radar secundárias; o controlador começou a ligar para o voo para perguntar sua posição, mas não houve resposta. A bordo do avião, os passageiros podiam ouvir o primeiro oficial Gunawan gritando "Mayday, mayday!" pelo rádio, mas ele poderia muito bem estar gritando diretamente para o vazio uivante.

Sem bateria, não havia como dar partida nos motores ou no APU - eles seriam forçados a fazer uma aterrissagem mortal em algum lugar no centro de Java. Mas sem rádios e sem equipamento de navegação além de uma bússola simples, os pilotos não tinham como determinar sua posição enquanto não conseguiam ver o solo. 


Rozaq e Gunawan se viram desamparados, capazes de fazer pouco mais do que manter o nível do avião enquanto ele descia por meio da tempestade a uma velocidade de 4.000 pés por minuto. 

Na ausência de quaisquer outras medidas que ajudassem em sua situação, eles oraram a Deus pela salvação. Depois do que pareceu uma eternidade, o avião emergiu repentinamente da tempestade a uma altitude de 8.000 pés, e a chuva e o granizo desapareceram tão rapidamente quanto haviam surgido. 

Desta altura, os pilotos teriam menos de dois minutos para escolher um local de pouso e alinhar para uma abordagem. Com base em pontos de referência visíveis, eles determinaram que estavam em algum lugar ao sul da cidade de Surakarta, mas o aeroporto de Surakarta estava atrás deles e fora do alcance. 

À frente deles havia uma vasta planície coberta com milhares de arrozais, o que não poderia ser uma superfície de aterrissagem segura. Mas cortando a planície ao meio estava o estreito rio Bengawan Solo, que nesta área estava apenas começando sua jornada para o mar. 

A água tinha alguns metros de profundidade no máximo, e apenas cerca de duas vezes mais largura que a envergadura do 737 com árvores pendentes, mas os pilotos não viram opção melhor. 

Lutando com os pesados ​​e lentos controles manuais, o capitão Rozaq abriu caminho em uma curva de quase 360 ​​graus para se alinhar com o único trecho reto de rio que conseguiu encontrar. mas o aeroporto de Surakarta estava atrás deles e fora de alcance. 

Seu alvo era uma seção de rio perto da vila de Bulakan, com cerca de 1.500 metros de água arborizada imprensada entre duas pontes e um trecho de corredeiras rochosas. 

Vindo baixo sobre a primeira ponte, o capitão Rozaq puxou para trás e diminuiu a velocidade, e o avião caiu na água com um baque pesado. 


Viajando a 300 quilômetros por hora, o 737 ricocheteou no fundo rochoso do rio, rasgando o chão na seção da cauda. 

Em um piscar de olhos, a cozinha traseira, um dos banheiros, o APU, os gravadores de voo e os assentos dos comissários viraram sob a cauda e se desintegraram, matando instantaneamente um dos comissários de bordo e ferindo gravemente seu companheiro de assento ao serem esmagados contra o leito do rio. 


O avião continuou sem eles, estremecendo e sacudindo enquanto passava, arrancando assentos do chão e despejando bagagens de compartimentos superiores quebrados. 

Então, depois de apenas alguns segundos angustiantes, o avião parou na margem direita do rio, com alguns buracos no chão e um motor separado, mas intacto. 


Embora houvesse vários ferimentos graves e um comissário de bordo estivesse morto, o capitão Abdul Rozaq e o primeiro oficial Harry Gunawan derrubaram o avião danificado em uma peça, salvando a vida de 59 dos 60 passageiros e tripulantes.

O resgate dos passageiros foi delicado. Embora a maioria dos passageiros tenha conseguido sair do avião pelo lado direito e caminhar até a costa, várias pessoas sofreram ferimentos graves que os impediram de escapar e foi preciso encontrar um método para retirá-los do avião. 

Sob a direção do capitão Rozaq, um pescador conseguiu levar um passageiro ferido usando a porta de saída suspensa como uma maca improvisada.


Os residentes locais levaram passageiros feridos e comissários de bordo aos hospitais em Surakarta usando seus veículos pessoais. 

Depois de se certificar de que todos haviam sido evacuados, o capitão Rozaq ligou para o centro de operações Garuda em seu telefone celular para informá-los o que havia acontecido - naquele ponto, tudo o que sabiam era que o avião havia sumido do radar e teria pousado em um rio em algum lugar de Java Central. 

Só agora, duas horas após o acidente, os serviços de emergência finalmente chegaram ao local.

Os investigadores do Comitê Nacional de Segurança nos Transportes da Indonésia (KNKT) estavam ansiosos para entender por que um 737 havia perdido os dois motores em voo - e o mesmo aconteceu com o NTSB americano. 


A primeira pergunta era por que os motores pifaram. Já se sabia que a precipitação forte poderia causar o incêndio de um motor, porque já havia acontecido antes. Três desses incidentes ocorreram no 737 no final dos anos 1980, incluindo a infame emergência de 1988 a bordo do voo 110 da TACA. 

Nesse caso, um 737 com 45 passageiros e tripulação a bordo estava chegando a Nova Orleans em um voo de Belize quando passou por um tempestade sobre o Golfo do México. Ambos os motores ingeriram granizo e queimaram; as pedras de granizo danificaram os motores além da esperança de reiniciar, e os pilotos acabaram fazendo uma aterrissagem espetacular em um dique no delta do Mississippi.

Uma falha semelhante de motor duplo ocorreu em um voo da Air Europe em 1987, e um voo da Continental em 1989 também perdeu um motor em circunstâncias semelhantes. Após esses incidentes, o CFM International reprojetou vários aspectos do motor CFM-56 para torná-lo menos suscetível a fortes precipitações, incluindo a alteração dos formatos do spinner e do fan disk para que desviem o granizo do núcleo. 

A Federal Aviation Administration também exigiu que os motores a jato continuassem a operar sob uma proporção de precipitação atmosférica para o ar de 10 gramas por metro cúbico, um volume que poderia ser considerado torrencial com segurança. 

Então, por que essas modificações não impediram a queda do voo 421 da Garuda Indonesia? 

Após esses incidentes, o CFM International reprojetou vários aspectos do motor CFM-56 para torná-lo menos suscetível a fortes precipitações, incluindo a alteração dos formatos do spinner e do fan disk para que desviem o granizo do núcleo. 

A Federal Aviation Administration também exigiu que os motores a jato continuassem a operar sob uma proporção de precipitação atmosférica para o ar de 10 gramas por metro cúbico, um volume que poderia ser considerado torrencial com segurança. 

Então, por que essas modificações não impediram a queda do voo 421 da Garuda Indonesia? 

Os investigadores usaram vários dados para tentar estimar o volume de precipitação encontrado pelo voo 421 no momento em que os motores falharam. 

Ao correlacionar a taxa de fluxo de combustível em excesso para os motores com flutuações no som do granizo no gravador de voz da cabine, em combinação com o fato de que a densidade do granizo desencadeou o sistema de alerta de proximidade do solo, eles foram capazes de derivar um cifra de aproximadamente 18 gramas de precipitação por metro cúbico de ar (a maior parte do qual foi granizo) - quase o dobro do que os motores foram certificados para suportar. 


De fato, a British Air Accidents Investigation Branch, que analisou o CVR, disse que a precipitação do voo 421 foi a mais intensa alguma vez registada a bordo de um avião, tanto quanto sabiam. 

Por fim, os testes conduzidos pelo fabricante do motor CFM International mostraram que, na prática, um motor CFM-56 irá queimar com um volume de precipitação de 17,8 gramas por metro cúbico - exatamente onde os motores entregaram o fantasma no voo 421. 

Não havia nada de errado com o motores ou o método pelo qual eles foram certificados: em vez disso, o voo malfadado havia voado em uma tempestade de granizo totalmente bíblica que subjugou todos os sistemas de proteção.

Uma desmontagem dos motores revelou que nenhum dano ocorreu antes do impacto e que ambos os motores poderiam teoricamente ter sido reiniciados. Só depois de examinar a bateria da aeronave os investigadores entenderam por que os pilotos não conseguiram fazer isso. 

O dano ao # 12A célula fez com que a voltagem da bateria caísse para perto da parte inferior da faixa aceitável, onde foi incapaz de fornecer energia suficiente para conduzir duas tentativas de religamento do motor e ainda iniciar o APU. 

Os pilotos não poderiam ter previsto que suas ações esgotariam a bateria, porque eles não sabiam que as duas tentativas de religamento falhariam, nem sabiam exatamente quantos volts cada tentativa exigiria. 

Quando o primeiro oficial Gunawan apertou o botão para ligar o APU, ele certamente não teria olhado para a tensão da bateria antes de fazer isso - nem teria importado, porque àquela altura a bateria não tinha mais energia suficiente para fazer qualquer coisa útil de qualquer maneira. 

Depois que a bateria falhou, o avião se tornou um caroço de metal com boa aerodinâmica, mas não muito mais. Apenas devido ao raciocínio rápido do capitão Rozaq foi evitado um acidente catastrófico em um campo de arroz ou uma aldeia. 

No entanto, também deve ser observado que os procedimentos adequados aconselharam a tripulação a não hesitar antes de iniciar o APU durante um cenário de falha de motor duplo. Se eles tivessem iniciado o APU primeiro, outras tentativas de reinicialização não teriam sido realizadas com a bateria e eles provavelmente poderiam ter reacendido os motores e pousado com segurança após sair da tempestade.

A última área de investigação restante foi a decisão dos pilotos de voar para a tempestade em primeiro lugar. A lacuna que eles pensaram ter visto acabou sendo uma sombra de radar, e as duas lacunas reais em cada lado continham vários obstáculos que as faziam parecer menos atraentes. 


Mas o sombreamento de radar era um fenômeno bem conhecido, e os pilotos realmente poderiam ter sido capazes de detectá-lo se tivessem recebido um treinamento melhor sobre como usar seu sistema de radar. 

O sistema tinha uma função que permitia ao piloto incliná-lo para cima e para baixo, esquadrinhando as nuvens em diferentes elevações para ter uma noção melhor da localização da precipitação mais pesada. 

A varredura da nuvem através de toda a gama de ângulos de emissão do radar poderia ter mostrado que a lacuna era provavelmente uma ilusão, revelando uma precipitação ligeiramente mais leve (mas ainda muito pesada) acima ou abaixo dela. 

No entanto, se os pilotos não entendem o sistema de radar ou subestimam a ameaça de sombreamento do radar, essa funcionalidade extra pode se revelar inútil - que foi o que aconteceu no voo 421. 

Com todos os seus anos de experiência, Rozaq e Gunawan só podiam funcionar com o que eles receberam do sistema de treinamento de pilotos um tanto sem brilho da Indonésia, e mesmo um piloto incrivelmente habilidoso como Rozaq não pode ter agido com base em informações que ele não sabia que existiam. 

Além disso, tempestades semelhantes são extremamente comuns durante a estação chuvosa, e nenhum SIGMET avisando sobre mau tempo foi emitido, então ele não tinha motivos para esperar nada fora do normal, muito menos a precipitação mais intensa já conhecida que foi encontrada por um avião de passageiros.

Em seu relatório final, o KNKT recomendou que o CFM International criasse um procedimento especial para reacender os motores durante fortes chuvas para evitar tentativas repetidas em condições onde o motor não pode ser reacendido, e que o CFM forneça orientação para ajudar os pilotos a otimizar a água/granizo de um motor capacidade de ingestão, caso outra tripulação se encontre em uma situação semelhante. 


O NTSB notou que todos os incidentes conhecidos de apagamento de chamas do motor devido à precipitação ocorreram durante a descida de uma tempestade com alta velocidade no ar e baixa configuração de aceleração; na verdade, a configuração de baixa potência permite mais granizo no motor porque o disco do ventilador não está girando tão rápido e o granizo pode escapar mais facilmente pelas brechas. Acelerar os motores antes de entrar em uma área de precipitação pode evitar que as chamas se apaguem, mesmo com granizo muito intenso. 

Os investigadores também recomendaram que o serviço meteorológico da Indonésia emita avisos SIGMET sempre que for detectado mau tempo, e que as companhias aéreas indonésias forneçam treinamento mais abrangente aos pilotos sobre as capacidades de seu radar meteorológico. 

Separadamente, o NTSB instou a FAA a publicar orientações claras para os pilotos sobre as consequências de realizar as tarefas de religamento do motor - especialmente iniciar o APU - fora de serviço.


A queda do voo 421 da Garuda Indonésia é um lembrete gritante de que é possível para um avião encontrar condições climáticas que excedem as que foi certificado para sobreviver. A melhor maneira de prevenir tal ocorrência é evitar voar em tempestades severas em primeiro lugar. Arriscar uma lacuna sem avaliá-la adequadamente é uma receita para o desastre. 

Pelo restante de sua carreira, o capitão Rozaq sem dúvida foi mais cuidadoso ao navegar em tempo tempestuoso - e pode-se esperar que o mesmo possa ser dito de milhares de outros pilotos em toda a Indonésia. 

As publicações da FAA recomendam que os pilotos mantenham uma distância mínima de 20 milhas náuticas de qualquer tempestade severa, uma regra que os pilotos do voo 421 não seguiram. 

A lacuna que Rozaq escolheu voar, mesmo que realmente existisse, era simplesmente estreito demais para manter o avião longe do mau tempo com segurança. Seu excelente voo sob pressão salvou 59 vidas - mas, no futuro, a melhor solução não é confiar na capacidade de cada piloto de abandonar um avião, mas evitar ter que abandonar aviões.

Edição de texto e imagens por Jorge Tadeu

Com admiralcloudberg e ASN - As imagens são provenientes de AirlinesTravel.ro, Werner Fischdick, Google, KNKT, Mayday, Tempo, Kompas e Jakarta Post. Clipes de vídeo cortesia de Mayday (Cineflix).

Vídeo: Mayday Desastres Aéreos - British Airways 38 - O Enigma de Heathrow

Via Cavok Vídeos

Aconteceu em 17 de janeiro de 2008: A queda do voo 38 da British Airways - O Enigma de Heathrow

No dia 17 de janeiro de 2008, o voo 38 da British Airways estava a momentos de pousar em London Heathrow quando os dois motores pararam de funcionar simultaneamente. Com apenas alguns segundos para evitar uma catástrofe, os pilotos fizeram um último esforço para salvar o avião, apenas livrando um bairro e as antenas ILS antes de cair na grama perto da pista. 

Apesar dos grandes danos ao avião, todas as 152 pessoas a bordo sobreviveram ao acidente, a maioria fugindo com ferimentos leves em um voo que esteve a poucos metros de se tornar um dos piores desastres aéreos da Grã-Bretanha. 

Uma longa investigação revelou um problema oculto com o sistema de combustível do Boeing 777 que levou o gelo a bloquear as linhas de combustível em um momento crítico. 


O voo 38 da British Airways era (e ainda é) um voo regular de longo curso de Hong Kong para o Aeroporto Heathrow, de Londres. O avião, o Boeing 777-236ER, prefixo G-YMMM, da British Airways (foto acima), com menos de três quintos da capacidade, 136 passageiros e 16 tripulantes a bordo, decolou normalmente e subiu à altitude de cruzeiro de 40.000 pés. 

A maior parte do voo foi passada sobre a Sibéria, onde a temperatura do ar fora do avião caiu para -74˚C (-101˚F), um fator notável que logo entraria em jogo.


O ar frio incomum fez com que a temperatura do combustível do avião caísse para cerca de -30˚C (-22˚F). O capitão Peter Burkill monitorou a temperatura para garantir que não caísse abaixo de -34˚C (-29˚F), ponto no qual o combustível estaria em perigo de congelamento, mas permaneceu bem longe deste limite. No entanto, as impurezas naturais da água misturadas ao combustível de fato congelaram.


No meio do cruzeiro, os pilotos desceram ligeiramente, aumentando a temperatura do combustível acima de -30˚C. Em vez de reduzir o perigo de gelo, isso transformava o gelo em água no combustível, na “faixa pegajosa” de -20˚C a -8˚C, na qual começaria a aderir às superfícies adjacentes. O gelo lentamente começou a se formar no interior das tubulações de combustível.

Na maior parte do cruzeiro, os motores estavam com 90% da potência, mas a potência foi reduzida para 35% para a descida. Com esta taxa de fluxo de combustível relativamente baixa, o gelo permaneceu preso às paredes das linhas de combustível sem restringir o fluxo. Esta situação não mudou até alguns minutos antes do pouso.

Na aproximação final de Heathrow, o avião encontrou alguma turbulência moderada que fez com que os autothrottles ajustassem rapidamente a potência do motor para compensar, em um ponto empurrando a potência do motor para até 70% do máximo em apenas alguns segundos.


Isso repentinamente aumentou a taxa na qual o combustível estava fluindo pelos tubos, desalojando o gelo que havia se acumulado nas tubulações de combustível de ambos os motores nas últimas oito horas. 

Os pedaços de gelo foram varridos pelos canos até chegarem a um gargalo em um dispositivo chamado trocador de calor de óleo combustível, ou FOHE. No FOHE, o combustível de jato extremamente frio é filtrado através de tubos estreitos cercados por óleo de motor quente para evitar que o combustível congele. 

Os pedaços de gelo não conseguiam passar pelos pequenos orifícios e se alojaram nas extremidades salientes dos tubos, que estavam um pouco longe do próprio FOHE para que o óleo quente derretesse o gelo. O gelo restringiu bastante o fluxo de combustível para ambos os motores, impedindo-os de gerar energia.


O Boeing 777 estava a apenas 200 pés acima do solo, aproximando-se de Hounslow, quando o autothrottle tentou acelerar os motores, mas não conseguiu. A potência do motor começou a diminuir e a velocidade do avião caiu vertiginosamente. 

O primeiro oficial John Coward, que estava voando na abordagem, tentou acelerar manualmente para compensar isso, mas os motores não responderam. Percebendo que algo estava terrivelmente errado, ele disse: “Ei, não consigo ligar os motores!” 

Nesse ponto, os dois motores voltaram à marcha lenta e empurrar os manetes para a potência máxima não produziu resposta. Avisos de “velocidade baixa” soaram na cabine. Percebendo que um acidente era iminente, Coward e Burkill imediatamente assumiram o controle manual do avião a uma altitude de apenas 150 pés.


Os pilotos tiveram menos de trinta segundos para evitar um acidente catastrófico. 

“Agora eu estava olhando para o nosso ponto de impacto”, lembra o capitão Burkill. “Eu podia ver um conjunto de edifícios ao redor da área de Hatton Cross e um posto de gasolina. Eu sabia que se estivéssemos acertando aqueles, com certeza seria 100% fatal."

Além desses obstáculos, ficava a rodovia A30 e um conjunto de balizas de rádio que compunham o sistema de pouso por instrumentos do aeroporto. O avião estava caindo rápido demais para chegar à pista. 

Naquele momento, o capitão Burkill tomou a decisão de uma fração de segundo de retrair os flaps, um movimento que reduziu a sustentação, mas também reduziu o arrasto. A velocidade do avião aumentou apenas o suficiente para passar por Hatton Cross, passando por motoristas atônitos na A30 a uma altitude de 20 pés.


O 777 desviou dos faróis do ILS por centímetros e bateu na grama centenas de metros antes da pista. O trem de pouso entrou em colapso instantaneamente e o conjunto do trem esquerdo foi impulsionado diretamente para cima através do topo da asa enquanto o conjunto do trem direito se partiu completamente. 


O avião escorregou pela grama de barriga antes de parar na soleira da pista, milagrosamente intacto. 

Só nesse momento os pilotos tiveram a chance de declarar uma emergência, enviando um aviso de socorro de seu avião acidentado e ordenando que os passageiros evacuassem. 


O capitão Burkill disse mais tarde que presumiu que 20% dos passageiros teriam morrido devido ao impacto violento, mas logo ficou surpreso ao descobrir que a fuselagem havia permanecido intacta e que cada um dos 152 passageiros e tripulantes foram capazes de deixar o avião por conta própria.

Os serviços de emergência chegaram em alguns minutos e espalharam espuma de combate a incêndios no avião, mas felizmente nenhum incêndio se materializou. 


Vários passageiros feridos foram hospitalizados, com o passageiro mais gravemente ferido sofrendo uma perna quebrada e uma concussão. 

Considerando todas as coisas, o acidente poderia ter sido muito, muito pior; se o avião tivesse caído em um bairro próximo, poderia ter sido o pior acidente de todos os tempos envolvendo uma companhia aérea britânica. 


O capitão Burkill foi saudado como um herói por sua decisão de retrair os flaps, um movimento que não era óbvio, mas sem dúvida salvou o avião.

A investigação sobre o acidente, a primeira perda do casco de um Boeing 777, era esperada para ser curta e de grande interesse para o público. No entanto, apesar de ter uma aeronave intacta, todos os gravadores de voo e uma tripulação viva, demorou mais de dois anos para descobrir a causa do acidente porque o gelo nas tubulações de combustível não deixou vestígios. 

Gelo na face de entrada de um motor Rolls-Royce RB211 Trent série 800 FOHE
(trocador de calor de óleo combustível)
Somente após testes extensivos e um incidente repetido, a sequência de eventos se tornou clara. Em novembro de 2008, o voo 18 da Delta Airlines, um 777 a caminho de Xangai para Atlanta, sofreu uma perda de potência em um motor enquanto estava em altitude de cruzeiro. 


O motor finalmente recuperou a potência e a aeronave continuou até seu destino. Logo ficou claro que a causa era semelhante à do voo 38 da British Airways, e a repetição do incidente ajudou muito a isolar a causa, ao mesmo tempo, ressaltou a importância de encontrar e corrigir o problema o mais rápido possível.

Depois que o relatório final foi divulgado, a Rolls Royce e a Boeing redesenharam o trocador de calor do óleo combustível do motor para que o gelo que entrasse em contato com os tubos fosse exposto ao calor do óleo e derretesse rápido o suficiente para evitar a perda de potência do motor. 


Outros fabricantes foram aconselhados a avaliar seus FOHEs e potencialmente fazer a mesma alteração, e os pilotos foram informados de que reduzir temporariamente o empuxo nos motores afetados eliminaria o bloqueio (embora os pilotos do voo 38 da British Airways não pudessem ter feito isso devido ao seu baixo altitude).

Um último capítulo infeliz na história do voo 38 se desenrolou na vida pessoal do capitão Burkill. Apesar de ser saudado como um herói, ele não teve permissão para falar sobre o acidente enquanto a investigação estava em andamento, e nesse ínterim começaram a circular falsos rumores de que ele “congelou” e não fez nada para salvar o avião. 


Burkill solicitou repetidamente que a British Airways fizesse uma declaração para dissipar esses rumores, mas a empresa recusou todas as vezes. Mesmo depois que um relatório preliminar confidencial o exonerou de culpa, não foi dada muita atenção pela British Airways a este documento, e os rumores continuaram a circular, agora também insinuando que as tripulações de cabine tinham medo de voar com ele.

Burkill novamente solicitou que a British Airways agisse para limpar publicamente seu nome, mas eles não o fizeram. Burkill ficou tão farto do ambiente de trabalho que deixou a British Airways, presumindo que ele pudesse encontrar emprego em outra companhia aérea. 

Mas nenhuma das dez companhias aéreas às quais ele se candidatou deu-lhe uma entrevista, temendo a publicidade de contratar um piloto que se envolveu em um acidente - muito menos que ele fosse o herói da história. 


O estresse da provação quase acabou com seu casamento e a perda de seu emprego o forçou a vender sua casa. “Às vezes, achei que minha família estaria melhor se eu não tivesse movido as abas. Eu pensei, 'Eu provavelmente não estaria aqui, mas pelo menos eles estariam financeiramente seguros'”, disse Burkill em uma entrevista de 2011 ao The Mirror. 

Desde então, ele se recuperou emocionalmente e acabou sendo recontratado pela British Airways, mas a sensação persistente de que a BA abandonou seu piloto herói em sua hora de necessidade nunca irá embora. 

Edição de texto e imagens por Jorge Tadeu

Com Admiral Cloudberg, ASN. baaa-acro.com - Imagens provenientes da Wikipedia, Darren Varney, The Mirror, The AAIB, Google e Delta Museum. Clipes de vídeo cortesia da Cineflix.